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Virtualization

• One of the natural consequences of 
the extensibility research we 
discussed

• What is virtualization and what are 
the benefits?
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Virtualization motivation
• Cost: multiplex multiple virtual machines on one 

hardware machine
– Cloud computing, data center virtualization
– Why not processes?
– Why not containers?

• Heterogeneity:
– Allow one machine to support multiple OS’s
– Maintaining compatibility

• Other: security, migration, energy optimization, 
customization, …
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How do we virtualize?

• Create an operating system to 
multiplex resources among operating 
systems!
– Exports a virtual machine to the 

Operating systems
– Called a hypervisor or Virtual Machine 

Monitor (VMM)
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VIRTUALIZATION MODELS
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Two types of hypervisors

• Type 1: Native (bare metal)
– Hypervisor runs on top of the bare metal machine
– e.g., KVM

• Type 2: Hosted
– Hypervisor is an emulator
– e.g., VMWare, virtual box, QEMU
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Hybrid organizations
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• Some hybrids exist, e.g., Xen
– Mostly bare metal
– VM0/Dom0 to keep device drivers out of VMM



Stepping back – some history

• IBM VM 370 (1970s)
• Microkernels (late 80s/90s)
• Extensibility (90s)
• SIMOS (late 90s)

– Eventually became VMWare (2000)
• Xen, Vmware, others (2000s)
• Ubiquitous use, Cloud computing, data 

centers, …
– Makes computing a utility
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Full virtualization
• Idea: run guest operating systems unmodified

• However, supervisor is the real privileged software

• When OS executes privileged instruction, trap to 
hypervisor who executes it for the OS

• This can be very expensive

• Also, subject to quirks of the architecture
– Example, x86 fails silently if some privileged instructions 

execute without privilege
– E.g., popf 9



Example: Disable Interrupts 
• Guest OS tries to disable interrupts 

– the instruction is trapped by the VMM which 
makes a note that interrupts are disabled for 
that virtual machine

• Interrupts arrive for that machine
– Buffered at the VMM layer until the guest OS 

enables interrupts.

• Other interrupts are directed to VMs that 
have not disabled them



Binary translation--making full 
virtualization practical

• Use binary translation to modify OS to 
rewrite silent failure instructions

• More aggressive translation can be used
– Translate OS mode instructions to equivalent 

VMM instructions
• Some operations still expensive 
• Cache for future use
• Used by VMWare ESXi and Microsoft Virtual Server

• Performance on x86 typically ~80-95% of native
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Binary Translation Example
Guest OS Assembly Translated Assembly

do_atomic_operation:
call [vmm_disable_interrupts]
mov eax, 1
xchg eax, [lock_addr]
test eax, eax
jnz spinlock
…
…
mov [lock_addr], 0
call [vmm_enable_interrupts]
ret
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do_atomic_operation:
cli
mov eax, 1
xchg eax, [lock_addr]
test eax, eax
jnz spinlock
…
…
mov [lock_addr], 0
sti
ret



Paravirtualization

• Modify the OS to make it aware of 
the hypervisor
– Can avoid the tricky features
– Aware of the fact it is virtualized

• Can implement optimizations

• Comparison to binary translation?
• Amount of code change?

– 1.36% of Linux, 0.04% for Windows
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Hardware supported virtualization 
(Intel VT-x, AMD-V)

• Hardware support for virtualization
• Makes implementing VMMs much simpler
• Streamlines communication between VM 

and OS
• Removes the need for 

paravirtualization/binary translation
• EPT: Support for shadow page tables
• More later…
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NUTS AND BOLTS
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What needs to be done?

• Virtualize hardware
– Memory hierarchy
– CPUs
– Devices

• Implement data and control transfer 
between guests and hypervisor

• We’ll cover this by example – Xen paper
– Slides modified from presentation by Jianmin

Chen
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Xen

• Design principles:
– Unmodified applications: essential
– Full-blown multi-task O/Ss: essential
– Paravirtualization: necessary for 

performance and isolation



Xen



Implementation summary
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Xen VM interface: Memory

• Memory management
– Guest cannot install highest privilege 

level segment descriptors; top end of 
linear address space is not accessible

– Guest has direct (not trapped) read 
access to hardware page tables; writes 
are trapped and handled by the VMM

– Physical memory presented to guest is 
not necessarily contiguous



Two Layers of Virtual Memory
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Guest’s Page Tables Are Invalid
• Guest OS page tables map virtual page numbers 

(VPNs) to physical frame numbers (PFNs)
• Problem: the guest is virtualized, doesn’t actually 

know the true PFNs
– The true location is the machine frame number (MFN)
– MFNs are known to the VMM and the host OS

• Guest page tables cannot be installed in cr3
– Map VPNs to PFNs, but the PFNs are incorrect

• How can the MMU translate addresses used by 
the guest (VPNs) to MFNs?
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Shadow Page Tables
• Solution: VMM creates shadow page tables that 

map VPN à MFN (as opposed to VPNàPFN)
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Building Shadow Tables
• Problem: how can the VMM maintain consistent shadow 

pages tables?
– The guest OS may modify its page tables at any time
– Modifying the tables is a simple memory write, not a privileged 

instruction
• Thus, no helpful CPU exceptions :(

• Solution: mark the hardware pages containing the guest’s 
tables as read-only
– If the guest updates a table, an exception is generated
– VMM catches the exception, examines the faulting write, updates 

the shadow table
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More VMM Tricks
• The VMM can play tricks with virtual 

memory just like an OS can
• Balooning:

– The VMM can page parts of a guest, or even 
an entire guest, to disk

– A guest can be written to disk and brought 
back online on a different machine!

• Deduplication:
– The VMM can share read-only pages between 

guests
– Example: two guests both running Windows XP
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Xen VM interface: CPU

• CPU
– Guest runs at lower privilege than VMM
– Exception handlers must be registered 

with VMM
– Fast system call handler can be serviced 

without trapping to VMM
– Hardware interrupts replaced by 

lightweight event notification system
– Timer interface: both real and virtual 

time



Details: CPU 
• Frequent exceptions:

– Software interrupts for system calls
– Page faults

• Allow “guest” to register a ʻfastʼ exception 
handler for system calls that can be 
accessed directly by CPU in ring 1, without 
switching to ring-0/Xen
– Handler is validated before installing in 

hardware exception table: To make sure nothing 
executed in Ring 0 privilege.

– Doesnʼt work for Page Fault



Xen VM interface: I/O

• I/O
– Virtual devices exposed as asynchronous 

I/O rings to guests
– Event notification replaces interrupts



Details: I/O 1

• Xen does not emulate hardware devices
– Exposes device abstractions for simplicity and 

performance
– I/O data transferred to/from guest via Xen

using shared-memory buffers
– Virtualized interrupts: light-weight event 

delivery mechanism from Xen-guest
• Update a bitmap in shared memory
• Optional call-back handlers registered by O/S



Details: I/O 2• I/O Descriptor Ring:



OS Porting Cost

• Number of lines of code modified or 
added compared with original x86 code 
base (excluding device drivers)
– Linux: 2995 (1.36%)
– Windows XP: 4620 (0.04%)

• Re-writing of privileged routines; 
• Removing low-level system 

initialization code



Control Transfer

• Guest synchronously call into VMM
– Explicit control transfer from guest O/S to 

monitor
– “hypercalls”

• VMM delivers notifications to guest O/S
– E.g. data from an I/O device ready
– Asynchronous event mechanism; guest O/S does 

not see hardware interrupts, only Xen
notifications



Event notification
• Pending events stored in per-domain bitmask

– E.g. incoming network packet received
– Updated by Xen before invoking guest OS 

handler
– Xen-readable flag may be set by a domain

• To defer handling, based on time or number of pending 
requests

• Analogous to interrupt disabling



Data Transfer: Descriptor Ring

• Descriptors are allocated by a domain 
(guest) and accessible from Xen
• Descriptors do not contain I/O data; 

instead, point to data buffers also 
allocated by domain (guest)
– Facilitate zero-copy transfers of I/O 

data into a domain



Network Virtualization

• Each domain has 1+ network interfaces 
(VIFs)
– Each VIF has 2 I/O rings (send, receive)
– Each direction also has rules of the form 

(<pattern>,<action>) that are inserted by 
domain 0 (management)

• Xen models a virtual firewall+router 
(VFR) to which all domain VIFs 
connect



Network Virtualization

• Packet transmission:
– Guest adds request to I/O ring
– Xen copies packet header, applies 

matching filter rules
• E.g. change header IP source address for NAT
• No change to payload; pages with payload 
must be pinned to physical memory until DMA 
to physical NIC for transmission is complete

– Round-robin packet scheduler



Network Virtualization
• Packet reception:

– Xen applies pattern-matching rules to determine 
destination VIF

– Guest O/S required to exchange unused page 
frame for each packet received
• Xen exchanges packet buffer for page frame in VIFʼs 

receive ring 
• If no receive frame is available, the packet is dropped
• Avoids Xen-guest copies; requires pagealigned receive 

buffers to be queued at VIFʼs receive ring



Disk virtualization

• Domain0 has access to physical disks
– Currently: SCSI and IDE

• All other domains: virtual block device 
(VBD)
– Created & configured by management 

software at domain0
– Accessed via I/O ring mechanism
– Possible reordering by Xen based on 

knowledge about disk layout



Disk virtualization

• Xen maintains translation tables for 
each VBD
– Used to map requests for VBD (ID,offset) 

to corresponding physical device and 
sector address

– Zero-copy data transfers take place 
using DMA between memory pages pinned 
by requesting domain

• Scheduling: batches of requests in 
round-robin fashion across domains



Evaluation



Microbenchmarks

• Stat, open, close, fork, exec, etc 
• Xen shows overheads of up to 2x with 

respect to native Linux
– (context switch across 16 processes; mmap 

latency)
• VMware shows up to 20x overheads

– (context switch; mmap latencies)
• UML shows up to 200x overheads

– Fork, exec, mmap; better than VMware in 
context switches



VT-x : Motivation
• To solve the problem that the x86 instructions 

architecture cannot be virtualized.
• Simplify VMM software by closing virtualization 

holes by design.
– Ring Compression
– Non-trapping instructions
– Excessive trapping

• Eliminate need for software virtualization (i.e
paravirtualization, binary translation).
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CPU Virtualization with VT-x
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VMX
• Virtual Machine Extensions define processor-level 

support for virtual machines on the x86 platform 
by a new form of operation called VMX operation.

• Kinds of VMX operation:
– root: VMM runs in VMX root operation
– non-root: Guest runs in VMX non-root operation

• Eliminate de-privileging of Ring for guest OS. 
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Pre VT-x                                                      Post 
VT-x

VMM ring de-privileging of guest 
OS

VMM executes in VMX root-mode

Guest OS aware its not at Ring 0 Guest OS de-privileging eliminated
Guest OS runs directly on 
hardware45



VMX Transitions
• Transitions between VMX root operation and VMX 

non-root operation.
• Kinds of VMX transitions:

– VM Entry: Transitions into VMX non-root 
operation. 

– VM Exit: Transitions from VMX non-root 
operation to VMX root operation.

• Registers and address space swapped in one 
atomic operation.
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VMX Transitions
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VMCS: VM Control Structure
• Data structure to manage VMX non-root operation 

and VMX transitions.
• Specifies guest OS state.
• Configured by VMM.
• Controls when VM exits occur.
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VMCS: VM Control Structure
The VMCS consists of six logical groups:
• Guest-state area: Processor state saved into the guest-

state area on VM exits and loaded on VM entries.
• Host-state area: Processor state loaded from the host-

state area on VM exits.
• VM-execution control fields: Fields controlling processor 

operation in VMX non-root operation.
• VM-exit control fields: Fields that control VM exits.
• VM-entry control fields: Fields that control VM entries.
• VM-exit information fields: Read-only fields to receive 

information on VM exits describing the cause and the 
nature of the VM exit. 49



CPU Virtualization with VT-x

Source: [2]

50



MMU Virtualization with VT-x
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VPID: Motivation
• First generation VT-x forces TLB flush on each 

VMX transition.
• Performance loss on all VM exits.
• Performance loss on most VM entries

– Guest page tables not modified always
• Better VMM software control of TLB 

flushes is beneficial.
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VPID: Virtual Processor 
Identifier 

• 16-bit virtual-processor-ID field in the VMCS.
• Cached linear translations tagged with VPID value.
• No flush of TLBs on VM entry or VM exit if VPID 

active.
• TLB entries of different virtual machines can all 

co-exist in the TLB.
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Virtualizing Memory in 
Software

• Three abstractions of memory:

0 4GB

Current Guest Process

0 4GB

Guest OS
Virtual 

Address Spaces

Physical
Address SpacesVirtual RAM Virtual

ROM
Virtual

Devices
Virtual
Frame
Buffer

0 4GB
Machine

Address SpaceRAM ROMDevices Frame
Buffer
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Shadow Page Tables
• VMM maintains shadow page tables that 

map guest-virtual pages directly to machine 
pages.

• Guest modifications to V->P tables synced 
to VMM V->M shadow page tables.
– Guest OS page tables marked as read-only.
– Modifications of page tables by guest OS -> 

trapped to VMM.
– Shadow page tables synced to the guest OS 

tables
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Set CR3 by guest OS (1)
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Set CR3 by guest OS (2)
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Drawbacks: Shadow Page 
Tables

• Maintaining consistency between guest page tables 
and shadow page tables leads to an overhead: VMM 
traps

• Loss of performance due to TLB flush on every 
“world-switch”.

• Memory overhead due to shadow copying of guest 
page tables.  
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Nested / Extended Page 
Tables

• Extended page-table mechanism (EPT) used to 
support the virtualization of physical memory.

• Translates the guest-physical addresses used in 
VMX non-root operation.

• Guest-physical addresses are translated by 
traversing a set of EPT paging structures to 
produce physical addresses that are used to access 
memory.
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Nested / 
Extended Page 
Tables
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Nested / Extended Page Tables

Source: [4]
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Advantages: EPT
• Simplified VMM design.
• Guest page table modifications need not be 

trapped, hence VM exits reduced.
• Reduced memory footprint compared to shadow 

page table algorithms.

62



Disadvantages: EPT
• TLB miss is very costly since guest-physical address 

to machine address needs an extra EPT walk for 
each stage of guest-virtual address translation.

63


