
Advanced Operating Systems
(CS 202)

Synchronization (Part II)



What are the sources of 
concurrency?

• Multiple user-space processes
– On multiple CPUs

• Device interrupts
• Workqueues
• Tasklets
• Timers

2



Pitfalls in scull

• Race condition:  result of uncontrolled 
access to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}

Scull is the Simple Character Utility for Locality Loading (an example device driver
from the Linux Device Driver book)



Pitfalls in scull

• Race condition:  result of uncontrolled 
access to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}



Pitfalls in scull

• Race condition:  result of uncontrolled 
access to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}



Pitfalls in scull

• Race condition:  result of uncontrolled 
access to shared data

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos]) {

goto out;
}

}

Memory leak



Synchronization primitives

• Lock/Mutex
– To protect a shared variable, surround it 

with a lock (critical region)
– Only one thread can get the lock at a time
– Provides mutual exclusion

• Shared locks
– More than one thread allowed (hmm…)

• Others?  Yes, including Barriers 
(discussed in the paper) 7



Synchronization primitives 
(cont’d)

• Lock based
– Blocking (e.g., semaphores, futexes, completions)
– Non-blocking (e.g., spin-lock, …)

• Sometimes we have to use spinlocks

• Lock free (or partially lock free J)
– Atomic instructions
– seqLocks
– RCU
– Transactions (next time)

8



Naïve implementation of 
spinlock

• Lock(L):
While(test_and_set(L));
//we have the lock!
//eat, dance and be merry

• Unlock(L)
L=0; 

9



Why naïve?
• Works?   Yes, but not used in practice
• Contention

– Think about the cache coherence protocol
– Set in test and set is a write operation

• Has to go to memory
• A lot of cache coherence traffic
• Unnecessary unless the lock has been released 
• Imagine if many threads are waiting to get the lock

• Fairness/starvation

10



Better implementation
Spin on read

• Assumption: We have cache coherence
– Not all are: e.g., Intel SCC

• Lock(L):
while(L==locked); //wait
if(test_and_set(L)==locked) go back;

• Still a lot of chattering when there is an 
unlock
– Spin lock with backoff

11



Bakery Algorithm
struct lock {

int next_ticket;
int now_serving; }

• Acquire_lock:
int my_ticket = fetch_and_inc(L->next_ticket);
while(L->new_serving!=my_ticket); //wait
//Eat, Dance and me merry!

• Release_lock:
L->now_serving++;

Comments?  Fairness? Efficiency/cache coherence?

12

Still too much chatter



Anderson Lock (Array lock)

• Problem with bakery algorithm:
– All threads listening to next_serving

• A lot of cache coherence chatter
– But only one will actually acquire the 

lock
– Can we have each thread wait on a 

different variable to reduce chatter? 

13



Anderson’s Lock
• We have an array (actually circular queue) of 

variables
– Each variable can indicate either lock available or waiting 

for lock
• Only one location has lock available

Lock(L):
my_place = fetch_and_inc (queuelast);
while (flags[myplace mod N] == must_wait);

Unlock(L)
flags[myplace mod N] = must_wait;
flags[mypalce+1 mod N] = available;

14
Fair and not noisy – compare to spin-on-read and bakery algorithm
Any negative side effects?



MCS Lock

15

• Each node has:
struct node {
bool got_it;
Next; //successor}

Lock(L, me)                            Unlock(L,me)
join(L); //use fetch-n-store         remove me from L
while(got_it == 0);                    signal successor            

(setting got it to 0)

Lock

Lock me

Lock me

Current



Race condition!

• What if there is a new joiner when the last 
element is removing itself 16



17



Performance impact

18



19From the Boyd-Wickizer et al paper, “Non-scalable locks are dangerous”
CLH and K42 are MCS variants



BARRIERS/FYI

20



Barriers

21



Linear barriers

22



Tree barrier (MCS paper)

23



Dissemination Barrier 
(Hensgen/Finkel)

24



Counter based performs best!

25


