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L4 microkernel family

® Successful OS with different offshoot
distributions

- Commercially successful

« OKLabs OKL4 shipped over 1.5 billion installations by
2012

- Mostly qualcomm wireless modems

- But also player in automative and airborne entertainment
systems

» Used in the secure enclave processor on Apple's A7+
chips
— All iOS devices have it! 100s of millions



Big picture overview

Conventional wisdom at the time was:
- Microkernels flexible with nice abstractions

- ..but are inherently low performance
 border crossings and IPC

- ..because they are inefficient they are inflexible
This paper refutes the performance argument

- Main takeaway: its an implementation issue

Several insights on how microkernels should (and
shouldn’t) be built

- E.g., Microkernels should not be portable
What are the implications if true?



Paper argues for the following

* Only put in anything that if moved out
prohibits functionality

* Assumes:
- We require security/protection
- We require a page-based VM
- Subsystems should be isolated from one another

- Two subsystems should be able to communicate
without involving a third



Abstractions provided by L3

* Address spaces (to support protection/separation)
- Grant, Map, Flush
- Handling 1I/0

® Threads and IPC
- Threads: represent the address space
- End point for IPC (messages)

- Interrupts are IPC messages from Kernel
« Microkernel turns hardware interrupts to thread events

* Unique ids (to be able to identify address spaces,
threads, IPC end points etc..) °



Debunking performance
ISsues

* What are the performance issues?

1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss

TLB
Caches



Mode switches

* System calls (mode switches) should
not be expensive

- Called context switches in the paper

* Show that 90% of system call time on
Mach is “overhead”
- What? Paper doesn’t really say

« Could be parameter checking, parameter
passing, inefficiencies in saving state...

- L3 does not have this overhead
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Thread/address space switches

If TLBs are not tagged, they must be flushed

- Today? x86 infroduced tags but they are not
utilized

If caches are physically indexed, no loss of
locality

- No need to flush caches when address space
changes

Customize switch code to HW
Empirically demonstrate that IPC is fast



Tricks to reduce the effect

* TLB flushes due to AS switch could be
very expensive

- Since microkernel increases AS switches,
this is a problem

- Tagged TLB? If you have them

- Tricks with segments to provide isolation
between small address spaces

- Remap them as segments within one address
space

« Avoid TLB flushes
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Memory effects

Chen and Bershad showed memory behavior on
microkernels worse than monolithic

Paper shows this is all due to more cache misses

Are they capacity or conflict misses?

- Conflict: could be structure

- Capacity: could be size of code

Chen and Bershad also showed that self-

interference more of a problem than user-kernel
interference

Ratio of conflict to capacity much lower in Mach
- > too much code, most of it in Mach



Conclusion

* Its an implementation issue in Mach

* Its mostly due to Mach trying to be
portable

* Microkernel should not be portable

- It's the hardware compatibility layer

- Example: implementation decisions even
between 486 and Pentium are different if
you want high performance

- Think of microkernel as microcode 12



Today: CPU Scheduling
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Today: CPU Scheduling

* Scheduler runs when we context switching among
processes/threads on the ready queue
— What should it do? Does it matter?

* Making the decision on what thread to run is called

— What are the goals of scheduling?

— What are common scheduling algorithms?
— Lottery scheduling

* Scheduling activations
— User level vs. Kernel level scheduling of threads
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Scheduling

Right from the start of multiprogramming, scheduling was identified as
a big issue
— CCTS and Multics developed much of the classical algorithms

Scheduling is a form of resource allocation
— CPU is the resource

— Resource allocation needed for other resources too; sometimes similar
algorithms apply

Requires mechanisms and policy

— Mechanisms: Context switching, Timers, process queues, process state
information, ...

— Scheduling looks at the policies: i.e., when to switch and which

process/thread to run next
15



Preemptive vs. Non-
preemptive scheduling

In preemptive systems where we can interrupt a running
job (involuntary context switch)

— We're interested in such schedulers...

In non-preemptive systems, the scheduler waits for a
running job to give up CPU (voluntary context switch)
— Was interesting in the days of batch multiprogramming
— Some systems continue to use cooperative scheduling

— Example algorithms: RR, Shortest Job First (how to determine
shortest), ...
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Scheduling Goals

Scheduling algorithms can have many different goals:

CPU utilization

Job throughput (# jobs/unit time)

Response time (Avg(Treaqy): @avg time spent on ready queue)
Fairness (or weighted fairness)

Other?

Non-interactive applications:

Strive for job throughput, turnaround time (supercomputers)

Interactive systems
— Strive to minimize response time for interactive jobs

Mix?
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Goals Il: Avoid Resource allocation
pathologies

e Starvation no progress due to no access to resources

—~ E.g., a high priority process always prevents a low priority
process from running on the CPU

— One thread always beats another when acquiring a lock

* Priority inversion
— A low priority process running before a high priority one

— Could be a real problem, especially in real time systems

- Mars pathfinder: http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

e QOther

— Deadlock, livelock, convoying ...
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Non-preemptive approaches

® Introduced just to have a baseline

* FIFO: schedule the processes in order
of arrival

- Comments?

® Shortest Job first

- Comments?
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Preemptive scheduling:
Round Robin

* Each task gets resource for a fixed period
of time (time quantum)
— If task doesn’t complete, it goes back in line

* Need to pick a time quantum
— What if time quantum is too long?
e Infinite?
— What if time quantum is too short?
- One instruction?



Mixed Workload
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Priority Scheduling

* Priority Scheduling

Choose next job based on priority
« Airline check-in for first class passengers

Can implement SJF, priority = 1/(expected CPU burst)
Also can be either preemptive or non-preemptive

Starvation — low priority jobs can wait indefinitely

e Solution

(13 124
Age" processes
« Increase priority as a function of waiting time
« Decrease priority as a function of CPU consumption
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Combining Algorithms

* Scheduling algorithms can be combined
-~ Have multiple queues
— Use a different algorithm for each queue
— Move processes among queues

* Example: Multiple-level feedback queues (MLFQ)

— Multiple queues representing different job types
- Interactive, CPU-bound, batch, system, etc.

— Queues have priorities, jobs on same queue scheduled RR

— Jobs can move among queues based upon execution history
- Feedback: Switch from interactive to CPU-bound behavior
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Multi-level Feedback Queue
Wige)

* Goals:
— Responsiveness
— Low overhead
— Starvation freedom
— Some tasks are high/low priority
— Fairness (among equal priority tasks)

* Not perfect at any of them!
— Used in Unix (and Windows and MacQOS)



MFQ

Priority ~ Time Slice (ms)  Round Robin Queues

‘:I:II new or |/O
10 bound task

20 time slice
expiration
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Unix Scheduler

* The canonical Unix scheduler uses a MLFQ

— 3-4 classes spanning ~170 priority levels
- Timesharing: first 60 priorities
« System: next 40 priorities
« Real-time: next 60 priorities
 Interrupt: next 10 (Solaris)

* Priority scheduling across queues, RR within a queue
— The process with the highest priority always runs
— Processes with the same priority are scheduled RR

* Processes dynamically change priority
— Increases over time if process blocks before end of quantum
— Decreases over time if process uses entire quantum
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Linux scheduler

* Went through several iterations

® Currently CFS
- Fair scheduler, like stride scheduling

- Supersedes O(1) scheduler: emphasis on
constant time scheduling regardless of
overhead

- CFS is O(log(N)) because of red-black tree
- Is it really fair?

* What to do with multi-core scheduling?



Our scheduler reading

* Ticket/Stride
- Problem: How to control allocation of CPU in a
principled way
® Scheduler activations

- How fo let the application control scheduling
« Reminds you of SPIN/extensibility?

* How to do scheduling on emerging systems
- Multicore, cloud, multiple resources..
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