OS Extensibility: Spin, Exo-
kernel and L4

Some slides from Hakim
Weatherspoon



More simply

Monolithic

safe fast

micro kernel

DOS
extensible



Need for Extensibility

 Buffer Pool Management In DBs (*)

- LRU, prefetch (locality Vs suggestion), flush
(commit)

* Shared Virtual Memory (+)

- use a page fault to retrieve page from disk /
another processor



Examples (cont.)

* Concurrent Checkpointing (+)

- Overlap checkpointing and program being
checkpointed

- Change rights to R-only on dirty pages
- Copy each page and reset rights

- Allow reads; Use write faults to {copy, reset
rights, restart;

* OS Support for Database Management (Stonebraker)

+ Virtual Memory Primitives for User Programs (Andrew W.
Appel and Kai Li)



Examples (cont.)

Process P

Feedback for file cache
block replacement

Kernel

Figure 1: Interaction between kernel and user pro-
cesses in two-level replacement: (1) P misses; (2) ker-
nel consults Q for replacement; (3) Q decides to give
up page B; (4) kernel reallocates B to P.

[Implementation and Performance of Application-Controlled File Caching - Pei Cao, et al.]



Extensible Kernels

* SPIN (SOSP 1995): kernel extensions
(imported) safely specialize OS services

- Extensions dynamically linked into OS kernel
- Safety ensured by Programming Language facilities

e Exokernel (SOSP 1995): safely exports

machine resources

- Kernel only multiplexes hardware resources (Aegis)
- Higher-level abstractions in Library OS (ExOS)

- Secure binding, Visible resource revocation, Abort
Apps link with the LibOS of their choice



Spin Approach to extensibility

® Co-location of kernel and extension

- Avoid border crossings
- But what about protection?

* Language/compiler forced protection
- Strongly typed language
 Protection by compiler and run-time

« Cannot cheat using pointers

- Logical protection domains

-« No longer rely on hardware address spaces to enforce
protection — no boarder crossings

* Dynamic call binding for extensibility



SPIN MECHANISMS/TOOLBOX
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Logical protection domains

®* Modula-3 safety and encapsulation mechanisms
- Type safety, automatic storage management
- Objects, threads, exceptions and generic interfaces
® Fine-grained protection of objects using
capabilities. An object can be:
- Hardware resources (e.g., page frames)
- Interfaces (e.g., page allocation module)
- Collection of interfaces (e.g., full VM)
® Capabilities are language supported pointers
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Logical protection domains -- mechanisms

INTERFACE Domain;

TYPE T <: REFANY; (* Domain.T is opaque ¥*)

Crea.'-e' PROCEDURE Create(coff:CoffFile.T):T;
.. . . (* Returns a domain created from the specified object
- Initialize with file (‘‘coff’’ is a standard object file format). *)
PROCEDURE CreateFromModule () :T;
(* Create a domain containing interfaces defined by the
calling module. This function allows modules to
Resolve: name and export themselves at runtime. *)

PROCEDURE Resolve (source,target: T);
- Names are res (* Resolve any undefined symbols in the target domain
against any exported symbols from the source.*)
« Once resolve
PROCEDURE Combine(dl, d2: T):T;

(* Create a new aggregate domain that exports the
interfaces of the given domains. *)

Combine END Domain.
- To create an aggregate domain

This is the key fo spin — protection, extensibility
and performance 12



Protection Model (1)

* All kernel resources are referenced by
capabilities [tickets]

* SPIN implements capabilities directly
through the use of pointers

* Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its
type at compile fime:
- No run time overhead for using a pointer




Protection Model (ll)

* A pointer can be passed to a user-
level application through an
externalized reference:

- Index into a per-application table of safe
references to kernel data structures

* Protection domains define the set of
names accessible to a given execution
context
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Spin Mechanisms for Events

®* Spin extension model is based on events and
handlers

- Which provide for communication between the base and
the extensions

®* Events are routed by the Spin Dispatcher to
handlers

- Handlers are typically extension code called as a
procedure by the dispatcher
- One-to-one, one-to-many or many-to-one
« All handlers registered to an event are invoked
- Guards may be used to control which handler is used
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Event example

TCP.PktArrived

Handler

Event — — C Ether.PktArrived ATM.PktArrived

Lance Fore
device driver device driver
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PUTTING IT ALL TOGETHER
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INTERFACE PhysAddr;
TYPE T <: REFANY; (* PhysAddr.T is opaque *)
PROCEDURE Allocate(size: Size; attrib: Attrib): T;
(* Allocate some physical memory with
particular attributes. *)
PROCEDURE Deallocate(p: T):;
PROCEDURE Reclaim(candidate: T): T;
(* Request to reclaim a candidate page.
Clients may handle this event to
nominate alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;

TYPE T <: REFANY; (* VirtAddr.T is opaque *)

PROCEDURE Allocate (size: Size; attrib: Attrib): T;

PROCEDURE Deallocate(v: T);
END VirtAddr.

INTERFACE Translation;
IMPORT PhysAddr, VirtAddr;
TYPE T <: REFANY; (* Translation.T is opaque ¥*)
PROCEDURE Create(): T;

PROCEDURE Destroy(context: T);
(* Create or destroy an addressing context *)

PROCEDURE AddMapping (context: T; v: VirtAddr.T;
p: PhysAddr.T; prot: Protection);
(* Add [v,p] into the named translation context
with the specified protection. *)

PROCEDURE RemoveMapping (context: T; wv: VirtAddr.T);

PROCEDURE ExamineMapping (context: T;
v: VirtAddr.T): Protection;

(* A few events raised during ¥*)
(* illegal translations ¥*)
PROCEDURE PageNotPresent (v: T);
PROCEDURE BadAddress (v: T);
PROCEDURE ProtectionFault (v: T);

END Translation.

Figure 3: The interfaces for managing physical addresses, virtual addresses, and translations.

 Page fault, access fault, bad address




INTERFACE Strand;
TYPE T <: REFANY; (* Strand.T is opaque *)

PROCEDURE Block(s:T);
(* Signal to a scheduler that s is not runnable. *)

PROCEDURE Unblock(s: T):;
(* Signal to a scheduler that s is runnable. *)

PROCEDURE Checkpoint(s: T);

(* Signal that s is being descheduled and that it
should save any processor state required for
subsequent rescheduling. ¥*)

PROCEDURE Resume(s: T);

(* Signal that s is being placed on a processor and
that it should reestablish any state saved during
a prior call to Checkpoint. *)

END Strand.

Figure 4: The Strand Interface. This interface describes the schedul-
ing events affecting control flow that can be raised within the kernel.
Application-specific schedulers and thread packages install handlers on
these events, which are raised on behalf of particular strands. A trusted
thread package and scheduler provide default implementations of these op-
erations, and ensure that extensions do not install handlers on strands for
which they do not possess a capability.

#s package

20



Experiments

* Don’t worry, I wont go through them

* In the OS community, you have to
demonstrate what you are proposing

- They built SPIN, extensions and
applications that use them

- Focus on performance and size

 Reasonable size, and substantial performance
advantages even relative to a mature

monolithic kernel
21



Conclusions

* Extensibility, protection and performance
- compiler features and run-time checks
- Instead of hardware address spaces
- ..which gives us performance—no border crossing

®* Who are we trusting? Consider application
and Spin

- How does this compare to Exo-kernel?

® Concern about resource partitioning?
- Each extension must be given its resources
- No longer dynamically shared (easily)

- Parallels to Virtualization?
22



EXOKERNEL
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Motivation for Exokernels

* Traditional centralized resource
management cannot be specialized,
extended or replaced

* Privileged software must be used by
all applications

* Fixed high level abstractions too
costly for good efficiency

* Exo-kernel as an end-to-end argument



Exokernel Philosophy

®* Expose hardware to libraryOS

-Not even mechanisms are
implemented by exo-kernel

« They argue that mechanism is policy

* Exo-kernel worried only about
protection not resource
management



Design Principles

®* Track resource ownership

* Ensure protection by guarding resource
usage

® Revoke access to resources

®* EXpose hardware, allocation, names and
revocation

* Basically validate binding, then let
library manage the resource



Exokernel Architecture
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Putting it all together

® | ets consider an exo-kernel with
downloaded code into the exo-kKernel

* When normal processing occurs, Exo-
kernel is a sleeping beauty

* When a discontinuity occurs (traps,
faults, external interrupts), exokernel
fields them

- Passes them to the right OS (requires
book-keeping) - compare to SPIN?

- Application specific handlers 38



How have such designs
influenced current OS?

Kernel modules
Virtualization
Containers
Specialized OS

41



ON MICROKERNEL
CONSTRUCTION (L3/4)
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L4 microkernel family

® Successful OS with different offshoot
distributions

- Commercially successful

« OKLabs OKL4 shipped over 1.5 billion installations by
2012

- Mostly qualcomm wireless modems

- But also player in automative and airborne entertainment
systems

« Used in the secure enclave processor on Apple’'s A7
chips
— All iOS devices have it! 100s of millions
43



Big picture overview

® Conventional wisdom at the time was:

- Microkernels offer nice abstractions and should be
flexible

- ..but are inherently low performance due to high cost of
border crossings and IPC

- ..because they are inefficient they are inflexible

® This paper refutes the performance argument

- Main takeaway: its an implementation issue

- Identifies reasons for low performance and shows by construction
that they are not inherent to microkernels
- 10-20x improvement in performance over Mach

* Several insights on how microkernels should (and
shouldn’t) be built

- E.g., Microkernels should not be portable

44



Paper argues for the following

* Only put in anything that if moved out
prohibits functionality
* Assumes:
- We require security/protection
- We require a page-based VM
- Subsystems should be isolated from one another

- Two subsystems should be able to communicate
without involving a third

45



Abstractions provided by L3

* Address spaces (to support protection/separation)
- Grant, Map, Flush
- Handling 1I/0

® Threads and IPC
- Threads: represent the address space
- End point for IPC (messages)

- Interrupts are IPC messages from Kernel
« Microkernel turns hardware interrupts to thread events

* Unique ids (to be able to identify address spaces,
threads, IPC end points etc..) ©



Debunking performance
ISsues

* What are the performance issues?

1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss

TLB
Caches

47



Mode switches

* System calls (mode switches) should
not be expensive

- Called context switches in the paper

* Show that 90% of system call time on
Mach is “overhead”
- What? Paper doesn’t really say

« Could be parameter checking, parameter
passing, inefficiencies in saving state...

- L3 does not have this overhead »



Thread/address space switches

® If TLBs are not tagged, they must be flushed

- Today? x86 infroduced tags but they are not
utilized

® If caches are physically indexed, no loss of
locality

- No need to flush caches when address space
changes

® Customize switch code to HW
* Empirically demonstrate that IPC is fast
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Review: End-to-end Core i7 Address Translation
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Tricks to reduce the effect

* TLB flushes due to AS switch could be
very expensive

- Since microkernel increases AS switches,
this is a problem

- Tagged TLB? If you have them

- Tricks with segments to provide isolation
between small address spaces

- Remap them as segments within one address
space

« Avoid TLB flushes
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Memory effects

Chen and Bershad showed memory behavior on
microkernels worse than monolithic

Paper shows this is all due to more cache misses

Are they capacity or conflict misses?

- Conflict: could be structure

- Capacity: could be size of code

Chen and Bershad also showed that self-

interference more of a problem than user-kernel
interference

Ratio of conflict to capacity much lower in Mach
- > too much code, most of it in Mach



Conclusion

* Its an implementation issue in Mach

* Its mostly due to Mach trying to be
portable

* Microkernel should not be portable

- It's the hardware compatibility layer

- Example: implementation decisions even
between 486 and Pentium are different if
you want high performance

- Think of microkernel as microcode 53



