
Docker
Some slides from Martin Meyer

Agenda
• What is Docker from an OS organization

perspective?
– Docker vs. Virtual Machine
– History, Status, Run Platforms

• Use cases

2

5

Containers

• Virtualize the OS, not the full machine
• Container sits on host OS kernel, and some shared

binaries
– These are read only

• Sharing OS resources significantly reduces footprint
– Containers are lightweight – megabytes in size

• Smaller snapshots, can have many more on one physical machine

– VMs are an order of magnitude or more larger
• Take longer to launch, etc…

6

Docker vs. Virtual Machine

Source: https://www.docker.com/whatisdocker/

Performance comparison

9

Size comparison

10

Additional discussion points
• Name spaces, and unix jail
• VMs include a separate OS image, adding

complexity to all stages of development lifecycle
– Limits portability between clouds and data centers

• Performance isolation:
– Unix cgroups can provide isolation for CPU, memory,

I/O and network

11

Docker Technology
• libvirt: Platform Virtualization
• LXC (LinuX Containers): Multiple

isolated Linux systems (containers) on
a single host

• Layered File System

[Source: https://docs.docker.com/terms/layer/]

Container
cid4

Container
cid3

15

Image vs. Container
Base Image
ubuntu:latest

Container
cid1

run

Container
cid1

cmd à new state

New Image
iid1

commit

base image

Container
cid2

run

16

Dockerfile
• Create images automatically using a

build script: «Dockerfile»
• Can be versioned in a version control

system like Git along with all
dependencies

• Docker Hub can automatically build
images based on dockerfiles on Github

17

Docker Use Cases
• Development Environment
• Environments for Integration Tests
• Quick evaluation of software
• Microservices
• Multi-Tenancy
• Unified execution environment (dev à test
à prod (local, VM, cloud, ...)

18

Use-case: scientific reproducibility

• Dependency hell
– Less than 50% of software could be built or installed
– Difficult to reproduce computational environment

• Imprecise documentation
– Difficult to figure out how to install

• Code rot
– Software dependencies change, affecting results

• Barriers to adoption and reuse
– Difficulty to coordinate build tools/package managers

19

Use case: scientific reproducibility

• Dependency hell
– Docker! Container includes everything!

• Imprecise documentation
– Dockerfiles keep record of dependencies

• Code rot
– versioning

• Barriers to adoption and reuse
– Argues that docker provides features to help with that

Use case 2: Kubernetes/Microservices

• How to use containers to provide services on
the cloud?

• Rapid ramp up enables micro-services

What are microservices?

