
Advanced Operating Systems
(CS 202)

Read Copy Update (RCU)

(some slides from Dan Porter)

Linux Synch. Primitives
Technique Description Scope
Per-CPU
variables

Duplicate a data structure
among CPUs

All CPUs

Atomic operation Atomic read-modify-write
instruction

All

Memory barrier Avoid instruction re-ordering Local CPU
Spin lock Lock with busy wait All
Semaphore Lock with blocking wait (sleep) All

Seqlocks Lock based on access counter All
Local interrupt
disabling

Forbid interrupt on a single CPU Local

Local softirq
disabling

Forbid deferrable function on a
single CPU

Local

Read-copy-
update (RCU)

Lock-free access to shared data
through pointers

All

Also Read-write locks

Why are we reading this paper?
• Example of a synchronization primitive that is:

– Lock free (mostly/for reads)
– Tuned to a common access pattern
– Making the common case fast

• What is this common pattern?
– A lot of reads
– Writes are rare

• Prioritize writes
– Stale copies are short lived – time heals all wounds
– Ok to read a slightly stale copy

• But that can be fixed too
3

4

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
wait(w_or_r); // lock out readers
Write;
signal(w_or_r); // up for grabs

}

Readers/Writers (review)
reader {

wait(mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r); // synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex); // unlock readcount

}

Naïve implementation – can be done using just atomic instructions

Lock free data structures

• Do not require locks
• Good if contention is rare
• But difficult to create and error prone
• RCU is a mixture

– Concurrent changes to pointers a
challenge for lock-free

– RCU serializes writers using locks
– Win if most of our accesses are reads

5

Example of lock free
synchronization

6
Credit: https://yizhang82.dev/lock-free-rw-lock

• Compare _readers with prev_readers• if equal swap with new_readers• Return 1 if swap successful, 0 if not• All Atomic

Concurrent access of linked
list (without synchronization)

Lock free linked lists using compare and swap, J. Valois, ACM PODC, 1995

8Delete is more complicated, but doable; can do other data structures as well

9

Traditional OS locking designs
• poor concurrency

– Especially if mostly reads

• Fail to take advantage of event-driven nature of
operating systems

• Locks have acquire and release cost
– Use atomic operations which are expensive
– Can dominate cost for short critical regions
– Locks become the bottleneck

Why RCU?

10

11

Race Between Teardown and Use of
Service

Can fix with
locking, but we
have to use the
lock every
operation

12

Read-Copy Update Handling Race

quiescent state

When

Cannot be
context switched
inside RCU

13

Read-copy update works
when

• divide an update into two phases
• proceed on stale data for common-

case operations (e.g. continuing to
handle operations by a module being
unloaded)
• destructive updates are very

infrequent.
• Often used to update linked lists

– Which are used all over kernels

14

Typical RCU update sequence
• Replace pointers to a data structure with

pointers to a new version
– Is this replacement atomic?

• Wait for all previous reader to complete
their RCU read-side critical sections.

• at this point, there cannot be any readers
who hold reference to the old data structure,
so it now may safely be reclaimed.

Delete implementation

15

Phase 1

Schedule phase 2
after quiescence

16

Read-Copy Deletion (delete
B)

17

the first phase of the update

18

18

Read-Copy Deletion

When

Implemented through the call_rcu()

19

Read-Copy Deletion

Applied to linux route cache
update

20

Specific workload; overall speedup not that high; up to 30% speedup for other kernel functions

How to detect quiescence?

• Idea of grace periods
– Readers of old information will eventually leave
– Exploit context switches

• Threads do not hold OS locks across context switches

• How do we identify?
– Paper goes into many alternatives and evaluates

them (polling; counters; …)
– Batching to reduce cost
– Force context switch?

• Expensive and some tasks are not preemptible
24

25

Read-Copy Update Grace
Period

non-preemptible
kernel execution Quiescent state execution

Is it important to detect grace period quickly?

26

Simple Grace-Period
Detection

Schedule a thread on each CPU to ensure quiescense

29

Implementations of
Quiescent State

1. simply execute onto each CPU in turn.

2. use context switch, execution in the idle loop,
execution in user mode, system call entry,
trap from user mode as the quiescent states.

3. voluntary context switch as the sole
quiescent state

4. tracks beginnings and ends of operations

Implementation (polling/counter)

• Poll to figure out when safe to delete
• Generation counter for each RCU

region
– Generation updated on write

• Track readers of each generation
– Every read increments generation counter

going in
• And decrements it going out

– Quiescence = counter is zero 30

call_rcu() latency

31

RCU usage in Linux

32
Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

RCU as percentage of all
locking in linux

33
Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

RCU Usage

34

Discussion of paper

• Really challenging paper to read
– Written by OS hackers (good thing!)
– Mixes fundamentals and implementations

• We have to try to step back and identify
them

– Too many ideas/alternatives
• Better just to focus on one or two?

– Back end of the paper is a survey
• What are your thoughts?

35

SeqLock
• Another special synchronization

primitive
• Goal is to avoid writer starvation in

reader writer locks
• Has a lock and a sequence number

– Lock for writers only
– Writer increments sequence number after

acquiring lock and before releasing lock
• Readers do not block

• But can check sequence number 36

