
Monolithic Kernels,
Sleeping Beauties, and
Processes

CS202, Advanced Operating Systems
(Some slides from Hung-Wei Tseng, and Heng Yin)

Virtualization and Abstraction:
Operating System

The goal of an OS

2

Virtualize hardware/architectural resources
Easy for programs to interact with hardware resources
Share hardware resource among programs
Protect programs from each other (security)

Execute multithreaded programs concurrently
Support multithreaded programming model
Execute multithreaded programs efficiently

Store data persistently
Store data safely
Secure

3

Recap: What modern operating
systems support?

The program counter (PC) tells where the upcoming instruction is in
the memory
Processor fetches the instruction, decode the instruction, execute the
instruction, present the instruction results according to clock signals
The processor fetches the next instruction whenever it’s safe to do
so

Processor
PC

120007a30: 0f00bb27 ldah gp,15(t12)
120007a34: 509cbd23 lda gp,-25520(gp)
120007a38: 00005d24 ldah t1,0(gp)
120007a3c: 0000bd24 ldah t4,0(gp)
120007a40: 2ca422a0 ldl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,-23508(t1)
120007a50: 0004ff47 clr v0
120007a54: 28a4e5b3 stl zero,-23512(t4)
120007a58: 20a421a4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
120007a60: 0204e147 mov t0,t1
120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

instruction memory

4

Recap: How processor executes a program

clock

Sleeping beauty: Direct Controlled Execution
Program running directly on hardware

But I thought that is insecure?
Yes! We hide anything dangerous in the OS
Program has to ask for permission

System calls

OS is an event handler
Any event occurs, hardware securely traps to OS
OS figures out who woke it up and handles the
situation

5

Monolithic Kernel/Sleeping Beauty

6

System Calls

For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure

Known as crossing the protection boundary, or a protected
procedure call

Hardware provides a system call instruction that:
Causes an exception, which invokes a kernel handler

Passes a parameter determining the system routine to call
Saves caller state (PC, regs, mode) so it can be restored

Why save mode?
Returning from system call restores this state

7

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel
mode, save

state

Trap handler

Find read
handler

Restore state,
return to user
level, resume

execution

8

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous interrupt software interrupt

! Interrupts signal asynchronous events
u I/O hardware interrupts
u Software and hardware timers

9

Timer
The key to a timesharing OS

The fallback mechanism by which the OS reclaims
control

Timer is set to generate an interrupt after a period of
time

Setting timer is a privileged instruction
When timer expires, generates an interrupt

Handled by the OS, forcing a switch from the user program
Basis for OS scheduler (more later…)

Also used for time-based functions (e.g., sleep())

Operating System

The goal of an OS

1
0

Operating System

The idea of an OS: virtualization

11

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

API API API API API API API API

The operating system presents an illusion of a virtual
machine to each running program and maintains
architectural states of a von Neumann machine

Processor
Memory
I/O

Each virtualized environment accesses architectural
facilities through some sort of application programming
interface (API)
Dynamically map those virtualized resources into physical
resources

12

The idea: virtualization

13

Demo, Virtualization

getcpu system call to retrieve the executing CPU ID

create a random number

print the value of a and address of a

print the value of a and address of a again after sleep

14

Virtualization Demo

 X

The same
processor!

The same memory
address!

Different values

Different values are
preserved

How many of the following statement is true about why operating
systems virtualize running programs?
①Virtualization can help improve the utilization and the throughput

of the underlying hardware
②Virtualization may allow the system to execute more programs

than the number of physical processors installed in the machine
③Virtualization may allow a running program or running programs to

use more than install physical memory
④Virtualization can improve the latency of executing each program
A. 0
B. 1
C.2
D.3
E. 4

15

Why virtualization

How many of the following statement is true about why operating
systems virtualize running programs?
①Virtualization can help improve the utilization and the throughput

of the underlying hardware
②Virtualization may allow the system to execute more programs

than the number of physical processors installed in the machine
③Virtualization may allow a running program or running programs to

use more than install physical memory
④Virtualization can improve the latency of executing each program
A. 0
B. 1
C.2
D.3
E. 4

16

Why virtualization

Make programs less machine-dependent

Operating System

Virtualizing the CPU: Processes

17

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

API API API API API API API API

Process

18

The Process
The process is the OS abstraction for execution

It is the unit of execution
It is the unit of scheduling

A process is a program in execution
Programs are static entities with the potential for
execution
Process is the animated/active program

Starts from the program, but also includes dynamic state
As the representative of the program, it is the “owner” of other resources
(memory, files, sockets, …)

How does the OS implement this abstraction?
How does it share the CPU?

19

Process Components
A process contains all the state for a program in
execution

An address space containing
Static memory:

The code and input data for the executing program
Dynamic memory:

The memory allocated by the executing program
An execution stack encapsulating the state of procedure calls

Control registers such as the program counter (PC)
A set of general-purpose registers with current values
A set of operating system resources

Open files, network connections, etc.

A process is named using its process ID (PID)

20

Address Space (memory abstraction)

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic

Which of the following information does the OS need to track for
each process?
A. Stack pointer
B. Program counter
C. Process state
D. Registers
E. All of the above

21

What the OS must track for a process?

Which of the following information does the OS need to track for
each process?
A. Stack pointer
B. Program counter
C. Process state
D. Registers
E. All of the above

22

What the OS must track for a process?

• You also need to keep other process information like an unique process id,
process states, I/O status, and etc…

Processes

23

OS Abstractions

24

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

Today, we start discussing the first abstraction that enables us to virtualize
(i.e., share) the CPU – processes!

25

The Process
The process is the OS abstraction for execution

It is the unit of execution
It is the unit of scheduling

A process is a program in execution
Programs are static entities with the potential for
execution
Process is the animated/active program

Starts from the program, but also includes dynamic state
As the representative of the program, it is the “owner” of other resources
(memory, files, sockets, …)

How does the OS implement this abstraction?
How does it share the CPU?

26

Process Components
A process contains all the state for a program in
execution

An address space containing
Static memory:

The code and input data for the executing program
Dynamic memory:

The memory allocated by the executing program
An execution stack encapsulating the state of procedure calls

Control registers such as the program counter (PC)
A set of general-purpose registers with current values
A set of operating system resources

Open files, network connections, etc.

A process is named using its process ID (PID)

27

Address Space (memory abstraction)

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

Static

Dynamic

28

Process Execution State
A process is born, executes for a while, and
then dies

The process execution state that indicates what
it is currently doing

Running: Executing instructions on the CPU
It is the process that has control of the CPU
How many processes can be in the running state simultaneously?

Ready: Waiting to be assigned to the CPU
Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
It cannot make progress until event is signaled (disk completes)

Execution state (cont’d)
As a process executes, it moves from state to
state

Unix “ps -x”: STAT column indicates execution
state
What state do you think a process is in most of
the time?
How many processes can a system support?

29

30

Execution State Graph

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O, Page
Fault, etc.

I/O Done

Schedule
Process

Unschedule
Process

31

How does the OS support this model?

Three issues:
1. How does the OS represent a process in the kernel?

u The OS data structure representing each process is called the
Process Control Block (PCB)

2. How do we pause and restart processes?
u We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the
system?

u A lot of queues!

32

PCB Data Structure
PCB also is where OS keeps all of a process’ hardware
execution state when the process is not running

Process ID (PID)
Execution state
Hardware state: PC, SP, regs
Memory management
Scheduling
Accounting
Pointers for state queues
Etc.

This state is everything that is needed to restore the
hardware to the same configuration it was in when the
process was switched out of the hardware

Xv6 struct proc

33

34

How to pause/restart processes?
When a process is running, its dynamic state is in memory and some
hardware registers

Hardware registers include Program counter, stack pointer, control registers, data
registers, …
To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the
registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware
registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a
context switch

This can happen 100s or 1000s of times a second!

35

How does the OS track processes?
The OS maintains a collection of queues that represent
the state of all processes in the system

Typically, the OS at least one queue for each state
Ready, waiting, etc.

Each PCB is queued on a state queue according to its
current state

As a process changes state, its PCB is unlinked from
one queue and linked into another

36

State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

