
OS Extensibility: Spin, Exo-
kernel and L4

Some slides from Hakim 
Weatherspoon

1



More simply

2

Monolithic

micro kernel
DOS

safe fast

extensible



3

Need for Extensibility

• Buffer Pool Management In DBs (*)
– LRU, prefetch (locality Vs suggestion), flush 

(commit)

• Shared Virtual Memory (+)
– use a page fault to retrieve page from disk / 

another processor



4

Examples (cont.)

• Concurrent Checkpointing (+)
– Overlap checkpointing and program being 

checkpointed
– Change rights to R-only on dirty pages
– Copy each page and reset rights
– Allow reads; Use write faults to {copy, reset 

rights, restart}

* OS Support for Database Management (Stonebraker)
+ Virtual Memory Primitives for User Programs (Andrew W. 

Appel and Kai Li)



5

Examples (cont.)

[Implementation and Performance of Application-Controlled File Caching - Pei Cao, et al.]

Feedback for file cache 
block replacement



8

Extensible Kernels
• SPIN (SOSP 1995): kernel extensions 

(imported) safely specialize OS services
– Extensions dynamically linked into OS kernel
– Safety ensured by Programming Language facilities

• Exokernel (SOSP 1995): safely exports 
machine resources
– Kernel only multiplexes hardware resources (Aegis)
– Higher-level abstractions in Library OS (ExOS)
– Secure binding, Visible resource revocation, Abort
– Apps link with the LibOS of their choice



Spin Approach to extensibility
• Co-location of kernel and extension

– Avoid border crossings
– But what about protection?

• Language/compiler forced protection
– Strongly typed language

• Protection by compiler and run-time
• Cannot cheat using pointers

– Logical protection domains
• No longer rely on hardware address spaces to enforce 

protection – no boarder crossings

• Dynamic call binding for extensibility
9



SPIN MECHANISMS/TOOLBOX

10



Logical protection domains

• Modula-3 safety and encapsulation mechanisms
– Type safety, automatic storage management
– Objects, threads, exceptions and generic interfaces

• Fine-grained protection of objects using 
capabilities.  An object can be:
– Hardware resources (e.g., page frames)
– Interfaces (e.g., page allocation module)
– Collection of interfaces (e.g., full VM)

• Capabilities are language supported pointers
11



Logical protection domains -- mechanisms

• Create:
– Initialize with object file contents and export names

• Resolve:
– Names are resolved between a source and a target domain

• Once resolved, access is at memory speeds

• Combine
– To create an aggregate domain

• This is the key to spin – protection, extensibility 
and performance 12



Protection Model (I)

• All kernel resources are referenced by 
capabilities [tickets]
• SPIN implements capabilities directly 

through the use of pointers
• Compiler prevents pointers to be forged or 

dereferenced in a way inconsistent with its 
type at compile time: 
– No run time overhead for using a pointer



Protection Model (II)

• A pointer can be passed to a user-
level application through an 
externalized reference:
– Index into a per-application table of safe 

references to kernel data structures
• Protection domains define the set of 

names accessible to a given execution 
context  



Spin

15Hardware, managed by OS

spin

File
System

Memory 
manager

CPU 
scheduler

IPC, Address
Spaces, …

Network

File
System

Memory 
manager

CPU 
scheduler



Spin Mechanisms for Events
• Spin extension model is based on events and 

handlers
– Which provide for communication between the base and 

the extensions
• Events are routed by the Spin Dispatcher to 

handlers
– Handlers are typically extension code called as a 

procedure by the dispatcher
– One-to-one, one-to-many or many-to-one

• All handlers registered to an event are invoked
– Guards may be used to control which handler is used

16



Event example

17



PUTTING IT ALL TOGETHER

18



Default Core services in SPIN
• Memory management (of memory 

allocated to the extension)
– Physical address

• Allocate, deallocate, reclaim
– Virtual address

• Allocate, deallocate
– Translation

• Create/destory AS, add/remove mapping
– Event handlers

• Page fault, access fault, bad address
19



CPU Scheduling
• Spin abstraction: strand

– Semantics defined by extension

• Event handlers
– Block, unblock, checkpoint, resume

• Spin global scheduler
– Interacts with extension threads package

20



Experiments

• Don’t worry, I wont go through them
• In the OS community, you have to 

demonstrate what you are proposing
– They built SPIN, extensions and 

applications that use them
– Focus on performance and size

• Reasonable size, and substantial performance 
advantages even relative to a mature 
monolithic kernel

21



Conclusions
• Extensibility, protection and performance

– compiler features and run-time checks
– Instead of hardware address spaces
– …which gives us performance—no border crossing

• Who are we trusting?  Consider application 
and Spin
– How does this compare to Exo-kernel?

• Concern about resource partitioning?
– Each extension must be given its resources
– No longer dynamically shared (easily)
– Parallels to Virtualization?

22



EXOKERNEL

23



Motivation for Exokernels

• Traditional centralized resource 
management cannot be specialized, 
extended or replaced
• Privileged software must be used by 

all applications
• Fixed high level abstractions too 

costly for good efficiency
• Exo-kernel as an end-to-end argument



Exokernel Philosophy

• Expose hardware to libraryOS
–Not even mechanisms are 
implemented by exo-kernel
• They argue that mechanism is policy

• Exo-kernel worried only about 
protection not resource 
management



Design Principles

• Track resource ownership
• Ensure protection by guarding resource 

usage 
• Revoke access to resources
• Expose hardware, allocation, names and 

revocation
• Basically validate binding, then let 

library manage the resource



Exokernel Architecture



Putting it all together
• Lets consider an exo-kernel with 

downloaded code into the exo-kernel
• When normal processing occurs, Exo-

kernel is a sleeping beauty
• When a discontinuity occurs (traps, 

faults, external interrupts), exokernel
fields them
– Passes them to the right OS (requires 

book-keeping) – compare to SPIN?
– Application specific handlers 38



How have such designs 
influenced current OS?

• Kernel modules
• Virtualization 
• Containers
• Specialized OS

41



ON MICROKERNEL 
CONSTRUCTION (L3/4)

42



L4 microkernel family
• Successful OS with different offshoot 

distributions
– Commercially successful

• OKLabs OKL4 shipped over 1.5 billion installations by 
2012

– Mostly qualcomm wireless modems
– But also player in automative and airborne entertainment 

systems
• Used in the secure enclave processor on Apple’s A7 
chips

– All iOS devices have it! 100s of millions
43



Big picture overview
• Conventional wisdom at the time was:

– Microkernels offer nice abstractions and should be 
flexible

– …but are inherently low performance due to high cost of 
border crossings and IPC

– …because they are inefficient they are inflexible
• This paper refutes the performance argument 

– Main takeaway: its an implementation issue
• Identifies reasons for low performance and shows by construction 

that they are not inherent to microkernels
– 10-20x improvement in performance over Mach

• Several insights on how microkernels should (and 
shouldn’t) be built
– E.g., Microkernels should not be portable 44



Paper argues for the following

• Only put in anything that if moved out 
prohibits functionality
• Assumes:

– We require security/protection
– We require a page-based VM
– Subsystems should be isolated from one another
– Two subsystems should be able to communicate 

without involving a third
45



Abstractions provided by L3
• Address spaces (to support protection/separation)

– Grant, Map, Flush
– Handling I/O

• Threads and IPC
– Threads: represent the address space
– End point for IPC (messages)
– Interrupts are IPC messages from kernel

• Microkernel turns hardware interrupts to thread events

• Unique ids (to be able to identify address spaces, 
threads, IPC end points etc..) 46



Debunking performance 
issues

• What are the performance issues?
1. Switching overhead

• Kernel user switches
• Address space switches
• Threads switches and IPC

2. Memory locality loss
• TLB
• Caches

47



Mode switches

• System calls (mode switches) should 
not be expensive
– Called context switches in the paper

• Show that 90% of system call time on 
Mach is “overhead”
– What?  Paper doesn’t really say

• Could be parameter checking, parameter 
passing, inefficiencies in saving state…

– L3 does not have this overhead
48



Thread/address space switches

• If TLBs are not tagged, they must be flushed
– Today? x86 introduced tags but they are not 

utilized
• If caches are physically indexed, no loss of 

locality
– No need to flush caches when address space 

changes
• Customize switch code to HW
• Empirically demonstrate that IPC is fast

49



L2, L3, and 
main memory

Review: End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB
miss

TLB
hit

Physical
address 

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and 
main memory

L1 d-cache 
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE



Tricks to reduce the effect
• TLB flushes due to AS switch could be 

very expensive
– Since microkernel increases AS switches, 

this is a problem
– Tagged TLB?  If you have them
– Tricks with segments to provide isolation 

between small address spaces 
• Remap them as segments within one address 
space

• Avoid TLB flushes
51



Memory effects
• Chen and Bershad showed memory behavior on 

microkernels worse than monolithic 
• Paper shows this is all due to more cache misses
• Are they capacity or conflict misses?

– Conflict: could be structure
– Capacity: could be size of code

• Chen and Bershad also showed that self-
interference more of a problem than user-kernel 
interference 

• Ratio of conflict to capacity much lower in Mach
– à too much code, most of it in Mach



Conclusion 

• Its an implementation issue in Mach
• Its mostly due to Mach trying to be 

portable
• Microkernel should not be portable

– It’s the hardware compatibility layer
– Example: implementation decisions even 

between 486 and Pentium are different if 
you want high performance

– Think of microkernel as microcode 53


