
Implementing Consistency --
Paxos

Some slides from Michael Freedman

CAP Conjecture
n System can have two of:

n C: Strong consistency
n A: Availability
n P: Tolerance to network partition

n 2PC: CA
n Consensus (Paxos/Raft): CP
n Eventual consistency: AP
n ACID/BASE

What do clients see?

n Distributed stores use replication
n Fault tolerance and scalability
n Does replication necessitate inconsistency?

n Harder to program, confusing for clients

Problem
n How to reach consensus/data

consistency in distributed system that
can tolerate non-malicious failures?

n We saw some consistency models –
how to implement them?

Another perspective
n Lock is the easiest way to manage

concurrency
n Mutex and semaphore.
n Read and write locks.

n In distributed system:
n No shared state
n Failures
n What can we do?

Recall, consistency models

Implementing Linearizability

Implementing Linearizability

Ok, what to do?

n We want consistency and availability
n Two options
1. Master Replica Model

n All operations and ordering happen on a single master
n Replicates to secondary copies

2. Multi-master model
n Read/write anywhere
n Replicas order and replicate content before returning

Coordination protocols

Two phase commit (2PC)

What about failures?

n If one or more acceptors fail:
n Still ensure linearizability if |R|+|W|>N+F

n Read and write quoroms of acceptors overlap
in at least one non-failed node

n Leader fails?
n Bye bye J: system no longer live

n Pick a new leader?
n How do we agree?
n Need to make sure that group is know

Consensus protocol:
Requirements
n Safety

n One value accepted
n If a server learns a value has been chosen, it has

n Liveness (some timeliness requirements)
n Some proposed value is eventually chosen
n Each node eventually learns it

n Fault tolerance
n If <= F faults in a window, consensus reached

eventually
n Liveness not guaranteed: if >F no consensus

Given desired F, what is N?
n Crash faults need 2F+1 processes
n Byzantine faults (malicious) need 3F+1

processes
n i.e., some replicas are trying to

intentionally lie to prevent consensus or
change the value

Why is agreement hard?
n What if more than one node is leader?
n What if network is partitioned?
n What if leader crashes in middle?
n What if new leader proposes different

values than those committed?
n Network is unpredictable, delays are

unbounded

Paxos players
n Proposers

n Active: put forth values to be chosen
n Handle client requests

n Acceptors
n Passive: respond to messages

n Responses are basically votes to reach consensus
n Store chosen value, need to know which

n Each Paxos server can be both

Strawman solution I
n One node X designated as acceptor

n Each proposer sends its value to X
n X decides one value and announces it
n Problem?

n Failure of acceptor halts decision
n Breaks fault-tolerance requirement!

Strawman II
n Each proposer (leader) proposes to all

acceptors (replicas)
n Acceptor accepts first proposal, rejects rest
n Acks proposer
n If leader receives acks from majority, picks

that value and sends it to replicas
n Problems?

n Multiple proposals – may not get a majority
n What if leader dies before chosing value?

Paxos!
n Widely used family of algorithms for

asynchronous consensus
n Due to Leslie Lamport
n Basic approach

n One or more nodes decide to act like a
leader

n Proposes a value, tries to get it accepted
n Announces value if accepted

Paxos has three phases

Example

Paxos Properties
n Paxos is guaranteed safe.

n Consensus is a stable property: once
reached it is never violated; the agreed
value is not changed.

Paxos Properties
n Paxos is not guaranteed live.

n Consensus is reached if “a large enough
subnetwork...is non-faulty for a long
enough time.”

n Otherwise Paxos might never terminate.

Combining Paxos and 2pc
n Use paxos for view-change

n If anybody notices current master or one or more replicas
unavailable

n Propose view change to paxos to establish new group
n Forms the new group for 2pc

n Use 2PC for actual data
n Writes go to master for 2pc
n Reads from any replica or master

n No liveness if majority of nodes from previous view
unreachable

n What if a node comes back/joins?

Example system
n Apache zookeeper
n Used by a large number of Internet

scale projects
n Locking/barriers
n Leader election
n Consistency
n …

