
Advanced Operating Systems
(CS 202)

Scheduling (1)

L4 microkernel family
• Successful OS with different offshoot

distributions
– Commercially successful

• OKLabs OKL4 shipped over 1.5 billion installations by
2012

– Mostly qualcomm wireless modems
– But also player in automative and airborne entertainment

systems
• Used in the secure enclave processor on Apple’s A7+
chips

– All iOS devices have it! 100s of millions
2

Big picture overview
• Conventional wisdom at the time was:

– Microkernels flexible with nice abstractions
– …but are inherently low performance

• border crossings and IPC

– …because they are inefficient they are inflexible
• This paper refutes the performance argument

– Main takeaway: its an implementation issue
• Several insights on how microkernels should (and

shouldn’t) be built
– E.g., Microkernels should not be portable

• What are the implications if true?

3

Paper argues for the following

• Only put in anything that if moved out
prohibits functionality
• Assumes:

– We require security/protection
– We require a page-based VM
– Subsystems should be isolated from one another
– Two subsystems should be able to communicate

without involving a third
4

Abstractions provided by L3
• Address spaces (to support protection/separation)

– Grant, Map, Flush
– Handling I/O

• Threads and IPC
– Threads: represent the address space
– End point for IPC (messages)
– Interrupts are IPC messages from kernel

• Microkernel turns hardware interrupts to thread events

• Unique ids (to be able to identify address spaces,
threads, IPC end points etc..) 5

Debunking performance
issues

• What are the performance issues?
1. Switching overhead

• Kernel user switches
• Address space switches
• Threads switches and IPC

2. Memory locality loss
• TLB
• Caches

6

Mode switches

• System calls (mode switches) should
not be expensive
– Called context switches in the paper

• Show that 90% of system call time on
Mach is “overhead”
– What? Paper doesn’t really say

• Could be parameter checking, parameter
passing, inefficiencies in saving state…

– L3 does not have this overhead
7

L2, L3, and
main memory

Review: End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Thread/address space switches

• If TLBs are not tagged, they must be flushed
– Today? x86 introduced tags but they are not

utilized
• If caches are physically indexed, no loss of

locality
– No need to flush caches when address space

changes
• Customize switch code to HW
• Empirically demonstrate that IPC is fast

9

Tricks to reduce the effect
• TLB flushes due to AS switch could be

very expensive
– Since microkernel increases AS switches,

this is a problem
– Tagged TLB? If you have them
– Tricks with segments to provide isolation

between small address spaces
• Remap them as segments within one address
space

• Avoid TLB flushes
10

Memory effects
• Chen and Bershad showed memory behavior on

microkernels worse than monolithic
• Paper shows this is all due to more cache misses
• Are they capacity or conflict misses?

– Conflict: could be structure
– Capacity: could be size of code

• Chen and Bershad also showed that self-
interference more of a problem than user-kernel
interference

• Ratio of conflict to capacity much lower in Mach
– à too much code, most of it in Mach

Conclusion

• Its an implementation issue in Mach
• Its mostly due to Mach trying to be

portable
• Microkernel should not be portable

– It’s the hardware compatibility layer
– Example: implementation decisions even

between 486 and Pentium are different if
you want high performance

– Think of microkernel as microcode 12

Today: CPU Scheduling

13

14

Today: CPU Scheduling
• Scheduler runs when we context switching among

processes/threads on the ready queue
– What should it do? Does it matter?

• Making the decision on what thread to run is called
scheduling

– What are the goals of scheduling?
– What are common scheduling algorithms?
– Lottery scheduling

• Scheduling activations
– User level vs. Kernel level scheduling of threads

15

Scheduling
• Right from the start of multiprogramming, scheduling was identified as

a big issue
– CCTS and Multics developed much of the classical algorithms

• Scheduling is a form of resource allocation
– CPU is the resource
– Resource allocation needed for other resources too; sometimes similar

algorithms apply

• Requires mechanisms and policy
– Mechanisms: Context switching, Timers, process queues, process state

information, …
– Scheduling looks at the policies: i.e., when to switch and which

process/thread to run next

Preemptive vs. Non-
preemptive scheduling

• In preemptive systems where we can interrupt a running
job (involuntary context switch)

– We’re interested in such schedulers…

• In non-preemptive systems, the scheduler waits for a
running job to give up CPU (voluntary context switch)

– Was interesting in the days of batch multiprogramming
– Some systems continue to use cooperative scheduling
– Example algorithms: RR, Shortest Job First (how to determine

shortest), …

16

17

Scheduling Goals
• What are some reasonable goals for a scheduler?
• Scheduling algorithms can have many different goals:

– CPU utilization
– Job throughput (# jobs/unit time)
– Response time (Avg(Tready): avg time spent on ready queue)
– Fairness (or weighted fairness)
– Other?

• Non-interactive applications:
– Strive for job throughput, turnaround time (supercomputers)

• Interactive systems
– Strive to minimize response time for interactive jobs

• Mix?

18

Goals II: Avoid Resource allocation
pathologies

• Starvation no progress due to no access to resources
– E.g., a high priority process always prevents a low priority

process from running on the CPU
– One thread always beats another when acquiring a lock

• Priority inversion
– A low priority process running before a high priority one
– Could be a real problem, especially in real time systems

• Mars pathfinder: http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

• Other
– Deadlock, livelock, convoying …

Non-preemptive approaches

• Introduced just to have a baseline
• FIFO: schedule the processes in order

of arrival
– Comments?

• Shortest Job first
– Comments?

19

Preemptive scheduling:
Round Robin

• Each task gets resource for a fixed period
of time (time quantum)
– If task doesn’t complete, it goes back in line

• Need to pick a time quantum
– What if time quantum is too long?

• Infinite?
– What if time quantum is too short?

• One instruction?

Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues
 I/O
request

 I/O
completes

gets
CPU

 I/O
completes

22

Priority Scheduling
• Priority Scheduling

– Choose next job based on priority
• Airline check-in for first class passengers

– Can implement SJF, priority = 1/(expected CPU burst)
– Also can be either preemptive or non-preemptive

• Problem?
– Starvation – low priority jobs can wait indefinitely

• Solution
– “Age” processes

• Increase priority as a function of waiting time
• Decrease priority as a function of CPU consumption

23

More on Priority
Scheduling

• For real-time (predictable) systems, priority is often used to
isolate a process from those with lower priority. Priority inversion
is a risk unless all resources are jointly scheduled.

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

pr
io
ri
ty

time

pr
io
ri
ty

time

How can this be avoided?

PH

PL

PH

PL

PM

24

Combining Algorithms
• Scheduling algorithms can be combined

– Have multiple queues
– Use a different algorithm for each queue
– Move processes among queues

• Example: Multiple-level feedback queues (MLFQ)
– Multiple queues representing different job types

• Interactive, CPU-bound, batch, system, etc.

– Queues have priorities, jobs on same queue scheduled RR
– Jobs can move among queues based upon execution history

• Feedback: Switch from interactive to CPU-bound behavior

Multi-level Feedback Queue
(MFQ)

• Goals:
– Responsiveness
– Low overhead
– Starvation freedom
– Some tasks are high/low priority
– Fairness (among equal priority tasks)

• Not perfect at any of them!
– Used in Unix (and Windows and MacOS)

MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O
bound task

2

4

3

80

40

20

10

Round Robin Queues

27

Unix Scheduler
• The canonical Unix scheduler uses a MLFQ

– 3-4 classes spanning ~170 priority levels
• Timesharing: first 60 priorities
• System: next 40 priorities
• Real-time: next 60 priorities
• Interrupt: next 10 (Solaris)

• Priority scheduling across queues, RR within a queue
– The process with the highest priority always runs
– Processes with the same priority are scheduled RR

• Processes dynamically change priority
– Increases over time if process blocks before end of quantum
– Decreases over time if process uses entire quantum

Linux scheduler
• Went through several iterations
• Currently CFS

– Fair scheduler, like stride scheduling
– Supersedes O(1) scheduler: emphasis on

constant time scheduling regardless of
overhead

– CFS is O(log(N)) because of red-black tree
– Is it really fair?

• What to do with multi-core scheduling?
28

Our scheduler reading

• Ticket/Stride
– Problem: How to control allocation of CPU in a

principled way
• Scheduler activations

– How to let the application control scheduling
• Reminds you of SPIN/extensibility?

• How to do scheduling on emerging systems
– Multicore, cloud, multiple resources..

29

