Advanced Operating Systems
(CS 202)

Synchronization (Part 1)

\What are the sources of
concurrency?

* Multiple user-space processes
— On multiple CPUs

* Device interrupts
* Workqueues

* Tasklets

* Timers

Pitfalls in scull

o . result of uncontrolled
access to shared data

— if (!'dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s _pos]) {
goto out;
}
}

Scull is the Simple Character Utility for Locality Loading (an example device driver
from the Linux Device Driver book)

Pitfalls in scull

o . result of uncontrolled
access to shared data

—» 1if (!'dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s _pos]) {
goto out;
}
}

Pitfalls in scull

o . result of uncontrolled
access to shared data

if ('dptr->data[s_pos]) {
—_— dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL) ;
if (!'dptr->data[s _pos]) {
goto out;
}
}

Pitfalls in scull

o . result of uncontrolled
access to shared data

if ('dptr->data[s_pos]) {
—, dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL
if (!'dptr->data[s_pos]) {
goto out;
}
}

Memory leak

Synchronization primitives

* | ock/Mutex

- To protect a shared variable, surround it
with a lock (critical region)

- Only one thread can get the lock at a time
- Provides mutual exclusion

® Shared locks
- More than one thread allowed (hmm...)

®* Others? Yes, including Barriers
(discussed in the paper) 7

Synchronization primitives
(cont'd)

® |Lock based

- Blocking (e.g., semaphores, futexes, completions)
- Non-blocking (e.g., spin-lock, ...)
- Sometimes we have to use spinlocks
* Lock free (or partially lock free ©)
- Atomic instructions
- seqlocks
- RCU
- Transactions (next time)

Naive implementation of
spinlock

* |ock(L):
While(test_and_set(L));
//we have the lock!
//eat, dance and be merry

e Unlock(L)
=0k

Why naive?

* Works? Yes, but not used in practice

® Contention

- Think about the cache coherence protocol

- Set in test and set is a write operation
« Has to go to memory
- A lot of cache coherence traffic
« Unnecessary unless the lock has been released
- Imagine if many threads are waiting to get the lock

® Fairness/starvation

10

Better implementation
Spin on read

* Assumption: We have cache coherence
- Not all are: e.g., Intel SCC

® | ock(L):
while(L==locked); //wait
if(test_and_set(L)==locked) go back;

* Still a lot of chattering when there is an
unlock

- Spin lock with backoff

11

Bakery Algorithm

struct lock §
int next_ticket;
int now_serving; }
* Acquire_lock:
int my_ticket = fetch_and_inc(L->next_ticket);

while(L->new_serving!=my__ticket); //wait
//Eat, Dance and me merry!

* Release_lock:
L->now_serving++;

Still too much chatter

Comments? Fairness? Efficiency/cache coherence?

12

Anderson Lock (Array lock)

* Problem with bakery algorithm:
- All threads listening to next_serving
A lot of cache coherence chatter

- But only one will actually acquire the
lock

- Can we have each thread wait on a
different variable to reduce chatter?

13

Anderson’s Lock

* We have an array (actually circular queue) of
variables

- Each variable can indicate either lock available or waiting
for lock

« Only one location has lock available
Lock(L):
my_place = fetch_and_inc (queuelast);
while (flags[myplace mod N] == must_wait);
Unlock(L)
flags[myplace mod N] = must_wait;
flags[mypalce+l mod N] = available;

Fair and not noisy — compare to spin-on-read and bakery algorithm

Any negative side effects? 14

MCS Lock
o
® Each node has:

struct node §
bool got_it; m n

Next; //successor} m n

Lock(L, me) Unlock(L,me)
join(L); //use fetch-n-store remove me from L
while(got_it == 0); signal successor

(setting got it to 0)

15

Race condition!

type qnode = record
next : “qnode
locked : Boolean

type lock = “gnode

// parameter I, below, points to a gnode record allocated
// (in an enclosing scope) in shared memory locally-accessible
// to the invoking processor

procedure acquire_lock (L : “lock, I : “gnode)
I->next := nil
predecessor : “gqnode := fetch_and store (L, I)
if predecessor != nil // queue was non-empty
I->1locked := true
predecessor->next := 1
repeat while I->locked // spin

procedure release_lock (L : “lock, I: “gnode)
if I->next = nil // no known successor
if compare_and_swap (L, I, nil)
return
// compare_and_swap returns true iff it swapped
repeat while I->next = nil // spin
I->next->locked := false

* What if there is a new joiner when the last
element is removing itself 16

(@ L o [3® []\ L
4-B
® |[1® L
5-B
© [® &
= © |30 L
4-B
3-B
5-B
@ [2® | B
{J 6®R)
3-B
7-B
© [3® L
(h) 4-B | Ii;
@) |3 7 | L -
4B A
: 6(R)
5-B
7-B = |

Figure 1: Pictorial example of MCS locking protocol in the presence of competition.

Performance impact

Table II. Increase in Network Latency (relative to that of an idle machine)
on the Butterfly Caused by 60 Processors Competing for a Busy-Wait Lock.

Increase in network latency
measured from

Busy-wait Lock Lock node (%) Idle node (%)

test_and_set 1420 96
test_and_set w/linear backoff 882 67
test_and_set w/exp. backoff 32 4
ticket 992 97
ticket w/prop. backoff 53 8
Anderson 75 67
MCS 4 2

18

N , "
' : -~ “‘.'W'Mv“'--w-- M > PO

: —=— Ticket lock —+— Proportional lock

—a&— MCS lock —»— K42 lock
—e— CLH lock

o
o
E
I
)
R=
=
g
&
S
—
=
Q.
<
)
=
é

From the Boyd-Wickizer et al paper, “Non-scalable locks are dangerous” 19
CLH and K42 are MCS variants

BARRIERS/FY]I

20

Barriers

Linear barriers

22

Tree barrier (MCS paper)

23

Dissemination Barrier
(Hensgen/FinkeI)

NN
1

23456?

24

Counter based performs best!

25

