Docker

Some slides from Martin Meyer

Agenda

 What is Docker from an OS organization
perspective?
— Docker vs. Virtual Machine
— History, Status, Run Platforms

e Use cases

Containers

e Virtualize the OS, not the full machine
 Container sits on host OS kernel, and some shared
binaries

— These are read only

e Sharing OS resources significantly reduces footprint

— Containers are lightweight — megabytes in size
* Smaller snapshots, can have many more on one physical machine

— VMis are an order of magnitude or more larger
* Take longer to launch, etc...

Docker vs. Virtual Machine

App B
Bins/Libs
App B
Guest OS
Bins/Libs

Docker Engine Hypervisor

Host OS Host OS

Server Server

Source: https://www.docker.com/whatisdocker/

What's the Diff: VMs vs Containers

VMs

Containers

Heavyweight

Lightweight

Limited performance

Native performance

Each VM runs in its own OS

All containers share the host OS

Hardware-level virtualization

OS virtualization

Startup time in minutes

Startup time in milliseconds

Allocates required memory

Requires less memory space

Fully isolated and hence more secure

Process-level isolation, possibly less secure

Performance comparison

* Getting applications from development to production involves
creating disk images

» Fast image creation enables rapid testing and continuous
deployment

Base Image | Install App >[Application | Deploy | = reammmaF
(Ubuntu 1404)J Image J E] v CSETITITE

‘--------\

1 Container images have only
BR.Cation application layer

I T 1
" Standard Libraries »VMs contain entire OS, and have
I Base OS ' larger images

4 = E E =HE =EH =HE = = =
Time (s) VM (Vagrant) Docker
MySQL 236 129 * Docker: 2-6x faster
NodeJS 304 49

Size comparison

Disk Image

Copy & Deploy
Application

Image size VM LXC Docker
[\ lellmm 1.68GB 04GB 112KB
\LENEEN 205GB 06GB 72 KB

e

Docker: 2-6x smaller

VMs contain entire OS, and have larger images

Docker stores only differences (application layer)

Base
Install app
Ubuntu 14.04

Additional discussion points

* Name spaces, and unix jail

* VMs include a separate OS image, adding
complexity to all stages of development lifecycle
— Limits portability between clouds and data centers

* Performance isolation:

— Unix cgroups can provide isolation for CPU, memory,
|/O and network

Docker Technology

e libvirt: Platform Virtualization

e LXC (LinuX Containers): Multiple
isolated Linux systems (containers) on
a single host

references
parent
image

* Layered File System

[Source: https://docs.docker.com/terms/layer/]

Image vs. Container

Base Image Container

ubuntu:latest cidl

base image cmd = new state

New Image commit Container
iid1 cidl

Container
cid2

cid3
cid4

Dockerfile

* Create images automatically using a
build script: «Dockerfile»

e Can be versioned in a version control
system like Git along with all
dependencies

 Docker Hub can automatically build
images based on dockerfiles on Github

Docker Use Cases

* Development Environment

* Environments for Integration Tests
* Quick evaluation of software

* Microservices

* Multi-Tenancy

* Unified execution environment (dev = test
- prod (local, VM, cloud, ...)

Use-case: scientific reproducibility

* Dependency hell

— Less than 50% of software could be built or installed
— Difficult to reproduce computational environment

* Imprecise documentation
— Difficult to figure out how to install

* Coderot
— Software dependencies change, affecting results

e Barriers to adoption and reuse

— Difficulty to coordinate build tools/package managers

Use case: scientific reproducibility

* Dependency hell

— Docker! Container includes everything!
* Imprecise documentation

— Dockerfiles keep record of dependencies
* Code rot

— versioning

e Barriers to adoption and reuse
— Argues that docker provides features to help with that

Use case 2: Kubernetes/Microservices

* How to use containers to provide services on
the cloud?

* Rapid ramp up enables micro-services

kubennetes

& & & & &

docker docker docker docker docker

What are microservices?

Monolithic
Architecture

!

App Services

W1

Bare Metal

Microservice

W1

Bare Metal

Microservices Architecture

A A A
-> -> -)-) -)-)
/® /® /®

Microservice Microservice Microservice
-]
BB = BB

Virtualized Containers Public Cloud

Applications

Worker node 1

Kubernetes architecture bod 1 peds pods

User
interface Control plane i b

Container 2

Worker node 2

APl Server

Scheduler —

Controller-Manager [y

Pod 1 Pod 2 Pod 3

etcd

Container 1

Comaners

kubectl

—

