
Advanced Operating Systems
(CS 202)

Virtualization

Virtualization

• One of the natural consequences of
the extensibility research we
discussed

• What is virtualization and what are
the benefits?

2

Virtualization motivation
• Cost: multiplex multiple virtual machines on one

hardware machine
– Cloud computing, data center virtualization
– Why not processes?
– Why not containers?

• Heterogeneity:
– Allow one machine to support multiple OS’s
– Maintaining compatibility

• Other: security, migration, energy optimization,
customization, …

3

How do we virtualize?

• Create an operating system to
multiplex resources among operating
systems!
– Exports a virtual machine to the

Operating systems
– Called a hypervisor or Virtual Machine

Monitor (VMM)

4

VIRTUALIZATION MODELS

5

Two types of hypervisors

• Type 1: Native (bare metal)
– Hypervisor runs on top of the bare metal machine
– e.g., KVM

• Type 2: Hosted
– Hypervisor is an emulator
– e.g., VMWare, virtual box, QEMU

6

Hybrid organizations

7

• Some hybrids exist, e.g., Xen
– Mostly bare metal
– VM0/Dom0 to keep device drivers out of VMM

Stepping back – some history

• IBM VM 370 (1970s)
• Microkernels (late 80s/90s)
• Extensibility (90s)
• SIMOS (late 90s)

– Eventually became VMWare (2000)
• Xen, Vmware, others (2000s)
• Ubiquitous use, Cloud computing, data

centers, …
– Makes computing a utility

8

Full virtualization
• Idea: run guest operating systems unmodified

• However, supervisor is the real privileged software

• When OS executes privileged instruction, trap to
hypervisor who executes it for the OS

• This can be very expensive

• Also, subject to quirks of the architecture
– Example, x86 fails silently if some privileged instructions

execute without privilege
– E.g., popf 9

Example: Disable Interrupts
• Guest OS tries to disable interrupts

– the instruction is trapped by the VMM which
makes a note that interrupts are disabled for
that virtual machine

• Interrupts arrive for that machine
– Buffered at the VMM layer until the guest OS

enables interrupts.

• Other interrupts are directed to VMs that
have not disabled them

Binary translation--making full
virtualization practical

• Use binary translation to modify OS to
rewrite silent failure instructions

• More aggressive translation can be used
– Translate OS mode instructions to equivalent

VMM instructions
• Some operations still expensive
• Cache for future use
• Used by VMWare ESXi and Microsoft Virtual Server

• Performance on x86 typically ~80-95% of native

11

Binary Translation Example
Guest OS Assembly Translated Assembly

do_atomic_operation:
call [vmm_disable_interrupts]
mov eax, 1
xchg eax, [lock_addr]
test eax, eax
jnz spinlock
…
…
mov [lock_addr], 0
call [vmm_enable_interrupts]
ret

12

do_atomic_operation:
cli
mov eax, 1
xchg eax, [lock_addr]
test eax, eax
jnz spinlock
…
…
mov [lock_addr], 0
sti
ret

Paravirtualization

• Modify the OS to make it aware of
the hypervisor
– Can avoid the tricky features
– Aware of the fact it is virtualized

• Can implement optimizations

• Comparison to binary translation?
• Amount of code change?

– 1.36% of Linux, 0.04% for Windows
13

Hardware supported virtualization
(Intel VT-x, AMD-V)

• Hardware support for virtualization
• Makes implementing VMMs much simpler
• Streamlines communication between VM

and OS
• Removes the need for

paravirtualization/binary translation
• EPT: Support for shadow page tables
• More later…

14

NUTS AND BOLTS

15

What needs to be done?

• Virtualize hardware
– Memory hierarchy
– CPUs
– Devices

• Implement data and control transfer
between guests and hypervisor

• We’ll cover this by example – Xen paper
– Slides modified from presentation by Jianmin

Chen

16

Xen

• Design principles:
– Unmodified applications: essential
– Full-blown multi-task O/Ss: essential
– Paravirtualization: necessary for

performance and isolation

Xen

Implementation summary

19

Xen VM interface: Memory

• Memory management
– Guest cannot install highest privilege

level segment descriptors; top end of
linear address space is not accessible

– Guest has direct (not trapped) read
access to hardware page tables; writes
are trapped and handled by the VMM

– Physical memory presented to guest is
not necessarily contiguous

Two Layers of Virtual Memory

Guest App’s
View of RAM

Page 3

Page 2

Page 1

Page 0

Host OS’s
View of RAM

Page 3

Page 2

Page 1

Page 0

0xFFFFFFFF

0x00000000

Guest OS’s
View of RAM

Page 3

Page 2

Page 1

Page 0

0xFFFF

0x0000

0xFF

0x00

Virtual address à
physical address

Physical address à
machine address

Known to the
guest OS

Unknown to the
guest OS

Guest’s Page Tables Are Invalid
• Guest OS page tables map virtual page numbers

(VPNs) to physical frame numbers (PFNs)
• Problem: the guest is virtualized, doesn’t actually

know the true PFNs
– The true location is the machine frame number (MFN)
– MFNs are known to the VMM and the host OS

• Guest page tables cannot be installed in cr3
– Map VPNs to PFNs, but the PFNs are incorrect

• How can the MMU translate addresses used by
the guest (VPNs) to MFNs?

22

Shadow Page Tables
• Solution: VMM creates shadow page tables that

map VPN à MFN (as opposed to VPNàPFN)

23

Page 0
0

64

16

32

48

Page 1

Page 2

Page 3

Virtual Memory

Page 0
0

64

16

32

48

Page 1

Page 2

Page 3

Physical Memory

VPN PFN
00
(0)

01
(1)

01
(1)

10
(2)

10
(2)

11 (3)

11 (3) 00
(0)

Page 0
0

64

16

32

48

Page 1

Page 2

Page 3

Machine Memory

VPN MFN
00
(0)

10
(2)

01
(1)

11 (3)

10
(2)

00
(0)

Guest Page Table

• Maintained by the
guest OS• Invalid for the MMU

Shadow Page Table

• Maintained by the
VMM• Valid for the MMU

Building Shadow Tables
• Problem: how can the VMM maintain consistent shadow

pages tables?
– The guest OS may modify its page tables at any time
– Modifying the tables is a simple memory write, not a privileged

instruction
• Thus, no helpful CPU exceptions :(

• Solution: mark the hardware pages containing the guest’s
tables as read-only
– If the guest updates a table, an exception is generated
– VMM catches the exception, examines the faulting write, updates

the shadow table

24

More VMM Tricks
• The VMM can play tricks with virtual

memory just like an OS can
• Balooning:

– The VMM can page parts of a guest, or even
an entire guest, to disk

– A guest can be written to disk and brought
back online on a different machine!

• Deduplication:
– The VMM can share read-only pages between

guests
– Example: two guests both running Windows XP

25

Xen VM interface: CPU

• CPU
– Guest runs at lower privilege than VMM
– Exception handlers must be registered

with VMM
– Fast system call handler can be serviced

without trapping to VMM
– Hardware interrupts replaced by

lightweight event notification system
– Timer interface: both real and virtual

time

Details: CPU
• Frequent exceptions:

– Software interrupts for system calls
– Page faults

• Allow “guest” to register a ʻfastʼ exception
handler for system calls that can be
accessed directly by CPU in ring 1, without
switching to ring-0/Xen
– Handler is validated before installing in

hardware exception table: To make sure nothing
executed in Ring 0 privilege.

– Doesnʼt work for Page Fault

Xen VM interface: I/O

• I/O
– Virtual devices exposed as asynchronous

I/O rings to guests
– Event notification replaces interrupts

Details: I/O 1

• Xen does not emulate hardware devices
– Exposes device abstractions for simplicity and

performance
– I/O data transferred to/from guest via Xen

using shared-memory buffers
– Virtualized interrupts: light-weight event

delivery mechanism from Xen-guest
• Update a bitmap in shared memory
• Optional call-back handlers registered by O/S

Details: I/O 2• I/O Descriptor Ring:

OS Porting Cost

• Number of lines of code modified or
added compared with original x86 code
base (excluding device drivers)
– Linux: 2995 (1.36%)
– Windows XP: 4620 (0.04%)

• Re-writing of privileged routines;
• Removing low-level system

initialization code

Control Transfer

• Guest synchronously call into VMM
– Explicit control transfer from guest O/S to

monitor
– “hypercalls”

• VMM delivers notifications to guest O/S
– E.g. data from an I/O device ready
– Asynchronous event mechanism; guest O/S does

not see hardware interrupts, only Xen
notifications

Event notification
• Pending events stored in per-domain bitmask

– E.g. incoming network packet received
– Updated by Xen before invoking guest OS

handler
– Xen-readable flag may be set by a domain

• To defer handling, based on time or number of pending
requests

• Analogous to interrupt disabling

Data Transfer: Descriptor Ring

• Descriptors are allocated by a domain
(guest) and accessible from Xen
• Descriptors do not contain I/O data;

instead, point to data buffers also
allocated by domain (guest)
– Facilitate zero-copy transfers of I/O

data into a domain

Network Virtualization

• Each domain has 1+ network interfaces
(VIFs)
– Each VIF has 2 I/O rings (send, receive)
– Each direction also has rules of the form

(<pattern>,<action>) that are inserted by
domain 0 (management)

• Xen models a virtual firewall+router
(VFR) to which all domain VIFs
connect

Network Virtualization

• Packet transmission:
– Guest adds request to I/O ring
– Xen copies packet header, applies

matching filter rules
• E.g. change header IP source address for NAT
• No change to payload; pages with payload
must be pinned to physical memory until DMA
to physical NIC for transmission is complete

– Round-robin packet scheduler

Network Virtualization
• Packet reception:

– Xen applies pattern-matching rules to determine
destination VIF

– Guest O/S required to exchange unused page
frame for each packet received
• Xen exchanges packet buffer for page frame in VIFʼs

receive ring
• If no receive frame is available, the packet is dropped
• Avoids Xen-guest copies; requires pagealigned receive

buffers to be queued at VIFʼs receive ring

Disk virtualization

• Domain0 has access to physical disks
– Currently: SCSI and IDE

• All other domains: virtual block device
(VBD)
– Created & configured by management

software at domain0
– Accessed via I/O ring mechanism
– Possible reordering by Xen based on

knowledge about disk layout

Disk virtualization

• Xen maintains translation tables for
each VBD
– Used to map requests for VBD (ID,offset)

to corresponding physical device and
sector address

– Zero-copy data transfers take place
using DMA between memory pages pinned
by requesting domain

• Scheduling: batches of requests in
round-robin fashion across domains

Evaluation

Microbenchmarks

• Stat, open, close, fork, exec, etc
• Xen shows overheads of up to 2x with

respect to native Linux
– (context switch across 16 processes; mmap

latency)
• VMware shows up to 20x overheads

– (context switch; mmap latencies)
• UML shows up to 200x overheads

– Fork, exec, mmap; better than VMware in
context switches

VT-x : Motivation
• To solve the problem that the x86 instructions

architecture cannot be virtualized.
• Simplify VMM software by closing virtualization

holes by design.
– Ring Compression
– Non-trapping instructions
– Excessive trapping

• Eliminate need for software virtualization (i.e
paravirtualization, binary translation).

42

CPU Virtualization with VT-x

43

VMX
• Virtual Machine Extensions define processor-level

support for virtual machines on the x86 platform
by a new form of operation called VMX operation.

• Kinds of VMX operation:
– root: VMM runs in VMX root operation
– non-root: Guest runs in VMX non-root operation

• Eliminate de-privileging of Ring for guest OS.

44

Pre VT-x Post
VT-x

VMM ring de-privileging of guest
OS

VMM executes in VMX root-mode

Guest OS aware its not at Ring 0 Guest OS de-privileging eliminated
Guest OS runs directly on
hardware45

VMX Transitions
• Transitions between VMX root operation and VMX

non-root operation.
• Kinds of VMX transitions:

– VM Entry: Transitions into VMX non-root
operation.

– VM Exit: Transitions from VMX non-root
operation to VMX root operation.

• Registers and address space swapped in one
atomic operation.

46

VMX Transitions

VMX Non-Root
Operation

VMX Root
Operation

Ring 3 Ring 3 Ring 3

Ring 0 Ring 0 Ring 0

VMC
S 1

VM 1 VM 2 VM n

Ring 3

Ring 0

VMC
S 2

VMC
S n

VM Entry

VM Exit

vmlaunch /
vmresume

47

VMCS: VM Control Structure
• Data structure to manage VMX non-root operation

and VMX transitions.
• Specifies guest OS state.
• Configured by VMM.
• Controls when VM exits occur.

48

VMCS: VM Control Structure
The VMCS consists of six logical groups:
• Guest-state area: Processor state saved into the guest-

state area on VM exits and loaded on VM entries.
• Host-state area: Processor state loaded from the host-

state area on VM exits.
• VM-execution control fields: Fields controlling processor

operation in VMX non-root operation.
• VM-exit control fields: Fields that control VM exits.
• VM-entry control fields: Fields that control VM entries.
• VM-exit information fields: Read-only fields to receive

information on VM exits describing the cause and the
nature of the VM exit. 49

CPU Virtualization with VT-x

Source: [2]

50

MMU Virtualization with VT-x

51

VPID: Motivation
• First generation VT-x forces TLB flush on each

VMX transition.
• Performance loss on all VM exits.
• Performance loss on most VM entries

– Guest page tables not modified always
• Better VMM software control of TLB

flushes is beneficial.

52

VPID: Virtual Processor
Identifier

• 16-bit virtual-processor-ID field in the VMCS.
• Cached linear translations tagged with VPID value.
• No flush of TLBs on VM entry or VM exit if VPID

active.
• TLB entries of different virtual machines can all

co-exist in the TLB.

53

Virtualizing Memory in
Software

• Three abstractions of memory:

0 4GB

Current Guest Process

0 4GB

Guest OS
Virtual

Address Spaces

Physical
Address SpacesVirtual RAM Virtual

ROM
Virtual

Devices
Virtual
Frame
Buffer

0 4GB
Machine

Address SpaceRAM ROMDevices Frame
Buffer

54

Shadow Page Tables
• VMM maintains shadow page tables that

map guest-virtual pages directly to machine
pages.

• Guest modifications to V->P tables synced
to VMM V->M shadow page tables.
– Guest OS page tables marked as read-only.
– Modifications of page tables by guest OS ->

trapped to VMM.
– Shadow page tables synced to the guest OS

tables
55

Set CR3 by guest OS (1)

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual CR3

Real CR3

Set CR3 by guest OS (2)

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual CR3

Real CR3

57

Drawbacks: Shadow Page
Tables

• Maintaining consistency between guest page tables
and shadow page tables leads to an overhead: VMM
traps

• Loss of performance due to TLB flush on every
“world-switch”.

• Memory overhead due to shadow copying of guest
page tables.

58

Nested / Extended Page
Tables

• Extended page-table mechanism (EPT) used to
support the virtualization of physical memory.

• Translates the guest-physical addresses used in
VMX non-root operation.

• Guest-physical addresses are translated by
traversing a set of EPT paging structures to
produce physical addresses that are used to access
memory.

59

Nested /
Extended Page
Tables

60

Nested / Extended Page Tables

Source: [4]

61

Advantages: EPT
• Simplified VMM design.
• Guest page table modifications need not be

trapped, hence VM exits reduced.
• Reduced memory footprint compared to shadow

page table algorithms.

62

Disadvantages: EPT
• TLB miss is very costly since guest-physical address

to machine address needs an extra EPT walk for
each stage of guest-virtual address translation.

63

