
Advanced Operating Systems
(CS 202)

Processes (continued)

1

2

How to pause/restart processes?
When a process is running, its dynamic state is in memory and some
hardware registers

Hardware registers include Program counter, stack pointer, control registers, data
registers, …
To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a
context switch

This can happen 100s or 1000s of times a second!

3

How does the OS track processes?
The OS maintains a collection of queues that represent
the state of all processes in the system

Typically, the OS at least one queue for each state
Ready, waiting, etc.

Each PCB is queued on a state queue according to its
current state

As a process changes state, its PCB is unlinked from
one queue and linked into another

4

State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

Check your understanding
True or False: a process can move from the running
state to the waiting state

Yes, when the process asks for a blocking system call

True or False: There is a separate kernel stack and user
stack for each process

Yes, its dangerous to allow a process to access an OS page

Where is process related information stored?
In the Process Control Block

5

6

Latency Numbers Every Programmer Should Know  
(2020 Version)

 X

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5 ns ~ 1 CPU cycle

Branch mispredict 3 ns

L2 cache reference 4 ns 14x L1 cache

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 2,000 ns 2 us

Read 1 MB sequentially from memory 3,000 ns 3 us

Read 4K randomly from SSD* 16,000 ns 16 us

Read 1 MB sequentially from SSD* 49,000 ns 49 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from disk 825,000 ns 825 us

Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip

Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

7

• On a 3.7GHz intel Core i5-9600K Processor, please make
a guess of the overhead of switching from user-mode to
kernel mode.
A. a single digit of nanoseconds
B. tens of nanoseconds
C. hundreds of nanoseconds
D. a single digit of microseconds
E. tens of microseconds

 X

The overhead of kernel switches/system calls

Operations Latency (ns)

L1 cache reference 1 ns

Branch mispredict 3 ns

L2 cache reference 4 ns

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns

Read 1 MB sequentially from memory 3,000 ns

Compress 1K bytes with Zippy 2,000 ns

Read 4K randomly from SSD* 16,000 ns

Read 1 MB sequentially from SSD* 49,000 ns

Round trip within same datacenter 500,000 ns

Read 1 MB sequentially from disk 825,000 ns

Disk seek 2,000,000 ns

Send packet CA-Netherlands-CA 150,000,000
ns

8

• On a 3.7GHz intel Core i5-9600K Processor, please make
a guess of the overhead of switching from user-mode to
kernel mode.
A. a single digit of nanoseconds
B. tens of nanoseconds
C. hundreds of nanoseconds
D. a single digit of microseconds
E. tens of microseconds

 X

The overhead of kernel switches/system calls

Operations Latency (ns)

L1 cache reference 1 ns

Branch mispredict 3 ns

L2 cache reference 4 ns

Mutex lock/unlock 17 ns

Send 2K bytes over network 44 ns

Main memory reference 100 ns

Read 1 MB sequentially from memory 3,000 ns

Compress 1K bytes with Zippy 2,000 ns

Read 4K randomly from SSD* 16,000 ns

Read 1 MB sequentially from SSD* 49,000 ns

Round trip within same datacenter 500,000 ns

Read 1 MB sequentially from disk 825,000 ns

Disk seek 2,000,000 ns

Send packet CA-Netherlands-CA 150,000,000
ns

Process system call API
Process creation: how to create a new process?

Process termination: how to terminate and clean up a
process

Coordination between processes
Wait, waitpid, signal, inter-process communication,
synchronization

Other
E.g., set quotas or priorities, examine usage, …

9

10

Process Creation
A process is created by another process

Why is this the case?
Parent is creator, child is created (Unix: ps “PPID” field)
What creates the first process (Unix: init (PID 0 or 1))?

In some systems, the parent defines (or donates)
resources and privileges for its children

Unix: Process User ID is inherited – children of your shell
execute with your privileges

After creating a child, the parent may either wait for it to
finish its task or continue in parallel (or both)

11

Process Creation: Unix
In Unix, processes are created using fork()
int fork()

fork()
Creates and initializes a new PCB
Creates a new address space
Initializes the address space with a copy of the entire contents
of the address space of the parent
Initializes the kernel resources to point to the resources used
by parent (e.g., open files)
Places the PCB on the ready queue

Fork returns twice
Returns the child’s PID to the parent, “0” to the child

12

fork()
int main(int argc, char *argv[])
{

char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());
return 0;

} else {

printf(“My child is %d\n”, child_pid);
return 0;

}
}

What does this program print?

13

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

14

Divergence

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}
PC

PC

child_pid = 486 child_pid = 0

15

Example Continued
[well ~]$ gcc t.c
[well ~]$./a.out
My child is 486
Child of a.out is 486
[well ~]$./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?

16

Why fork()?
Very useful when the child…

Is cooperating with the parent
Relies upon the parent’s data to accomplish its
task

Example: Web server
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
} else {

Close socket
}

}

17

Process Creation (2): Unix
Wait a second. How do we actually start a new
program?
int exec(char *prog, char *argv[])

exec()
Stops the current process
Loads the program “prog” into the process’ address space
Initializes hardware context and args for the new program
Places the PCB onto the ready queue
Note: It does not create a new process

What does it mean for exec to return?
What does it mean for exec to return with an error?

18

wait() a second…
Often it is convenient to pause until a child process has
finished

Think of executing commands in a shell
Use wait() (WaitForSingleObject)

Suspends the current process until a child process ends
waitpid() suspends until the specified child process ends

Wait has a return value…what is it?
Unix: Every process must be reaped by a parent

What happens if a parent process exits before a child?
What do you think is a “zombie” process?

19

Unix Shells

while (1) {
char *cmd = read_command();
int child_pid = fork();
if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes,
redirection, etc.
exec(cmd);
panic(“exec failed”);

} else {
if (!(run_in_background))

waitpid(child_pid);
}

}

Some issues with processes
Creating a new process is costly because
of new address space and data structures
that must be allocated and initialized

Recall struct proc in xv6 or Solaris

Communicating between processes is
costly because most communication goes
through the OS

Inter Process Communication (IPC) – we will
discuss later
Overhead of system calls and copying data

20

Parallel Programs
• Also recall our Web server example that forks off copies

of itself to handle multiple simultaneous requests

• To execute these programs we need to
• Create several processes that execute in parallel
• Cause each to map to the same address space to share data

• They are all part of the same computation
• Have the OS schedule these processes in parallel

• This situation is inefficient (Copy on Write helps)
• Space: Duplicate memory, PCB, page tables, etc.
• Time: create data structures, fork and copy addr space, etc.

21

22

Rethinking Processes
What is similar in these cooperating processes?

They all share the same code and data (address space)
They all share the same privileges
They all share the same resources (files, sockets, etc.)

What don’t they share?
Each has its own execution state: PC, SP, and registers

Key idea: Separate resources from execution state
Exec state also called thread of control, or thread

23

Threads
! Separate execution and resource container roles

• The thread defines a sequential execution stream within a
process (PC, SP, registers)

• The process defines the address space, resources, and general
process attributes (everything but threads)

! Threads become the unit of scheduling
• Processes are now the containers in which threads execute
• Processes become static, threads are the dynamic entities

24

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

25

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Which of these are needed for each thread

Stack pointer
Register states
Open file descriptors
Program Counter
Page table (or memory management information)

26

☒

☒

Which of these are needed for each thread

Stack pointer
Register states
Open file descriptors
Program Counter
Page table (or memory management information)

27

28

Threads: Concurrent Servers
Using fork() to create new processes to handle
requests in parallel is overkill for such a simple
task
Recall our forking Web server:
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

Handle client request
Close socket and exit

} else {

Close socket
}

}

29

Threads: Concurrent Servers
Instead, we can create a new thread for each
request
web_server() {

while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}

}

handle_request(int sock) {
Process request
close(sock);

}

30

Implementing threads

! Kernel Level Threads
! All thread operations are implemented in the kernel
� The OS schedules all of the threads in the system
� Don’t have to separate from processes

! OS-managed threads are called kernel-level threads or
lightweight processes
� Windows: threads
� Solaris: lightweight processes (LWP)
� POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

31

Kernel Thread (KLT) Limitations
! KLTs make concurrency cheaper than processes

u Much less state to allocate and initialize

! However, there are a couple of issues
u Issue 1: KLT overhead still high

Thread operations still require system calls
Ideally, want thread operations to be as fast as a procedure call

u Issue 2: KLTs are general; unaware of application needs

! Alternative: User-level threads (ULT)

32

Alternative: User-Level Threads
Implement threads using user-level library

ULTs are small and fast
A thread is simply represented by a PC, registers, stack, and
small thread control block (TCB)
Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call

No kernel involvement
User-level thread operations 100x faster than kernel threads
pthreads: PTHREAD_SCOPE_PROCESS

33

Summary KLT vs. ULT
Kernel-level threads

Integrated with OS (informed scheduling)
Slow to create, manipulate, synchronize

User-level threads
Fast to create, manipulate, synchronize
Not integrated with OS (uninformed scheduling)

Understanding the differences between
kernel and user-level threads is important

For programming (correctness, performance)
For test-taking J

34

Sample Thread Interface
thread_fork(procedure_t)

Create a new thread of control
Also thread_create(), thread_setstate()

thread_stop()
Stop the calling thread; also thread_block

thread_start(thread_t)
Start the given thread

thread_yield()
Voluntarily give up the processor

thread_exit()
Terminate the calling thread; also thread_destroy

Looking ahead
OS Model

We have assumed monolithic kernel
Are there disadvantages to that?
What alternatives are there?

Scheduling
How do we decide which thread to run next?

Concurrency and synchronization
We have to manage concurrency for correctness

But also for performance/scalability
Both OS and general multi-threaded programming problem

Multi-core->many-core
35

