Advanced Operating Systems
(CS 202)

Read Copy Update (RCU)

(some slides from Dan Porter)

Linux Synch. Primitives

Technique Description Scope
Duplicate a data structure All CPUs
among CPUs

Atomic operation | Atomic read-modify-write All
instruction

Memory barrier | Avoid instruction re-ordering Local CPU

Spin lock Lock with busy wait All

Semaphore Lock with blocking wait (sleep) | All
Lock based on access counter All

Local interrupt Forbid interrupt on a single CPU | Local
disabling

Local softirq Forbid deferrable functionona | Local
disabling single CPU
Lock-free access to shared data | All
through pointers

Also Read-write locks

Why are we reading this paper?

* Example of a synchronization primitive that is:
- Lock free (mostly/for reads)
- Tuned to a common access pattern
- Making the common case fast

®* What is this common pattern?
- A lot of reads

- Writes are rare
 Prioritize writes

- Stale copies are short lived - time heals all wounds

- Ok to read a slightly stale copy
« But that can be fixed too

Readers/Writers (review)

/[number of readers

int readcount = 0;

/[mutual exclusion to readcount
Semaphore mutex = 1;

/I exclusive writer or reader
Semaphore w_or r =1;

writer {
wait(w_or _r); // lock out readers
Write,
signal(w_or _r); // up for grabs

reader {
wait(mutex); I/ lock readcount

readcount += 1; // one more reader
if (readcount == 1)

wait(w_or _r); // synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or _r); // up for grabs
signal(mutex); // unlock readcount

Naive implementation — can be done using just atomic instructions

Lock free data structures

* Do not require locks
® Good if contention is rare
* But difficult to create and error prone

® RCU is a mixture

- Concurrent changes to pointers a
challenge for lock-free

- RCU serializes writers using locks
- Win if most of our accesses are reads

Example of lock free
synchronization

int retry = 0;
while (true)

{

// DO NOT worry about writer access for now - this is for demonstrating atomic operation only

int prev_readers = _readers; // current count
int new_readers = prev_reader + 1; // new count - note this is using the local value prev_readers
// in case _readers has changed in between
if (_readers.compare_exchange_weak(prev_readers, new_readers))
{ ° .
// we've won the race Compare _readers with prev_readers

break; if equal swap with new_readers
Return 1 if swap successful, O if not
// we've failed, retry All Atomic

retry++;
if (retry > RETRY_COUNT)
{

retry = 0;
std::this_thread::yield();

Credit: https://lyizhang82.dev/lock-free-rw-lock

Concurrent access of linked
list (without synchronization)

Figure 3: Concurrent deletion of B and C; second is undone.

Lock free linked lists using compare and swap, J. Valois, ACM PODC, 1995

Figure 8: Inserting a new cell and auxiliary node.

TRYINSERT(c : cursor,q : cell”, a : aux. node”)
returns boolean

WRITE(q".next, a)
WRITE(a".next, ¢".target)

r < CSW(c .pre_aux, ¢".target, q)
return r

Delete is more complicated, but doable; can do other data structures as well

Traditional OS locking designs

e poor concurrency
- Especially if mostly reads

® Fail to take advantage of event-driven nature of
operating systems

® Locks have acquire and release cost
- Use atomic operations which are expensive
- Can dominate cost for short critical regions
- Locks become the bottleneck 9

Why RCU?

2]
©
o
o
O
[0}
[}
o
=
©
<
©
(9]
[}
=
[
()
>
o}

0 2 4 6 8 10 12 14 16
Number of CPUs

Figure 8: The overhead of entering and completing an
RCU critical section, and acquiring and releasing a read-
write lock.

10

Race Between Teardown and Use of
Service

Can fix with
: locking, but we
Module have to use the
lock every
operation

Client 1

Figure 1: Race Between Teardown and Use of Ser-
vice

Read-Copy Update Handling Race

Client 2

Module Cannot be
context switched
inside RCU

Client 1

quiescent state

Figure 2: Read-Copy Update Handling Race

12

Read-copy update works

Wial=1g

* divide an update into two phases

* proceed on stale data for common-
case operations (e.g. continuing to
handle operations by a module being
unloaded)

® destructive updates are very
infrequent.
®* Often used to update linked lists

- Which are used all over kernels

13

Typical RCU update sequence

Replace pointers to a data structure with
poinfers to a new version

Is this replacement atomic?

Wait for all previous reader to complete
their RCU read-side critical sections.

at this point, there cannot be any readers
who hold reference to the old data structure,
so it now may safely be reclaimed.

14

Delete implementation

void delete(struct el *p)

{
spin lock(&list lock);
p->next->prev = p->prev;
p->prev->next = p->next;
spin unlock(&list lock);
call rcu(&p->my rcu head,
my free, p);

1
2
3
=
5
6
¥
8
9

-~

Figure 4: Read-Copy Dequeue From Doubly-
[inked List

Phase 1

Schedule phase 2
after quiescence

15

Read-Copy Deletion (delete

Header Updater Reader

Figure 11: List Initial State

the first phase of the update

Header Updater Reader

N\

Read-Copy Deletion

Header Updater tasklet sched Reader
internal lists

When

Figure 13: List After Grace Period

18
Implemented through the call_rcu()

Read-Copy Deletion

Header Updater Reader

l

Figure 14: List After Element B Returned to Freel-
1st

Applied to linux route cache
update

350000
300000
250000

200000

put_key profile ticks

150000

2
o
=
Q
=
o
P
o
©
c
o
~
Q
e
c
o
e

100000

ip_route_out|

50000
1 2 3 4 5 6 7 8
5 6 7 8 Number of CPUs
Number of CPUs
Figure 7: IP Route Cache System Performance
Figure 6: IP Route Cache Speedup Using rcu Using rcu

Specific workload; overall speedup not that high; up to 30% speedup for other kernel functions

20

How to detect quiescence?

* Idea of grace periods

- Readers of old information will eventually leave
- Exploit context switches
« Threads do not hold OS locks across context switches

* How do we identify?

- Paper goes into many alternatives and evaluates
them (polling; counters; ...)
- Batching to reduce cost

- Force context switch?

- Expensive and some tasks are not preemptible
24

Read-Copy Update Grace
Period

Minimym Grace Period

CPU 0O
CPU 1
CPU 2

CPU 3

non-preemptible
kernel execution Quiescent state execution

Is it important to detect grace period quickly? 29

Simple Grace-Period
Detection

Minimum C11 ace Period Detected
. - .

-IEI-EI

CPU 1

H
I
o

CPU 2

a

e

CPU 3

=

=1

=
i
]

P-
P-
'-

26
Schedule a thread on each CPU to ensure quiescense

Implementations of
Quiescent State

. simply execute onto each CPU in turn.

. use context switch, execution in the idle loop,
execution in user mode, system call entry,
trap from user mode as the quiescent states.

. voluntary context switch as the sole
quiescent state

. tracks beginnings and ends of operations

AL

Implementation (polling/counter)

* Poll to figure out when safe to delete

® Generation counter for each RCU
region
- Generation updated on write
* Track readers of each generation
- Every read increments generation counter
going in
- And decrements it going out
- Quiescence = counter is zero 30

call _rcu() latency

() latency (sec)

3
o
o
o

10 15 20 25 30
Number of dbench clients

Figure 10: call_rcu() Latency Under dbench
Load (logscale)
31

RCU usage in Linux

1x107{63

106000

w
o
7]
=
-
o
=4
[l
=
o=
=4
<
=3
—{
“~
=
=
o
1

Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.htmi

KV

RCU as percentage of all
locking In linux

Source: http://www.rdrop.com/users/paulmck/RCU/linuxusage.htmi

33

RCU Usage

Subsystem | Uses LoC | Uses/KLoC

Type of Usage API Usage ipc 9,094

RCU critical sections virt 10,037
RCU dereference net ' 839,441
RCU synchronization security 73,134
RCU list traversal kernel 224,471
RCU list update block 37,118
RCU assign mm 103,612
Annotation of RCU-protected pointers lib 94,008
Initialization and cleanup fs 1,131,589

RCU lockdep assertion init 3,616
include 642,722

drivers 10,375,284
crypto 74,794

Figure 11: Linux 3.16 RCU usage by RCU API function. arch 2,494,395
tools 144,181

16,257,496

Figure 10: Linux 3.16 RCU usage by subsystem.

34

Discussion of paper

* Really challenging paper to read

- Written by OS hackers (good thing!)

- Mixes fundamentals and implementations

- We have to try to step back and identify
them

- Too many ideas/alternatives
« Better just to focus on one or two?

- Back end of the paper is a survey
* What are your thoughts?

35

SeglLock

* Another special synchronization
primitive

® Goal is to avoid writer starvation in
reader writer locks

®* Has a lock and a sequence number

- Lock for writers only

- Writer increments sequence number aftfer
acquiring lock and before releasing lock

* Readers do not block
« But can check sequence number 36

