Advanced Operating Systems
(CS 202)

Scheduling (1)

L4 microkernel family

® Successful OS with different offshoot
distributions

- Commercially successful

« OKLabs OKL4 shipped over 1.5 billion installations by
2012

- Mostly qualcomm wireless modems

- But also player in automative and airborne entertainment
systems

» Used in the secure enclave processor on Apple's A7+
chips
— All iOS devices have it! 100s of millions

Big picture overview

Conventional wisdom at the time was:
- Microkernels flexible with nice abstractions

- ..but are inherently low performance
 border crossings and IPC

- ..because they are inefficient they are inflexible
This paper refutes the performance argument

- Main takeaway: its an implementation issue

Several insights on how microkernels should (and
shouldn’t) be built

- E.g., Microkernels should not be portable
What are the implications if true?

Paper argues for the following

* Only put in anything that if moved out
prohibits functionality

* Assumes:
- We require security/protection
- We require a page-based VM
- Subsystems should be isolated from one another

- Two subsystems should be able to communicate
without involving a third

Abstractions provided by L3

* Address spaces (to support protection/separation)
- Grant, Map, Flush
- Handling 1I/0

® Threads and IPC
- Threads: represent the address space
- End point for IPC (messages)

- Interrupts are IPC messages from Kernel
« Microkernel turns hardware interrupts to thread events

* Unique ids (to be able to identify address spaces,
threads, IPC end points etc..) °

Debunking performance
ISsues

* What are the performance issues?

1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss

TLB
Caches

Mode switches

* System calls (mode switches) should
not be expensive

- Called context switches in the paper

* Show that 90% of system call time on
Mach is “overhead”
- What? Paper doesn’t really say

« Could be parameter checking, parameter
passing, inefficiencies in saving state...

- L3 does not have this overhead

Review: End-to-end Core i7 Address Translation

CPU

32/64

36

A 4

>
«

_. VPN

Virtual address (VA)

Result

32

I

A

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

A

L1

L1 TLB (16 sets, 4 entries/set)

I
.

T A A A

Page tables

Physical
address
(PA)

Thread/address space switches

If TLBs are not tagged, they must be flushed

- Today? x86 infroduced tags but they are not
utilized

If caches are physically indexed, no loss of
locality

- No need to flush caches when address space
changes

Customize switch code to HW
Empirically demonstrate that IPC is fast

Tricks to reduce the effect

* TLB flushes due to AS switch could be
very expensive

- Since microkernel increases AS switches,
this is a problem

- Tagged TLB? If you have them

- Tricks with segments to provide isolation
between small address spaces

- Remap them as segments within one address
space

« Avoid TLB flushes

10

Memory effects

Chen and Bershad showed memory behavior on
microkernels worse than monolithic

Paper shows this is all due to more cache misses

Are they capacity or conflict misses?

- Conflict: could be structure

- Capacity: could be size of code

Chen and Bershad also showed that self-

interference more of a problem than user-kernel
interference

Ratio of conflict to capacity much lower in Mach
- > too much code, most of it in Mach

Conclusion

* Its an implementation issue in Mach

* Its mostly due to Mach trying to be
portable

* Microkernel should not be portable

- It's the hardware compatibility layer

- Example: implementation decisions even
between 486 and Pentium are different if
you want high performance

- Think of microkernel as microcode 12

Today: CPU Scheduling

13

Today: CPU Scheduling

* Scheduler runs when we context switching among
processes/threads on the ready queue
— What should it do? Does it matter?

* Making the decision on what thread to run is called

— What are the goals of scheduling?

— What are common scheduling algorithms?
— Lottery scheduling

* Scheduling activations
— User level vs. Kernel level scheduling of threads

14

Scheduling

Right from the start of multiprogramming, scheduling was identified as
a big issue
— CCTS and Multics developed much of the classical algorithms

Scheduling is a form of resource allocation
— CPU is the resource

— Resource allocation needed for other resources too; sometimes similar
algorithms apply

Requires mechanisms and policy

— Mechanisms: Context switching, Timers, process queues, process state
information, ...

— Scheduling looks at the policies: i.e., when to switch and which

process/thread to run next
15

Preemptive vs. Non-
preemptive scheduling

In preemptive systems where we can interrupt a running
job (involuntary context switch)

— We're interested in such schedulers...

In non-preemptive systems, the scheduler waits for a
running job to give up CPU (voluntary context switch)
— Was interesting in the days of batch multiprogramming
— Some systems continue to use cooperative scheduling

— Example algorithms: RR, Shortest Job First (how to determine
shortest), ...

16

Scheduling Goals

Scheduling algorithms can have many different goals:

CPU utilization

Job throughput (# jobs/unit time)

Response time (Avg(Treaqy): @avg time spent on ready queue)
Fairness (or weighted fairness)

Other?

Non-interactive applications:

Strive for job throughput, turnaround time (supercomputers)

Interactive systems
— Strive to minimize response time for interactive jobs

Mix?

17

Goals Il: Avoid Resource allocation
pathologies

e Starvation no progress due to no access to resources

—~ E.g., a high priority process always prevents a low priority
process from running on the CPU

— One thread always beats another when acquiring a lock

* Priority inversion
— A low priority process running before a high priority one

— Could be a real problem, especially in real time systems

- Mars pathfinder: http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

e QOther

— Deadlock, livelock, convoying ...
18

Non-preemptive approaches

® Introduced just to have a baseline

* FIFO: schedule the processes in order
of arrival

- Comments?

® Shortest Job first

- Comments?

19

Preemptive scheduling:
Round Robin

* Each task gets resource for a fixed period
of time (time quantum)
— If task doesn’t complete, it goes back in line

* Need to pick a time quantum
— What if time quantum is too long?
e Infinite?
— What if time quantum is too short?
- One instruction?

Mixed Workload

Tasks I/0 I/0
\I/completes \I/com pletes

/Obound [] []
) 4

issues
I/O
request

CPU bound

CPU bound

Priority Scheduling

* Priority Scheduling

Choose next job based on priority
« Airline check-in for first class passengers

Can implement SJF, priority = 1/(expected CPU burst)
Also can be either preemptive or non-preemptive

Starvation — low priority jobs can wait indefinitely

e Solution

(13 124
Age" processes
« Increase priority as a function of waiting time
« Decrease priority as a function of CPU consumption

22

Combining Algorithms

* Scheduling algorithms can be combined
-~ Have multiple queues
— Use a different algorithm for each queue
— Move processes among queues

* Example: Multiple-level feedback queues (MLFQ)

— Multiple queues representing different job types
- Interactive, CPU-bound, batch, system, etc.

— Queues have priorities, jobs on same queue scheduled RR

— Jobs can move among queues based upon execution history
- Feedback: Switch from interactive to CPU-bound behavior

24

Multi-level Feedback Queue
Wige)

* Goals:
— Responsiveness
— Low overhead
— Starvation freedom
— Some tasks are high/low priority
— Fairness (among equal priority tasks)

* Not perfect at any of them!
— Used in Unix (and Windows and MacQOS)

MFQ

Priority ~ Time Slice (ms) Round Robin Queues

‘:I:II new or |/O
10 bound task

20 time slice
expiration

40

Unix Scheduler

* The canonical Unix scheduler uses a MLFQ

— 3-4 classes spanning ~170 priority levels
- Timesharing: first 60 priorities
« System: next 40 priorities
« Real-time: next 60 priorities
 Interrupt: next 10 (Solaris)

* Priority scheduling across queues, RR within a queue
— The process with the highest priority always runs
— Processes with the same priority are scheduled RR

* Processes dynamically change priority
— Increases over time if process blocks before end of quantum
— Decreases over time if process uses entire quantum

27

Linux scheduler

* Went through several iterations

® Currently CFS
- Fair scheduler, like stride scheduling

- Supersedes O(1) scheduler: emphasis on
constant time scheduling regardless of
overhead

- CFS is O(log(N)) because of red-black tree
- Is it really fair?

* What to do with multi-core scheduling?

Our scheduler reading

* Ticket/Stride
- Problem: How to control allocation of CPU in a
principled way
® Scheduler activations

- How fo let the application control scheduling
« Reminds you of SPIN/extensibility?

* How to do scheduling on emerging systems
- Multicore, cloud, multiple resources..

AL

