
Distributed Systems essentials: 
Consistency models and 
Consensus

Some slides from Michael Freedman and 
others
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Replication 
q Motivation

Ø Performance Enhancement
Ø Enhanced availability
Ø Fault tolerance
Ø Scalability

§ tradeoff between benefits of replication and work required to keep 
replicas consistent

q Requirements
Ø Memory Consistency (*not* Consistency in ACID)

§ Depends upon application
§ Requests for different replicas of the same logical data item should 

not obtain different results
Ø Replica transparency desirable for most applications
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Consistency Models

n Consistency Model is a contract between processes and a 
data store
n if processes follow certain rules, then store will work “correctly”

n Needed for understanding how concurrent reads and 
writes behave with respect to shared data

n Relevant for shared memory multiprocessors 
n cache coherence algorithms; memory consistency models

n Shared databases, files
n independent operations
n transactions



q Consistency model:
Ø A constraint on the system state observable by 

applications
q Examples:

Ø Local/disk memory : 

Ø Database:

What is consistency?

read x (should be 5)write x=5

time

x:=x+1; y:=y-1 assert(x+y==const)

time

Single object consistency, also 
called “coherence”

Consistency across >1 objects



Consistency challenges

n Consistency is hard in (distributed) systems:
n Data replication (caching)
n Concurrency
n Failures

n No right or wrong consistency models
n Tradeoff between ease of programmability and efficiency



Example application program

q Is this program correct?

x=1
If y==0

critical section

y=1
If x==0

critical section

CPU 0 CPU 1

Memory system

READ/WRITE READ/WRITE



Example

n CPU0’s instruction stream: W(x)   R(y)
n CPU1’s instruction stream: W(y)   R(x)
n Enumerate all possible inter-leavings:

n W(x)1 R(y)0 W(y)1 R(x)1
n W(x)1 W(y)1 R(y)1 R(x)1
n W(x)1 W(y)1 R(x)1 R(y)1
n ….

n None violates mutual exclusion

x=1
If y==0

critical section

y=1
If x==0

critical section



An example distributed shared memory

q Each node has a local copy of state
q Read from local state
q Send writes to the other node, but do not wait



Consistency challenges: example

W(x)1

W(y)1

x=1
If y==0

critical section

y=1
If x==0

critical section



Does this work?

R(y)0

W(x)1 W(y)1

R(x)0

x=1
If y==0

critical section

y=1
If x==0

critical section



What went wrong?

W(x)1 W(y)1

CPU0 sees: 
W(x)1
R(y)0

CPU1 sees:
W(y)1
R(x)0

R(y)0 R(x)0





Linearizability example
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Sequential Consistency - 1

a) A sequentially consistent data store.
b) A data store that is not sequentially consistent.

Sequential consistency: the result of any execution is the same as if the read and 
write operations by all processes were executed in some sequential order and the 
operations of each individual process appear in this sequence in the order specified 
by its program [Lamport, 1979].
Note: Any valid interleaving is legal but all processes must see the same interleaving.

P3 and P4 disagree 
on the order of the writes
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Sequential Consistency - 2
Process P1 Process P2 Process P3

x = 1;
print ( y, z);

y = 1;
print (x, z);

z = 1;
print (x, y);

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;
print (x, y);

Prints:  001011

(a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;
print (x, y);

Prints: 101011

(b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;
print (y, z);

Prints: 010111

(c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);
print (x, y);

Prints: 111111

(d)

(a)-(d) are all legal interleavings.



Linearizability vs. Sequential 
Consistency
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Causal+ consistency
n Partial order: only causally related ops seen 

the same order everywhere
n + means replicas eventually converge
n Concurrent ops may be ordered differently

n Pro: better performance/concurrency
n Cons: Need to reason about concurrency



Causal consistency



In a nutshell

n Strict consistency: total order, real-time guarantees over transactions

n Linearizability: total order, real-time guarantees over operations

n Sequential consistency: total order + program order

n Causal+ consistency: Causally ordered operations (+ refers to eventual 
agreement)

n Eventual consistency: we eventually agree
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CAP theorem
n Consistency, Availability, Partition resilient

n Can only have two of three
n Proposed by Brewer (2000), and proved/formalized by 

Gilbert and Lynch (2002)
n General/intuitive but not precise

n Brewer in 2012: “Misleading because it tended to 
oversimplify the tension between the properties” 
https://www.infoq.com/articles/cap-twelve-years-later-how-
the-rules-have-changed

n Still CAP was influential
n BASE vs. ACID, NoSQL, …
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https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed


CONSENSUS INTRO



What do clients see?

n Distributed stores use replication
n Fault tolerance and scalability
n Does replication necessitate inconsistency?  

n Harder to program, confusing for clients



Problem
n How to reach consensus/data 

consistency in distributed system that 
can tolerate non-malicious failures?

n We saw some consistency models –
how to implement them?



Another perspective
n Lock is the easiest way to manage 

concurrency
n Mutex and semaphore.
n Read and write locks.

n In distributed system:
n No master for issuing locks.
n Failures.


