
Filesystems (II)
FFS, LFS

Zooming in on i-node
i-node: structure for per-file
metadata (unique per file)

contains: ownership, permissions,
timestamps, about 10 data-block
pointers
i-nodes form an array, indexed by
“i-number” – so each i-node has a
unique i-number
Array is explicit for FFS, implicit for
LFS (its i-node map is cache of
i-nodes indexed by i-number)

Indirect blocks:
i-node only holds a small number of data block pointers (direct pointers)
For larger files, i-node points to an indirect block containing
1024 4-byte entries in a 4K block
Each indirect block entry points to a data block
Can have multiple levels of indirect blocks for even larger files

Unix Inodes and Path Search

Unix Inodes are not directories
Inodes describe where on disk the blocks for a file are placed

Directories are files, so inodes also describe where the blocks for
directories are placed on the disk

Directory entries map file names to inodes
To open “/one”, use Master Block to find inode for “/” on disk
Open “/”, look for entry for “one”
This entry gives the disk block number for the inode for “one”
Read the inode for “one” into memory
The inode says where first data block is on disk
Read that block into memory to access the data in the file

This is why we have open in addition to read and write

3

Every file/directory operation typically involves many I/O operations!

Caching and read ahead

Unix file system implemented two additional
optimizations
Caching: keep a buffer cache in memory

Locality = avoid cost of expensive I/O
Even a relatively small cache makes a difference

Read ahead: read the whole file (into cache)
when it is opened

Many files accessed sequentially
Limited by cache size

4

A naïve implementation

5

What’s wrong with original unix FS?
Original UNIX FS was simple and elegant, but slow
Could only achieve about 20 KB/sec/arm; ~2% of 1982 disk
bandwidth

Problems:
Blocks too small

512 bytes (matched sector size)
Consecutive blocks of files not close together

Yields random placement for mature file systems
i-nodes far from data

All i-nodes at the beginning of the disk, all data after that
i-nodes of directory not close together
no read-ahead

Useful when sequentially reading large sections of a file

FFS Changes -- Locality is
important

Aspects of new file system:
4096 or 8192 byte block size (why not larger?)
large blocks and small fragments
disk divided into cylinder groups
each contains superblock, i-nodes, bitmap of free blocks, usage
summary info
Note that i-nodes are now spread across the disk:

Keep i-node near file, i-nodes of a directory together (shared fate)
Cylinder groups ~ 16 cylinders, or 7.5 MB
Cylinder headers spread around so not all on one platter

FFS Locality Techniques
Goals

Keep directory within a cylinder group, spread out different
directories
Allocate runs of blocks within a cylinder group, every once in a
while switch to a new cylinder group (jump at 1MB)

Layout policy: global and local
Global policy allocates files & directories to cylinder groups –
picks “optimal” next block for block allocation
Local allocation routines handle specific block requests – select
from a sequence of alternative if need to

FFS Results
20-40% of disk bandwidth for large reads/writes

10-20x original UNIX speeds

Size: 3800 lines of code vs. 2700 in old system

10% of total disk space unusable (except at 50% performance price)

Could have done more; later versions do

Watershed moment for OS designers– File system matters

FFS Summary
3 key features:

Parameterize FS implementation for the hardware it’s running on
Measurement-driven design decisions
Locality “wins”

Major flaws:
Measurements derived from a single installation
Ignored technology trends

A lesson for the future: don’t ignore underlying hardware
characteristics

Contrasting research approaches: improve what you’ve got vs.
design something new

File operations still expensive
How many operations (seeks) to create a new file?

New file, needs a new inode
But at least a block of data too
Check and update the inode and data bitmap (eventually have to
be written to disk)
Not done yet – need to add it to the directory (update the
directory inode and the directory data block – may need to split if
its full)…
Whew!! How does all of this even work?

So what is the advantage?
Not removing any operations
Seeks are just shorter…

Crash consistency/Journaling
Problem:

Recall: file ops can cause multiple disk ops
Example, add a block to a file

With cache, and block reordering what happens on a
crash?

Any subset of the ops may have been committed to disk
Disk state is inconsistent

File checkers where a critical part of the OS

Solution: Journaling
Log intended ops in a journal – commit them
Once committed, start disk ops
Once committed, mark log as done
How does this solve the problem?

12

Log-Structured/Journaling File System

Radically different file system design
Technology motivations:

CPUs outpacing disks: I/O becoming more-and-more of a
bottleneck
Large RAM: file caches work well, making most disk traffic writes

Problems with (then) current file systems:
Lots of little writes
Synchronous: wait for disk in too many places – makes it hard to
win much from RAIDs, too little concurrency
5 seeks to create a new file: (rough order)
1. file i-node (create)
2. file data
3. directory entry
4. file i-node (finalize)
5. directory i-node (modification time)
6. (not to mention bitmap updates)

LFS Basic Idea

Log all data and metadata with efficient, large, sequential writes
Do not update blocks in place – just write new versions in the log

Treat the log as the truth, but keep an index on its contents

Not necessarily good for reads, but trends help
Rely on a large memory to provide fast access through caching

Data layout on disk has “temporal locality” (good for writing), rather
than “logical locality” (good for reading)

Why is this a better? Because caching helps reads but not writes!

Basic idea

We buffer all updates, and write them together in one
big sequential write

Good for the disk
Example above, writes to two different files were written
together (along with the new version of i-node) in one write
How much should we buffer?

What happens if too much? If too little?

But how do we find a file??
All problems in CS solved with another level of indirection J

Devil is in the details
Two potential problems:

Log retrieval on cache misses – how do we find
the data?

Wrap-around: what happens when end of disk is
reached?

No longer any big, empty runs available
How to prevent fragmentation?

LFS vs. UFS

17

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

inode

directory

data

inode map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

i-node map

A map keeping track of the location of i-nodes
Anytime an i-node is written to disk, the imap is
updated

But is that any better? In a second
Most of the time the imap is in memory, so access is
fast
Updated imap is saved as part of the log!

but how do we find it!

Final piece to the solution

Checkpoint region is written to point to the location of the
imap

Also serves as an indicator of a stable point in the file system
for crash recovery

So, to read a file from LFS:
Read the CR, use it to read and cache the imap
After that, it is identical to FFS
Are reads fast?

What about directories?

When a file is updated, its inode changes (new copy)
We need to update the directory inode (also creating a copy)
We need to update its parent directory

Ugh….what to do?
Inode map helps with that too – just keep track of inode number
and resolve it through inode map

LFS Disk Wrap-Around/Garbage collection

Compact live info to open up large runs of free space
Problem: long-lived information gets copied over-and-over

Thread log through free spaces
Problem: disk fragments, causing I/O to become inefficient again

Solution: segmented log
Divide disk into large, fixed-size segments
Do compaction within a segment; thread between segments
When writing, use only clean segments (i.e. no live data)
Occasionally clean segments: read in several, write out live data in
compacted form, leaving some fragments free
Try to collect long-lived info into segments that never need to be cleaned
Note there is not free list or bit map (as in FFS), only a list of clean
segments

LFS Segment Cleaning

Which segments to clean?
Keep estimate of free space in each segment to help find segments with
lowest utilization
Always start by looking for segment with utilization=0, since those are
trivial to clean…
If utilization of segments being cleaned is U:

write cost = (total bytes read & written)/(new data written) = 2/(1-U) (unless
U is 0)
write cost increases as U increases: U = .9 => cost = 20!
Need a cost of less than 4 to 10; => U of less than .75 to .45

How to clean a segment?
Segment summary block contains map of the segment
Must list every i-node and file block
For file blocks you need {i-number, block #}
Through i-map you check if this block is still being used for the (i-
number, block #)

Evaluation Results

23

Is this a good paper?

What were the authors’ goals?
What about the evaluation/metrics?
Did they convince you that this was a good
system/approach?
Does the system/approach meet the “Test of
Time” challenge?
How would you review this paper today?

