
LFS, NFS

Log-Structured File System
Radically different file system design
Technology motivations:

CPUs outpacing disks: I/O is bottleneck
Most disk traffic writes due to caching

Problems with (then) current file systems:
Lots of little writes
Synchronous: wait for disk in too many places – makes it hard to win
much from RAIDs, too little concurrency
5 seeks to create a new file: (rough order): i-node create, data write,
directory entry, i-node finalize, directory i-node (not to mention bitmap
update)

LFS Basic Idea
Log all data and metadata with efficient, large, sequential writes

Do not update blocks in place – just write new versions in the log

Treat the log as the truth, but keep an index on its contents

Not necessarily good for reads, but trends help
Rely on a large memory to provide fast access through caching

Data layout on disk has “temporal locality” (good for writing), rather
than “logical locality” (good for reading)

Why is this a better? Because caching helps reads but not writes!

LFS vs. UFS

4

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

inode

directory

data

inode map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

Devil is in the details
Two potential problems:

Log retrieval on cache misses – how do we find the data?

Wrap-around: what happens when end of disk is reached?
No longer any big, empty runs available
How to prevent fragmentation?

i-node map

A map keeping track of the location of i-nodes
Anytime an i-node is written to disk, the imap is updated

But is that any better? In a second
Most of the time the imap is in memory, so access is fast
Updated imap is saved as part of the log!

but how do we find it!

Final piece to the solution

Checkpoint region is written to point to the location of the
imap

Also serves as an indicator of a stable point in the file system
for crash recovery

So, to read a file from LFS:
Read the CR, use it to read and cache the imap
After that, it is identical to FFS
Are reads fast?

What about directories?

When a file is updated, its inode changes (new copy)
We need to update the directory inode (also creating a copy)
We need to update its parent directory

Ugh….what to do?
Inode map helps with that too – just keep track of inode number
and resolve it through inode map

LFS Disk Wrap-Around/Garbage collection

Compact live info to open up large runs of free space
Problem: long-lived information gets copied over-and-over

Thread log through free spaces
Problem: disk fragments, causing I/O to become inefficient again

Solution: segmented log
Divide disk into large, fixed-size segments
Do compaction within a segment; thread between segments
When writing, use only clean segments (i.e. no live data)
Occasionally clean segments
Try to collect long-lived info into segments that never need to be cleaned
Note there is not free list or bit map (as in FFS), only a list of clean segments

Related: TRIM command for SSDs

LFS Segment Cleaning

Which segments to clean?
Keep estimate of free space in each segment to help find segments
with lowest utilization
Always start by looking for segment with utilization=0, since those are
trivial to clean…
If utilization of segments being cleaned is U:

write cost = (total bytes read & written)/(new data written) = 2/(1-U) (unless
U is 0)
write cost increases as U increases: U = .9 => cost = 20!
Need a cost of less than 4 to 10; => U of less than .75 to .45

Evaluation Results

12

Is this a good paper?

What were the authors’ goals?
What about the evaluation/metrics?
Did they convince you that this was a good
system/approach?
Does the system/approach meet the “Test of
Time” challenge?

WAFL commercial file system based on LFS
Most SSD file systems are log structured

How would you review this paper today?

DESIGN AND IMPLEMENTATION OF THE
SUN NETWORK FILESYSTEM
R. Sandberg, D. Goldberg
S. Kleinman, D. Walsh, R. Lyon
Sun Microsystems

What is NFS?

First commercially successful network file system:
Developed by Sun Microsystems for their diskless workstations
Designed for robustness and “adequate performance”
Sun published all protocol specifications
Many many implementations

Overview and Objectives

Fast and efficient crash recovery
Why do crashes occur?

To accomplish this:
NFS is stateless – key design decision

All client requests must be self-contained
The virtual filesystem interface

VFS operations
VNODE operations

Additional objectives
Machine and Operating System Independence

Could be implemented on low-end machines of the mid-80’s

Transparent Access
Remote files should be accessed in exactly the same way as local files

UNIX semantics should be maintained on client
Best way to achieve transparent access

“Reasonable” performance
Robustness and preservation of UNIX semantics were much more important

Example

What if the client simply passes the open request to the server?
Server has state
Crash causes big problems

Three important parts
The protocol
The server side
The client side

The protocol (I)
Uses the Sun RPC mechanism and Sun eXternal Data Representation
(XDR) standard
Defined as a set of remote procedures
Protocol is stateless

Each procedure call contains all the information necessary to complete the call
Server maintains no “between call” information

Advantages of statelessness
Crash recovery is very easy:

When a server crashes, client just resends request until it gets an answer
from the rebooted server
Client cannot tell difference between a server that has crashed and recovered
and a slow server

Client can always repeat any request

NFS as a “Stateless” Service
A classical NFS server maintains no in-memory hard state.

The only hard state is the stable file system image on disk.
no record of clients or open files
no implicit arguments to requests

E.g., no server-maintained file offsets: read and write requests must explicitly transmit
the byte offset for each operation.

no write-back caching on the server
no record of recently processed requests
etc., etc....

Statelessness makes failure recovery simple and efficient.

Consequences of statelessness
Read and writes must specify their start offset

Server does not keep track of current position in the file
User still use conventional UNIX reads and writes

Open system call translates into several
lookup calls to server
No NFS equivalent to UNIX close system call

Important pieces of protocol

From protocol to distributed file system
Client side translates user requests to protocol messages to implement the
request remotely
Example:

The lookup call (I)
Returns a file handle instead of a file descriptor

File handle specifies unique location of file
Volume identifier, inode number and generation number

lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory dirfh
Fails if client has no right to access directory dirfh

Server side (I)
Server implements a write-through policy

Required by statelessness
Any blocks modified by a write request (including i-nodes and
indirect blocks) must be written back to disk before the call
completes

Server side (II)
File handle consists of

Filesystem id identifying disk partition
I-node number identifying file within partition
Generation number changed every time
i-node is reused to store a new file

Server will store
Filesystem id in filesystem superblock
I-node generation number in i-node

Client side (I)
Provides transparent interface to NFS
Mapping between remote file names and remote file addresses is done a
server boot time through remote mount

Extension of UNIX mounts
Specified in a mount table
Makes a remote subtree appear part of a local subtree

Remote mount

Client tree

bin

usr

/
Server subtree

rmount

After rmount, root of server subtree
can be accessed as /usr

Client side (II)
Provides transparent access to

NFS
Other file systems (including UNIX FFS)

New virtual filesystem interface supports
VFS calls, which operate on whole file system
VNODE calls, which operate on individual files

Treats all files in the same fashion

Client side (III)

UNIX system calls

VNODE/VFS

Other FS NFS UNIX FS

User interface is
unchanged

RPC/XDR disk

LAN

Common interface

More examples

