
Advanced Operating Systems
(CS 202)

Extensible Operating
Systems

Our first paper discussion
Research is a conversation advanced by
different papers

We’ll try to get a sense of the conversation
…which spans multiple papers
…typically read one or two, and I will fill in other
threads

Some conversations are old classics J
To learn something useful, we need to think about
how they inform the present

Operating System Organization
The bigger conversation…
In the 70s and 80s, OS design started emerging
as a discipline

How should the OS be structured?
Why does it matter? What can be accomplished by a
good/bad structure?

For time sharing, its clear we need a separate
OS and User space

Do we need further structure?

Why is the structure of an OS important?

Protection
User from user and system from user

Performance
Does the structure facilitate good performance?

Flexibility/Extensibility
Can we adapt the OS to the application

Scalability
Performance goes up with more resources

Agility
Adapt to application needs and resources

Responsiveness
How quickly it reacts to external events

Can it meet these requirements?
4

An earlier conversation

THE v.s. Hydra

 X

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE Hydra

Kernel

privilege boundary

privilege boundary

privilege boundary

privilege boundary

privilege boundary

Extensibility
What do we mean by extensibility?

Flexible to add new features/functionalities
Good efficiency
Good security

Can you give a few examples?
Device drivers
Browser plugins/extensions

6

Extensibility context
Traditional OS provide standard

Set of abstractions
Processes, threads, VM, Files, IPC
Reachable through syscalls

Resource allocation and management
Protection and security

Industry complaining of OS large overheads
Researchers were doing customized extensions
Research community started asking how to provide
customization?

Flux OS toolkit

Is extensibility really important?
What are some of arguments in the paper?

OS does not perform well for specific applications
End to end argument in system design

What specific examples of applications do
they list?
Is it an implementation or abstraction issue?

Both? Abstractions overly general, and
implementations are fixed
Protection and management interfere with
performance and flexibility

How expensive are border crossings?
Procedure call: save some general-purpose registers
and jump
Mode switch:

Trap or call gate overhead
Nowadays syscall/sysreturn

Switch to kernel stack
Switch some segment registers
100s of ns

Context switch?
Change address space
This could be expensive; flush TLB, …
Few microsecs

9

OS design models
Library OS
Monolithic Kernel
Micro Kernel

OS as library (DOS-like)

11

Hardware, managed by OS

OS Services and Device drivers

Applications

Monolithic Kernel

12

Hardware, managed by OS

OS Services and Device drivers

Applications

What is the difference?

Micro-kernel

13

Hardware, managed by OS

Micro-kernel

Applications

File
System

Memory
manager CPU

scheduler

IPC, Address
Spaces, …

More simply

14

Monolithic

micro kernel DOS

safe fast

extensible

Summary
DOS-like structure:

good performance and extensibility
Bad protection

Monolithic kernels:
Good performance and protection
Bad extensibility

Microkernels
Very good protection
Good extensibility
Bad performance!

15

Poll: What properties should an extensible OS
have?

What should an extensible OS do?
It should be thin, like a micro-kernel

Only mechanisms (or even less?)
no policies; they are defined by extensions

Fast access to resources, like DOS
Eliminate border crossings

Flexibility without sacrificing protection or
performance
Basically, fast, protected and flexible

17

What had been done before?
Hydra (Wulf ’81)

Kernel mechanisms for resource allocation
Capability based resource access

This was expensive as implemented
Resource management as coarse grained objects to
reduce boarder crossings

Microkernel (e.g., Mach in the 90s)
Focus on extensibility and portability
Portability hurt performance
Gave a bad rep to microkernels

18

Existing Approaches
Directly insert code modules

E.g., Loadable kernel module
Good efficiency
Bad security

Put into a new process
E.g., User-mode driver (e.g., FUSE)
E.g., Microsoft puts browser plugin into a new
process
Good security
Bad efficiency (context switch/mode switch)

Spin Approach to extensibility
Co-location of kernel and extension

Avoid border crossings
But what about protection?

Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time
Cannot cheat using pointers

Logical protection domains
No longer rely on hardware address spaces to enforce
protection – no boarder crossings

Dynamic call binding for extensibility

20

Logical protection domains
Modula-3 safety and encapsulation mechanisms

Type safety, automatic storage management
Objects, threads, exceptions and generic interfaces

Fine-grained protection of objects using
capabilities. An object can be:

Hardware resources (e.g., page frames)
Interfaces (e.g., page allocation module)
Collection of interfaces (e.g., full VM)

Capabilities are language supported pointers

21

Logical protection domains -- mechanisms
Create:

Initialize with object file contents and export names

Resolve:
Names are resolved between a source and a target domain

Once resolved, access is at memory speeds

Combine
To create an aggregate domain

This is the key to spin – protection, extensibility and
performance

22

Protection Model (I)
All kernel resources are referenced by
capabilities [tickets]
SPIN implements capabilities directly through
the use of pointers
Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with its
type at compile time:

No run time overhead for using a pointer

Protection Model (II)
A pointer can be passed to a user-level
application through an externalized
reference:

Index into a per-application table of safe
references to kernel data structures
Similar to file descriptors, or socket descriptors in
unix

Protection domains define the set of names
accessible to a given execution context

Spin

25

Hardware, managed by OS

spin

File
System

Memory
manager

CPU
scheduler

IPC, Address
Spaces, …

Network

File
System

Memory
manager

CPU
scheduler

Spin Mechanisms for Events
Spin extension model is based on events and handlers

Which provide for communication between the base and the
extensions

Events are routed by the Spin Dispatcher to handlers
Handlers are typically extension code called as a procedure by
the dispatcher
One-to-one, one-to-many or many-to-one

All handlers registered to an event are invoked
Guards may be used to control which handler is used

26

Event example

27

• Direct transfer from network to frame
buffer

• Support of active networks

• In kernel handling of HTTP requests

• Support of Remote Procedure Call
(RPC)

• Pre-cursor to packet filters!

Default Core services in SPIN
Memory management (of memory allocated
to the extension)

Physical address
Allocate, deallocate, reclaim

Virtual address
Allocate, deallocate

Translation
Create/destory AS, add/remove mapping

Event handlers
Page fault, access fault, bad address

28

CPU Scheduling
Spin abstraction: strand

Semantics defined by extension

Event handlers
Block, unblock, checkpoint, resume

Spin global scheduler
Interacts with extension threads package

29

Experiments
Don’t worry, I wont go through them
In the OS community, you have to
demonstrate what you are proposing

They built SPIN, extensions and applications that
use them
Microbenchmarks to evaluate individual
mechanisms
Focus on performance and size

Reasonable size, and substantial performance
advantages even relative to a mature monolithic
kernel

30

Conclusions
Extensibility, protection and performance
Extensibility and protection provided by
language/compiler features and run-time checks

Instead of hardware address spaces
…which gives us performance—no border crossing

Who are we trusting? Consider application and
Spin
How does this compare to Exo-kernel?

31

