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Today: CPU Scheduling
• What should the scheduler algorithm do?

– Are the ad hoc schedulers ok?
– What do commercial OS’ do?
– Lottery and Stride scheduling

• Scheduling activations
– User level vs. Kernel level scheduling of threads
– Can be thought of as extensibility for scheduling
– May skip and give you a quick summary

• How do we schedule on emerging machines?
– Multicores/many-cores?  Decade of wasted cores
– Cloud, embedded-- Hawk



LOTTERY SCHEDULING
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Unix Scheduler
• The canonical Unix scheduler uses a MLFQ

– 3-4 classes spanning ~170 priority levels
• Timesharing: first 60 priorities
• System: next 40 priorities
• Real-time: next 60 priorities
• Interrupt: next 10 (Solaris)

• Priority scheduling across queues, RR within a queue
– The process with the highest priority always runs
– Processes with the same priority are scheduled RR

• Processes dynamically change priority
– Increases over time if process blocks before end of quantum
– Decreases over time if process uses entire quantum



Problems with Traditional schedulers 

• Priority systems are ad hoc: highest priority wins

• Try to support fair share by adjusting priorities with 
a feedback loop
– Works over long term 
– highest priority still wins but now the priorities are changing

• Priority inversion: high-priority jobs can be blocked 
behind low-priority jobs 

• Schedulers are complex and difficult to control



Lottery scheduling 
• Elegant way to implement proportional share 

scheduling
• Priority determined by the number of tickets 

each thread has:
– Priority is the relative percentage of all of the 

tickets whose owners compete for the resource
• Scheduler picks winning ticket randomly, gives 

owner the resource
• Tickets can be used for a variety of resources



Example

• Three threads
– A has 5 tickets
– B has 3 tickets
– C has 2 tickets 

• If all compete for the resource
– B has 30% chance of being selected 

• If only B and C compete
– B has 60% chance of being selected 



Its fair

• Lottery scheduling is probabilistically 
fair
• If a thread has a t tickets out of T 

– Its probability of winning a lottery is  p 
= t/T

– Its expected number of wins over  n
drawings is np
• Binomial distribution
• Variance σ2 = np(1 – p)



Fairness (II)

• Coefficient of variation of number of 
wins σ/np = √((1-p)/np)
– Decreases with √n

• Number of tries before winning the 
lottery follows a geometric 
distribution

• As time passes, each thread ends 
receiving its share of the resource



Ticket transfers 
• How to deal with dependencies?

– Explicit transfers of tickets from one client to another

• Transfers can be used whenever a client blocks due to 
some dependency
– When a client waits for a reply from a server, it can temporarily 

transfer its tickets to the server
• Server has no tickets of its own

– Server priority is sum of priorities of its active clients
• Can use lottery scheduling to give service to the clients

• Similar to priority inheritance
– Can solve priority inversion



Ticket inflation

• Lets users create new tickets 
– Like printing their own money
– Counterpart is ticket deflation
– Lets mutually trusting clients adjust their priorities 

dynamically without explicit communication

• Currencies: set up an exchange rate 
– Enables inflation within a group
– Simplifies mini-lotteries (e.g., for mutexes)



Example (I)
• A process manages three threads 

– A has 5 tickets
– B has 3 tickets
– C has 2 tickets

• It creates 10 extra tickets and 
assigns them to process C
– Why?
– Process now has 20 tickets



Example (II)

• These 20 tickets are in a new 
currency whose exchange rate with 
the base currency is 10/20

• The total value of the processes 
tickets expressed in the base 
currency is still equal to 10



Compensation tickets (I) 

• I/O-bound threads are likely get less 
than their fair share of the CPU 
because they often block before their 
CPU quantum expires

• Compensation tickets address this 
imbalance



Compensation tickets (II) 

• A client that consumes only a 
fraction f of its CPU quantum can be 
granted a compensation ticket
– Ticket inflates the value  of all client 

tickets by 1/f until the client starts gets 
the CPU



Example
• CPU quantum is 100 ms
• Client A releases the CPU after 20ms

– f = 0.2 or 1/5
• Value of all tickets owned by A will be 

multiplied by 5 until A gets the CPU
• Is this fair?

– What if A alternates between 1/5 and full 
quantum?



Compensation tickets (III) 

• Compensation tickets
– Favor I/O-bound—and interactive—threads 
– Helps them getting their fair share of 

the CPU



IMPLEMENTATION

• On a MIPS-based DECstation running 
Mach 3 microkernel
– Time slice is 100ms

• Fairly large as scheme does not allow 
preemption

• Requires 
– A fast RNG
– A fast way to pick lottery winner



Example

• Three threads
– A has 5 tickets
– B has 3 tickets
– C has 2 tickets 

• List contains
– A (0-4)
– B (5-7)
– C (8-9)

Search time is O(n)
where n is list length



Optimization – use tree
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RB Tree used in Linux
Completely fair scheduler(CFS)
--not lottery based



Long-term fairness (I)



Short term fluctuations
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Discussion

• Opinions of the paper and contributions?
– Fairness not great

• Mutex 1.8:1 instead of 2:1
• Multimedia apps 1.9:1.5:1 instead of 3:2:1

– Can we exploit the algorithm?
• Consider also indirectly – processes getting kernel 

cycles by using high priority kernel services
– Real time?  Multiprocessor?
– Short term unfairness

• Later this lead to stride scheduling from same authors
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Stride scheduling

• Deterministic version of lottery scheduling
• Mark time virtually (counting passes)

– Each process has a stride: number of passes between 
being scheduled

– Stride inversely proportional to number of tickets
– Regular, predictable schedule

• Can also use compensation tickets
• Similar to weighted fair queuing

– Linux CFS is similar
24



Stride Scheduling – Basic Algorithm
Client Variables:
• Tickets 

– Relative resource allocation
• Strides (

– Interval between selection
• Pass (

– Virtual index of next 
selection

- minimum ticket allocation
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Select Client with 
Minimum Pass

Advance Client’s Pass 
by Client’s Stride

Slide and example from Dong-hyeon Park  



Stride Scheduling – Basic 
Algorithm
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3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

+2



Stride Scheduling – Basic 
Algorithm
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3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3



Stride Scheduling – Basic 
Algorithm
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3:2:1 Allocation
∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)

Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6

+2



Stride Scheduling – Basic 
Algorithm
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Time 1: 2 3 6

Time 2: 4 3 6

Time 3: 4 6 6

+2

+3

Time 4: 6 6 6

+2

…
3:2:1 Allocation

∆ - A (stride = 2)
○ - B (stride = 3)
□ - C (stride = 6)



Throughput Error Comparison
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Error is independent 
of the allocation time 
in stride scheduling

Hierarchical stride 
scheduling has more 
balance distribution of 
error between clients. 



Accuracy of Prototype Implementation

• Lottery and Stride 
Scheduler 
implemented on real-
system. 

• Stride scheduler 
stayed within 1% of 
ideal ratio. 

• Low system overhead 
relative to standard 
Linux scheduler.
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Lottery Scheduler
Stride Scheduler



Linux scheduler
• Went through several iterations
• Currently CFS

– Fair scheduler, like stride scheduling
– Supersedes O(1) scheduler: emphasis on 

constant time scheduling –why?
– CFS is O(log(N)) because of red-black tree
– Is it really fair?

• What to do with multi-core scheduling?

32



SCHEDULER ACTIVATIONS 
BREWER 
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Context

• Neither user level threads nor kernel 
level threads work ideally
– User level threads have application 

information
• They are also cheap
• But not visible to kernel

– Kernel level threads
• Expensive
• Lack application information
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Idea
• Abstraction: threads in a shared address 

space
– Others possible?

• Can be implemented in two ways
– Kernel creates and dispatches threads

• Expensive and inflexible
– User level

• One kernel thread for each virtual processor
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User level on top of kernel 
threads

• Each application gets a set of virtual processors
– Each corresponds to a kernel level thread

• User level threads implemented in user land
– Any user thread can use any kernel thread (virtual 

processor)
• Fast thread creation and switch – no system calls
• Fast synchronization!

– What happens when a thread blocks?
– Any other issues?

36



Goals (from paper)
• Functionality

– No processor idles when there are ready threads
– No priority inversion (high priority thread waiting for low 

priority one) when its ready
– When a thread blocks, the processor can be used by 

another thread
• Performance

– Closer to user threads than kernel threads
• Flexibility

– Allow qpplication level customization or even a completely 
different concurrency model
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Problems

• User thread does a blocking call?
– Application loses a processor!

• Scheduling decisions at user and kernel not 
coordinated
– Kernel may de-schedule a thread at a bad time 

(e.g., while holding a lock)
– Application may need more or less computing

• Solution?
– Allow coordination between user and kernel 

schedulers
38



Scheduler activations
• Allow user level threads to act like kernel 

level threads/virtual processors

• Notify user level scheduler of relevant 
kernel events
– Like what?

• Provide space in kernel to save context of 
user thread when kernel stops it
– E.g., for I/O or to run another application

39



Kernel upcalls
• New processor available

– Reaction?  Run time picks user thread to use it
• Activation blocked (e.g., for page fault)

– Reaction? Runtime runs a different thread on 
the activation

• Activation unblocked
– Activation now has two contexts
– Running activation is preempted – why?

• Activation lost processor
– Context remapped to another activation

• What do these accomplish? 40



Runtime->Kernel

• Informs kernel when it needs more 
resources, or when it is giving up some
• Could involve the kernel to preempt 

low priority threads
– Only kernel can preempt

• Almost everything else is user level!
– Performance of user-level, with the 

advantages of kernel threads!
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Preemptions in critical sections

• Runtime checks during upcall whether 
preempted user thread was running in 
a critical section
– Continues the user thread using a user 

level context switch in this case
• Once lock is released, it switches back to 
original thread

• Keep track of critical sections using a hash 
table of section begin/end addresses
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Discussion
• Summary:

– Get user level thread performance but with 
scheduling abilities of kernel level threads

– Main idea: coordinating user level and kernel level 
scheduling through scheduler activations

• Limitations
– Upcall performance (5x slowdown)
– Performance analysis limited

• Connections to exo-kernel/spin/microkernels?
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