Implementing Consistency --

3 Paxos

Some slides from Michael Freedman

i CAP Conjecture

= System can have two of:
= C: Strong consistency

= A: Availability

= P: Tolerance to network partition
= 2PC: CA
= Consensus (Paxos/Raft): CP
= Eventual consistency: AP

= ACID/BASE

What do clients see?

+

N

= Distributed stores use replication
= Fault tolerance and scalability

= Does replication necessitate inconsistency?
= Harder to program, confusing for clients

i Problem

= How to reach consensus/data
consistency in distributed system that
can tolerate non-malicious failures?

= We saw some consistency models —
how to implement them?

i Another perspective

= Lock is the easiest way to manage
concurrency

=« Mutex and semaphore.
= Read and write locks.

= In distributed system:
= No shared state
= Failures
= What can we do?

i Recall, consistency models

e Strict
e Strong (Linearizability)
Weaker
e Sequential Consistency
Models

e Causal l
e Eventual
These models describes when and how different

nodes in a distributed system / network view the
order of messages / operations

i Implementing Linearizability

>

Server 1

Ack when
“committed”

>

Server 2

* |f OP must appear everywhere after some time (the conceptual
“timestamp” requirement) = “all” locations must locally
commit op before server acknowledges op as committed

* Implication: Linearizability and “low” latency mutually exclusive

- e.g., might involve wide-area writes

Implementing Linearizability

W(x,a)
Server 1 e >
\ ': ‘.“.'\ Ack when
V‘.{'.' “'.' &”committed”
oA
I
.
i
ful
Server 2 >
W(x,b)

Algorithm not quite as simple as just copying to other server
before replying with ACK: Recall that all must agree on ordering

 Both see eithera— borb — a, but not mixed
* Both aand b appear everywhere as soon as committed

i Ok, what to do?

= We want consistency and availability
= Two options

1. Master Replica Model
= All operations and ordering happen on a single master
= Replicates to secondary copies
2. Multi-master model
= Read/write anywhere
= Replicas order and replicate content before returning

i Coordination protocols

* Marriage ceremony Do you?
| do.

Do you?
| do.
| now pronounce...

Prepare

Commit

* Theater Ready on the set?
Ready!
Action!

e Contract law Offer
Sighature

Deal / lawsuit

e e @ —

* Two phase commit (2PC)

WRITE
l
— m—— =

READY Replicas
(2
All prepared? COMMIT
Iy
ACK
All ack’d? </ F

ACK

<

What about failures?

= If one or more acceptors fail:

= Still ensure linearizability if |R|+|W|>N+F

« Read and write quoroms of acceptors overlap
in at least one non-failed node

= Leader fails?
= Bye bye ©: system no longer live
= Pick a new leader?

= How do we agree?
= Need to make sure that group is know

Consensus protocol:
i Requirements

N Safety
= One value accepted
= If a server learns a value has been chosen, it has

= Liveness (some timeliness requirements)
= Some proposed value is eventually chosen
=« Each node eventually learns it

= Fault tolerance

« If <= F faults in a window, consensus reached
eventually

= Liveness not guaranteed: if >F no consensus

i Given desired F, what is N?

= Crash faults need 2F+1 processes

= Byzantine faults (malicious) need 3F+1
processes
= i.e., some replicas are trying to

intentionally lie to prevent consensus or
change the value

i Why is agreement hard?

= What if more than one node is leader?
= What if network is partitioned?
= What if leader crashes in middle?

= What if new leader proposes different
values than those committed?

= Network is unpredictable, delays are
unbounded

i Paxos players

= Proposers
= Active: put forth values to be chosen
=« Handle client requests

= Acceptors

= Passive: respond to messages
= Responses are basically votes to reach consensus

= Store chosen value, need to know which
= Each Paxos server can be both

i Strawman solution I

= One node X desighated as acceptor
= Each proposer sends its value to X
= X decides one value and announces it

= Problem?
= Failure of acceptor halts decision
= Breaks fault-tolerance requirement!

i Strawman 11

= Each proposer (leader) proposes to all
acceptors (replicas)
= Acceptor accepts first proposal, rejects rest
= Acks proposer

=« If leader receives acks from majority, picks
that value and sends it to replicas
= Problems?
= Multiple proposals — may not get a majority
= What if leader dies before chosing value?

i Paxos!

= Widely used family of algorithms for
asynchronous consensus

= Due to Leslie Lamport

= Basic approach

= One or more nodes decide to act like a
leader

= Proposes a value, tries to get it accepted
= Announces value if accepted

Paxos has three phases

Phase 1 (Prepare) Phase 2 (Accept) Phase 3 (Decide)

« Node decides to * If leader gets <prep-ok, « |f |eader gets acc-

become leader t, v>from majority ok from majority

— If v==null, leader
picks v,,. Elsev =v.

~Sendsi<prepare, - Send <accept, t,,, V,,>
t,,> to all nodes to all nodes * If leader fails to

get accept-ok

- Send <decide, va>

- Chooses t, >,
to all nodes

* Acceptor upon * If leader fails to get : SEe
receiving <prep, t> Majority, delay, restart rom majority
— Delay and restart
If t < tmax

* Upon <accept, t, v>

reply <prep-reject> T

Else reply with <accept-reject>
tmax =t Else
reply <prep-ok, ta, va> ta=t;va=v, tmax=t

reply with <accept-ok>

Example

tmax=NO0:0 tmax=N1:0 tmax=N2:0
ta=va=null ta =va =null ta =va=null
tmax= N1:1 ok, ta= va=null tmax = N1:1
ta =null ok, ta=va=null ta=null
va = null va = null
Accept, N1:1, vall
/ Accept, N1:1, vall
tmax = N1:1 tmax=N1:1
ta = N1:1 \k) ok ta=N1:1
va = vall va = vall
Decide, vall
/ Decide, vall
Node O Node 1 Node 2

i Paxos Properties

= Paxos is guaranteed safe.

= Consensus is a : once
reached it is never violated; the agreed
value is not changed.

i Paxos Properties

= Paxos is not guaranteed live.

=« Consensus is reached if “a large enough
subnetwork...is non-faulty for a long
enough time.”

« Otherwise Paxos might never terminate.

i Combining Paxos and 2pc

= Use paxos for view-change

« If anybody notices current master or one or more replicas
unavailable

= Propose view change to paxos to establish new group
=« Forms the new group for 2pc

= Use 2PC for actual data
=« Writes go to master for 2pc
= Reads from any replica or master

= No liveness if majority of nodes from previous view
unreachable

= What if a node comes back/joins?

i Example system

= Apache zookeeper

= Used by a large number of Internet
scale projects
= Locking/barriers
= Leader election
= Consistency

