Advanced Operating Systems
(CS 202)

Read Copy Update (RCU)

(some slides from Dan Porter)



Linux Synch. Primitives

Technique Description Scope
Duplicate a data structure All CPUs
among CPUs

Atomic operation | Atomic read-modify-write All
instruction

Memory barrier | Avoid instruction re-ordering Local CPU

Spin lock Lock with busy wait All

Semaphore Lock with blocking wait (sleep) | All
Lock based on access counter All

Local interrupt Forbid interrupt on a single CPU | Local
disabling

Local softirq Forbid deferrable functionona | Local
disabling single CPU
Lock-free access to shared data | All
through pointers

Also Read-write locks




Why are we reading this paper?

* Example of a synchronization primitive that is:
- Lock free (mostly/for reads)
- Tuned to a common access pattern
- Making the common case fast

®* What is this common pattern?
- A lot of reads

- Writes are rare
 Prioritize writes

- Stale copies are short lived - time heals all wounds

- Ok to read a slightly stale copy
« But that can be fixed too



Readers/Writers (review)

/[ number of readers

int readcount = 0;

/[ mutual exclusion to readcount
Semaphore mutex = 1;

/I exclusive writer or reader
Semaphore w_or r =1;

writer {
wait(w_or _r); // lock out readers
Write,
signal(w_or _r); // up for grabs

reader {
wait(mutex); I/ lock readcount

readcount += 1; // one more reader
if (readcount == 1)

wait(w_or _r); // synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex);  // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or _r); // up for grabs
signal(mutex); // unlock readcount

Naive implementation — can be done using just atomic instructions



Lock free data structures

* Do not require locks
® Good if contention is rare
* But difficult to create and error prone

® RCU is a mixture

- Concurrent changes to pointers a
challenge for lock-free

- RCU serializes writers using locks
- Win if most of our accesses are reads



Example of lock free
synchronization

int retry = 0;
while (true)

{

// DO NOT worry about writer access for now - this is for demonstrating atomic operation only

int prev_readers = _readers; // current count
int new_readers = prev_reader + 1; // new count - note this is using the local value prev_readers
// in case _readers has changed in between
if (_readers.compare_exchange_weak(prev_readers, new_readers))
{ ° .
// we've won the race Compare _readers with prev_readers

break; if equal swap with new_readers
Return 1 if swap successful, O if not
// we've failed, retry All Atomic

retry++;
if (retry > RETRY_COUNT)
{

retry = 0;
std::this_thread::yield();

Credit: https://lyizhang82.dev/lock-free-rw-lock



Concurrent access of linked
list (without synchronization)

Figure 3: Concurrent deletion of B and C; second is undone.

Lock free linked lists using compare and swap, J. Valois, ACM PODC, 1995



Figure 8: Inserting a new cell and auxiliary node.

TRYINSERT(c : cursor,q : cell”, a : aux. node”)
returns boolean

WRITE(q".next, a)
WRITE(a".next, ¢".target)

r < CSW(c .pre_aux, ¢".target, q)
return r

Delete is more complicated, but doable; can do other data structures as well



Traditional OS locking designs

e poor concurrency
- Especially if mostly reads

® Fail to take advantage of event-driven nature of
operating systems

® Locks have acquire and release cost
- Use atomic operations which are expensive
- Can dominate cost for short critical regions
- Locks become the bottleneck 9



Why RCU?
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Figure 8: The overhead of entering and completing an
RCU critical section, and acquiring and releasing a read-
write lock.
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Race Between Teardown and Use of
Service

Can fix with
: locking, but we
Module have to use the
lock every
operation

Client 1

Figure 1: Race Between Teardown and Use of Ser-
vice




Read-Copy Update Handling Race

Client 2

Module Cannot be
context switched
inside RCU

Client 1

quiescent state

Figure 2: Read-Copy Update Handling Race
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Read-copy update works

Wial=1g

* divide an update into two phases

* proceed on stale data for common-
case operations (e.g. continuing  to
handle operations by a module being
unloaded)

® destructive updates are very
infrequent.
®* Often used to update linked lists

- Which are used all over kernels
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Typical RCU update sequence

Replace pointers to a data structure with
poinfers to a new version

Is this replacement atomic?

Wait for all previous reader to complete
their RCU read-side critical sections.

at this point, there cannot be any readers
who hold reference to the old data structure,
so it now may safely be reclaimed.
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Delete implementation

void delete(struct el *p)

{
spin lock(&list lock);
p->next->prev = p->prev;
p->prev->next = p->next;
spin unlock(&list lock);
call rcu(&p->my rcu head,
my free, p);
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Figure 4: Read-Copy Dequeue From Doubly-
[inked List

Phase 1

Schedule phase 2
after quiescence
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Read-Copy Deletion (delete

Header Updater Reader

Figure 11: List Initial State




the first phase of the update

Header Updater Reader

N\




Read-Copy Deletion

Header Updater tasklet sched Reader
internal lists

When

Figure 13: List After Grace Period
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Implemented through the call_rcu()



Read-Copy Deletion

Header Updater Reader

l

Figure 14: List After Element B Returned to Freel-
1st




Applied to linux route cache
update
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Figure 7: IP Route Cache System Performance
Figure 6: IP Route Cache Speedup Using rcu Using rcu

Specific workload; overall speedup not that high; up to 30% speedup for other kernel functions
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How to detect quiescence?

* Idea of grace periods

- Readers of old information will eventually leave
- Exploit context switches
« Threads do not hold OS locks across context switches

* How do we identify?

- Paper goes into many alternatives and evaluates
them (polling; counters; ...)
- Batching to reduce cost

- Force context switch?

- Expensive and some tasks are not preemptible
24



Read-Copy Update Grace
Period

Minimym Grace Period

CPU 0O
CPU 1
CPU 2

CPU 3

non-preemptible
kernel execution Quiescent state execution

Is it important to detect grace period quickly? 29



Simple Grace-Period
Detection
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Schedule a thread on each CPU to ensure quiescense



Implementations of
Quiescent State

. simply execute onto each CPU in turn.

. use context switch, execution in the idle loop,
execution in user mode, system call entry,
trap from user mode as the quiescent states.

. voluntary context switch as the sole
quiescent state

. tracks beginnings and ends of operations
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Implementation (polling/counter)

* Poll to figure out when safe to delete

® Generation counter for each RCU
region
- Generation updated on write
* Track readers of each generation
- Every read increments generation counter
going in
- And decrements it going out
- Quiescence = counter is zero 30



call _rcu() latency

() latency (sec)
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Figure 10: call_rcu() Latency Under dbench
Load (logscale)
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RCU usage in Linux
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Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.htmi
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RCU as percentage of all
locking In linux

Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.htmi
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RCU Usage

Subsystem | Uses LoC | Uses/KLoC

Type of Usage API Usage ipc 9,094

RCU critical sections virt 10,037
RCU dereference net ' 839,441
RCU synchronization security 73,134
RCU list traversal kernel 224,471
RCU list update block 37,118
RCU assign mm 103,612
Annotation of RCU-protected pointers lib 94,008
Initialization and cleanup fs 1,131,589

RCU lockdep assertion init 3,616
include 642,722

drivers 10,375,284
crypto 74,794

Figure 11: Linux 3.16 RCU usage by RCU API function. arch 2,494,395
tools 144,181

16,257,496

Figure 10: Linux 3.16 RCU usage by subsystem.
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Discussion of paper

* Really challenging paper to read

- Written by OS hackers (good thing!)

- Mixes fundamentals and implementations

- We have to try to step back and identify
them

- Too many ideas/alternatives
« Better just to focus on one or two?

- Back end of the paper is a survey
* What are your thoughts?
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SeglLock

* Another special synchronization
primitive

® Goal is to avoid writer starvation in
reader writer locks

®* Has a lock and a sequence number

- Lock for writers only

- Writer increments sequence number aftfer
acquiring lock and before releasing lock

* Readers do not block
« But can check sequence number 36



