OS Extensibility: Spin, Exo-
kernel and L4

Some slides from Hakim
Weatherspoon

More simply

Monolithic

safe fast

micro kernel

DOS
extensible

Need for Extensibility

 Buffer Pool Management In DBs (*)

- LRU, prefetch (locality Vs suggestion), flush
(commit)

* Shared Virtual Memory (+)

- use a page fault to retrieve page from disk /
another processor

Examples (cont.)

* Concurrent Checkpointing (+)

- Overlap checkpointing and program being
checkpointed

- Change rights to R-only on dirty pages
- Copy each page and reset rights

- Allow reads; Use write faults to {copy, reset
rights, restart;

* OS Support for Database Management (Stonebraker)

+ Virtual Memory Primitives for User Programs (Andrew W.
Appel and Kai Li)

Examples (cont.)

Process P

Feedback for file cache
block replacement

Kernel

Figure 1: Interaction between kernel and user pro-
cesses in two-level replacement: (1) P misses; (2) ker-
nel consults Q for replacement; (3) Q decides to give
up page B; (4) kernel reallocates B to P.

[Implementation and Performance of Application-Controlled File Caching - Pei Cao, et al.]

Extensible Kernels

* SPIN (SOSP 1995): kernel extensions
(imported) safely specialize OS services

- Extensions dynamically linked into OS kernel
- Safety ensured by Programming Language facilities

e Exokernel (SOSP 1995): safely exports

machine resources

- Kernel only multiplexes hardware resources (Aegis)
- Higher-level abstractions in Library OS (ExOS)

- Secure binding, Visible resource revocation, Abort
Apps link with the LibOS of their choice

Spin Approach to extensibility

® Co-location of kernel and extension

- Avoid border crossings
- But what about protection?

* Language/compiler forced protection
- Strongly typed language
 Protection by compiler and run-time

« Cannot cheat using pointers

- Logical protection domains

-« No longer rely on hardware address spaces to enforce
protection — no boarder crossings

* Dynamic call binding for extensibility

SPIN MECHANISMS/TOOLBOX

10

Logical protection domains

®* Modula-3 safety and encapsulation mechanisms
- Type safety, automatic storage management
- Objects, threads, exceptions and generic interfaces
® Fine-grained protection of objects using
capabilities. An object can be:
- Hardware resources (e.g., page frames)
- Interfaces (e.g., page allocation module)
- Collection of interfaces (e.g., full VM)
® Capabilities are language supported pointers

11

Logical protection domains -- mechanisms

INTERFACE Domain;

TYPE T <: REFANY; (* Domain.T is opaque ¥*)

Crea.'-e' PROCEDURE Create(coff:CoffFile.T):T;
.. . . (* Returns a domain created from the specified object
- Initialize with file (‘‘coff’’ is a standard object file format). *)
PROCEDURE CreateFromModule () :T;
(* Create a domain containing interfaces defined by the
calling module. This function allows modules to
Resolve: name and export themselves at runtime. *)

PROCEDURE Resolve (source,target: T);
- Names are res (* Resolve any undefined symbols in the target domain
against any exported symbols from the source.*)
« Once resolve
PROCEDURE Combine(dl, d2: T):T;

(* Create a new aggregate domain that exports the
interfaces of the given domains. *)

Combine END Domain.
- To create an aggregate domain

This is the key fo spin — protection, extensibility
and performance 12

Protection Model (1)

* All kernel resources are referenced by
capabilities [tickets]

* SPIN implements capabilities directly
through the use of pointers

* Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its
type at compile fime:
- No run time overhead for using a pointer

Protection Model (ll)

* A pointer can be passed to a user-
level application through an
externalized reference:

- Index into a per-application table of safe
references to kernel data structures

* Protection domains define the set of
names accessible to a given execution
context

Spin

cPU File
File scheduler SyStem
System
VT Network
manager

S

Memory
manager

CPU
scheduler

(spin

>

IPC, Address

Hardware, managed by OS

Spaces, ...
15

Spin Mechanisms for Events

®* Spin extension model is based on events and
handlers

- Which provide for communication between the base and
the extensions

®* Events are routed by the Spin Dispatcher to
handlers

- Handlers are typically extension code called as a
procedure by the dispatcher
- One-to-one, one-to-many or many-to-one
« All handlers registered to an event are invoked
- Guards may be used to control which handler is used

16

Event example

TCP.PktArrived

Handler

Event — — C Ether.PktArrived ATM.PktArrived

Lance Fore
device driver device driver

17

PUTTING IT ALL TOGETHER

18

INTERFACE PhysAddr;
TYPE T <: REFANY; (* PhysAddr.T is opaque *)
PROCEDURE Allocate(size: Size; attrib: Attrib): T;
(* Allocate some physical memory with
particular attributes. *)
PROCEDURE Deallocate(p: T):;
PROCEDURE Reclaim(candidate: T): T;
(* Request to reclaim a candidate page.
Clients may handle this event to
nominate alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;

TYPE T <: REFANY; (* VirtAddr.T is opaque *)

PROCEDURE Allocate (size: Size; attrib: Attrib): T;

PROCEDURE Deallocate(v: T);
END VirtAddr.

INTERFACE Translation;
IMPORT PhysAddr, VirtAddr;
TYPE T <: REFANY; (* Translation.T is opaque ¥*)
PROCEDURE Create(): T;

PROCEDURE Destroy(context: T);
(* Create or destroy an addressing context *)

PROCEDURE AddMapping (context: T; v: VirtAddr.T;
p: PhysAddr.T; prot: Protection);
(* Add [v,p] into the named translation context
with the specified protection. *)

PROCEDURE RemoveMapping (context: T; wv: VirtAddr.T);

PROCEDURE ExamineMapping (context: T;
v: VirtAddr.T): Protection;

(* A few events raised during ¥*)
(* illegal translations ¥*)
PROCEDURE PageNotPresent (v: T);
PROCEDURE BadAddress (v: T);
PROCEDURE ProtectionFault (v: T);

END Translation.

Figure 3: The interfaces for managing physical addresses, virtual addresses, and translations.

 Page fault, access fault, bad address

INTERFACE Strand;
TYPE T <: REFANY; (* Strand.T is opaque *)

PROCEDURE Block(s:T);
(* Signal to a scheduler that s is not runnable. *)

PROCEDURE Unblock(s: T):;
(* Signal to a scheduler that s is runnable. *)

PROCEDURE Checkpoint(s: T);

(* Signal that s is being descheduled and that it
should save any processor state required for
subsequent rescheduling. ¥*)

PROCEDURE Resume(s: T);

(* Signal that s is being placed on a processor and
that it should reestablish any state saved during
a prior call to Checkpoint. *)

END Strand.

Figure 4: The Strand Interface. This interface describes the schedul-
ing events affecting control flow that can be raised within the kernel.
Application-specific schedulers and thread packages install handlers on
these events, which are raised on behalf of particular strands. A trusted
thread package and scheduler provide default implementations of these op-
erations, and ensure that extensions do not install handlers on strands for
which they do not possess a capability.

#s package

20

Experiments

* Don’t worry, I wont go through them

* In the OS community, you have to
demonstrate what you are proposing

- They built SPIN, extensions and
applications that use them

- Focus on performance and size

 Reasonable size, and substantial performance
advantages even relative to a mature

monolithic kernel
21

Conclusions

* Extensibility, protection and performance
- compiler features and run-time checks
- Instead of hardware address spaces
- ..which gives us performance—no border crossing

®* Who are we trusting? Consider application
and Spin

- How does this compare to Exo-kernel?

® Concern about resource partitioning?
- Each extension must be given its resources
- No longer dynamically shared (easily)

- Parallels to Virtualization?
22

EXOKERNEL

23

Motivation for Exokernels

* Traditional centralized resource
management cannot be specialized,
extended or replaced

* Privileged software must be used by
all applications

* Fixed high level abstractions too
costly for good efficiency

* Exo-kernel as an end-to-end argument

Exokernel Philosophy

®* Expose hardware to libraryOS

-Not even mechanisms are
implemented by exo-kernel

« They argue that mechanism is policy

* Exo-kernel worried only about
protection not resource
management

Design Principles

®* Track resource ownership

* Ensure protection by guarding resource
usage

® Revoke access to resources

®* EXpose hardware, allocation, names and
revocation

* Basically validate binding, then let
library manage the resource

Exokernel Architecture

Mosaic

Applications Bames—Hut

Exokernel

Hardware

e IS -
;" IPC S VMY
| P P P |

o Sccure bindingsT

.

Frame buffer

TLB? | Network®| Memory | Disk

Putting it all together

® | ets consider an exo-kernel with
downloaded code into the exo-kKernel

* When normal processing occurs, Exo-
kernel is a sleeping beauty

* When a discontinuity occurs (traps,
faults, external interrupts), exokernel
fields them

- Passes them to the right OS (requires
book-keeping) - compare to SPIN?

- Application specific handlers 38

How have such designs
influenced current OS?

Kernel modules
Virtualization
Containers
Specialized OS

41

ON MICROKERNEL
CONSTRUCTION (L3/4)

42

L4 microkernel family

® Successful OS with different offshoot
distributions

- Commercially successful

« OKLabs OKL4 shipped over 1.5 billion installations by
2012

- Mostly qualcomm wireless modems

- But also player in automative and airborne entertainment
systems

« Used in the secure enclave processor on Apple’'s A7
chips
— All iOS devices have it! 100s of millions
43

Big picture overview

® Conventional wisdom at the time was:

- Microkernels offer nice abstractions and should be
flexible

- ..but are inherently low performance due to high cost of
border crossings and IPC

- ..because they are inefficient they are inflexible

® This paper refutes the performance argument

- Main takeaway: its an implementation issue

- Identifies reasons for low performance and shows by construction
that they are not inherent to microkernels
- 10-20x improvement in performance over Mach

* Several insights on how microkernels should (and
shouldn’t) be built

- E.g., Microkernels should not be portable

44

Paper argues for the following

* Only put in anything that if moved out
prohibits functionality
* Assumes:
- We require security/protection
- We require a page-based VM
- Subsystems should be isolated from one another

- Two subsystems should be able to communicate
without involving a third

45

Abstractions provided by L3

* Address spaces (to support protection/separation)
- Grant, Map, Flush
- Handling 1I/0

® Threads and IPC
- Threads: represent the address space
- End point for IPC (messages)

- Interrupts are IPC messages from Kernel
« Microkernel turns hardware interrupts to thread events

* Unique ids (to be able to identify address spaces,
threads, IPC end points etc..) ©

Debunking performance
ISsues

* What are the performance issues?

1. Switching overhead

Kernel user switches
Address space switches
Threads switches and IPC

2. Memory locality loss

TLB
Caches

47

Mode switches

* System calls (mode switches) should
not be expensive

- Called context switches in the paper

* Show that 90% of system call time on
Mach is “overhead”
- What? Paper doesn’t really say

« Could be parameter checking, parameter
passing, inefficiencies in saving state...

- L3 does not have this overhead »

Thread/address space switches

® If TLBs are not tagged, they must be flushed

- Today? x86 infroduced tags but they are not
utilized

® If caches are physically indexed, no loss of
locality

- No need to flush caches when address space
changes

® Customize switch code to HW
* Empirically demonstrate that IPC is fast

49

Review: End-to-end Core i7 Address Translation

CPU

32/64

36

A 4

>
«

_. VPN

Virtual address (VA)

Result

32

I

A

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

A

L1

L1 TLB (16 sets, 4 entries/set)

I
.

T A A A

Page tables

Physical
address
(PA)

Tricks to reduce the effect

* TLB flushes due to AS switch could be
very expensive

- Since microkernel increases AS switches,
this is a problem

- Tagged TLB? If you have them

- Tricks with segments to provide isolation
between small address spaces

- Remap them as segments within one address
space

« Avoid TLB flushes

51

Memory effects

Chen and Bershad showed memory behavior on
microkernels worse than monolithic

Paper shows this is all due to more cache misses

Are they capacity or conflict misses?

- Conflict: could be structure

- Capacity: could be size of code

Chen and Bershad also showed that self-

interference more of a problem than user-kernel
interference

Ratio of conflict to capacity much lower in Mach
- > too much code, most of it in Mach

Conclusion

* Its an implementation issue in Mach

* Its mostly due to Mach trying to be
portable

* Microkernel should not be portable

- It's the hardware compatibility layer

- Example: implementation decisions even
between 486 and Pentium are different if
you want high performance

- Think of microkernel as microcode 53

