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Lets start with an example 
Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; B = A; 

Idea: 
– P1 writes data into A and sets Flag to tell P2 that 

data value can be read from A. 
– P2 waits till Flag is set and then reads data from A.
– What possible values can B have?



More realistic architecture
• Two key assumptions so far:

1. processors do not cache global data
• improving execution efficiency:

– allow caching 
» leads to cache coherence solved as we discussed

2. Instructions are executed in order
• improving execution efficiency:

– allow processors to execute instructions out of order 
subject to data/control dependences
» this can change the semantics of the program!
» Reordering happens for other reasons too
» preventing this requires attention to memory 

consistency model of processor



Recall: uniprocessor execution
• Processors reorder or change operations to 

improve performance
– Registers may eliminate some loads and stores
– Load/store buffers may delay/reorder memory 

accesses
– Lockup free caches; split transactions buses; …

• Constraint on reordering: must respect 
dependences
– But only sequential ones

• Reorderings can be performed either by compiler 
or processor



Permitted memory-op 
reorderings

• Stores to different memory locations can be performed out of 
program order

store v1, data                               store b1, flag
store b1, flag             ßà store v1, data

• Loads from different memory locations can be performed out of 
program order

load flag, r1                                    load data,r2
load data, r2              ßà load flag, r1

• Load and store to different memory locations can be performed out 
of program order



Example cause of hardware 
reordering

Memory systemProcessor

Store buffer

Load bypassing

• Store buffer holds store operations that need to be sent to memory• Loads are higher priority operations than stores since their results are
needed to keep processor busy, so they bypass the store buffer• Load address is checked against addresses in store buffer, so store
buffer satisfies load if there is an address match• Result: load can bypass stores to other addresses



Problem in multiprocessor context
• Canonical model

– operations from given processor are executed in 
program order 

– memory operations from different processors 
appear to be interleaved in some order at the 
memory

• Question:
– If a processor is allowed to reorder independent 

operations in its own instruction stream, will the 
execution always produce the same results as 
the canonical model?

– Answer: no. Let us look at some examples. 



Example (I) 
Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Idea: 
– P1 writes data into A and sets Flag to tell P2 that 

data value can be read from A. 
– P2 waits till Flag is set and then reads data from 

A.



Execution Sequence for (I)
Code:
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Possible execution sequence on each processor:
P1 P2 
Write A 23 Read Flag      //get 0 
Write Flag 1                                 ……

Read Flag      //get 1 
Read A          //what do you get?

Problem: If the two writes on processor P1 can be reordered, it is possible for 
processor P2 to read 0 from variable A. 
Can happen on most modern processors.



Lessons
• Uniprocessors can reorder instructions subject only 

to control and data dependence constraints
• These constraints are not sufficient in shared-

memory context
– simple parallel programs may produce counter-

intuitive results
• Question: what constraints must we put on 

uniprocessor instruction reordering so that
– shared-memory programming is intuitive
– but we do not lose uniprocessor performance?

• Many answers to this question
– answer is called memory consistency model

supported by the processor



Simplest Memory Consistency Model

• Sequential consistency (SC) [Lamport]
– our canonical model: processor is not allowed to 

reorder reads and writes to global memory

MEMORY

P1 P3P2 Pn



Sequential Consistency
• SC constrains all memory operations:

• Write ® Read
• Write ® Write 
• Read ® Read, Write

- Simple model for reasoning about parallel programs
- You can verify that the examples considered earlier 

work correctly under sequential consistency.
- However, this simplicity comes at the cost of 

performance.
- Question: how do we reconcile sequential consistency 

model with the demands of performance?



Is this sequentially consistent?
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• P1 to P4 are different programs running on different cores

• r(x)a means we read memory location x and found the value a

• w(x)a means we wrote a to memory location x



Consistency models
- Consistency models are not about memory 

operations from  different processors.
- Consistency models are not about dependent 

memory operations in a single processor’s
instruction stream (these are respected even by 
processors that reorder instructions).

- Consistency models are all about ordering 
constraints on independent memory operations in a 
single processor’s instruction stream that have 
some high-level dependence (such as flags guarding 
data) that should be respected to obtain intuitively 
reasonable results.



Relaxed consistency

• Allow reordering for performance, but provide a safety net
- E.g., Processor has fence instruction:

- Accesses before fence in program order must complete before fence
- Accesses after fence in program order must wait for fence 
- Fences are performed in program order

- Weak consistency: programmer puts fences where 
reordering is not acceptable

- Implementation of fence: 
- processor has counter that is incremented when data op is issued, and 

decremented when data op is completed
- Example: PowerPC has SYNC instruction
- Language constructs:

- OpenMP: flush
- All synchronization operations like lock and unlock act like a fence



Weak ordering picture

fence

fence

fence

program
execution

Memory operations within these
regions can be reordered



Example revisited
Code:
Initially A = Flag = 0

P1 P2
A = 23;
flush;          ßmemory fence while (Flag != 1) {;} 
Flag = 1; B = A; 

Execution: 
– P1 writes data into A
– Flush waits till write to A is completed
– P1 then writes data to Flag
– Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the 

correct value of A even if memory operations in P1 before flush and 
memory operations after flush are reordered by the hardware or 
compiler.

– Question: does P2 need a flush between the two statements?



Another relaxed model: 
release consistency

- Further relaxation of weak consistency
- Synchronization accesses are divided into 

- Acquires: operations like lock
- Release: operations like unlock

- Semantics of acquire:
- Acquire must complete before all following memory accesses

- Semantics of release: 
- all memory operations before release are complete

- However,
- acquire does not wait for accesses preceding it
- accesses after release in program order do not have to wait for release

- operations which follow release and which need to wait must be protected by 
an acquire



Implementations on Current 
Processors



Comments
• In the literature, there are a large number of other 

consistency models
– E.g., Eventual consistency
– We will revisit some later…

• It is important to remember that these are concerned with 
reordering of independent memory operations within a 
processor.

• Easy to come up with shared-memory programs that behave 
differently for each consistency model.
– Therefore, we have to be careful with concurrency primitives!
– How do we get them right?
– How do we make them portable?
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Read Copy Update (RCU)

(some slides from Dan Porter)



Linux Synch. Primitives
Technique Description Scope
Per-CPU 
variables

Duplicate a data structure 
among CPUs

All CPUs

Atomic operation Atomic read-modify-write 
instruction

All

Memory barrier Avoid instruction re-ordering Local CPU
Spin lock Lock with busy wait All
Semaphore Lock with blocking wait (sleep) All 

Seqlocks Lock based on access counter All 
Local interrupt 
disabling

Forbid interrupt on a single CPU Local 

Local softirq 
disabling

Forbid deferrable function on a 
single CPU

Local 

Read-copy-
update (RCU)

Lock-free access to shared data 
through pointers

All

Also Read-write locks



Why are we reading this paper?
• Example of a synchronization primitive that is:

– Lock free (mostly/for reads)
– Tuned to a common access pattern
– Making the common case fast

• What is this common pattern?
– A lot of reads
– Writes are rare

• Prioritize writes
– Stale copies are short lived – time heals all wounds
– Ok to read a slightly stale copy

• But that can be fixed too
27
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Traditional OS locking designs
• poor concurrency

– Especially if mostly reads

• Fail to take advantage of event-driven nature of 
operating systems

• Locks have acquire and release cost
– Use atomic operations which are expensive
– Can dominate cost for short critical regions
– Locks become the bottleneck
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// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
wait(w_or_r); // lock out readers
Write;
signal(w_or_r); // up for grabs

}

Readers/Writers
reader {

wait(mutex);       // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r); // synch w/ writers
signal(mutex);   // unlock readcount
Read;
wait(mutex);      // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex);   // unlock readcount

}

Naïve implementation – can be done using just atomic instructions



Lock free data structures

• Do not require locks
• Good if contention is rare
• But difficult to create and error prone
• RCU is a mixture

– Concurrent changes to pointers a 
challenge for lock-free

– RCU serializes writers using locks
– Win if most of our accesses are reads
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Example of lock free 
synchronization
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Credit: https://yizhang82.dev/lock-free-rw-lock

Correction: second argument should be _readers


