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Classic Example
• Suppose we have to implement a function to handle 

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

• Now suppose that you and your father share a bank 
account with a balance of $1000

• Then you each go to separate ATM machines and 
simultaneously withdraw $100 from the account
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Interleaved Schedules
• The problem is that the execution of the two 

threads can be interleaved:

• What is the balance of the account now?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution sequence 
seen by CPU

Context switch
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How Interleaved Can It 
Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance = ...................................

How contorted can the interleavings be?
• We'll assume that the only atomic operations are reads 

and writes of individual memory locations
– Some architectures don't even give you that!

• We'll assume that a context
switch can occur at any time

• We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever
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Mutual Exclusion
• Mutual exclusion to synchronize access to shared 

resources
– This allows us to have larger atomic blocks
– What does atomic mean?

• Code that uses mutual called a critical section
– Only one thread at a time can execute in the critical section
– All other threads are forced to wait on entry
– When a thread leaves a critical section, another can enter
– Example: sharing an ATM with others

• What requirements would you place on a critical section?
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Using Locks

– Why is the “return” outside the critical section? Is this ok?
– What happens when a third thread calls acquire?

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical 
Section



Stepping back

• What does the OS need to support?
– And why?  Isnt this an 

application/programming problem?
• Synchronization is hard – why?
• Synchronization can be a performance 

problem – why?
• Other semantics than mutual exclusion 

possible.
7



Implementing locks

• Software implementations possible
– You should have seen Dekker’s algorithm 

and possibly Peterson’s algorithm
– They are difficult to get right
– They make assumptions on the system 

that may no longer hold 
• (e.g.,  memory consistency as we will see 
shortly)

• Most systems offer hardware support
8
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Using Test-And-Set
• Here is our lock implementation with 

test-and-set:

• When will the while return?  What is the 
value of held?

struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}
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Overview
• Before we talk deeply about synchronization

– Need to get an idea about the memory model in shared 
memory systems

– Is synchronization only an issue in multi-processor 
systems?

• What is a shared memory processor (SMP)?
• Shared memory processors 

– Two primary architectures:
• Bus-based/local network shared-memory machines (small-

scale)
• Directory-based shared-memory machines (large-scale)



Plan…
• Introduce and discuss cache coherence
• Discuss basic synchronization, up to 

MCS locks (from the paper we are 
reading)
• Introduce memory consistency and 

implications
• Is this an architecture class???

– The same issues manifest in large scale 
distributed systems 11



CRASH COURSE ON CACHE 
COHERENCE

12
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Bus-based Shared Memory 
Organization

Basic picture is simple :-

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared
Memory
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Organization
• Bus is usually simple physical connection 

(wires)
• Bus bandwidth limits no. of CPUs
• Could be multiple memory elements
• For now, assume that each CPU has only 

a single level of cache
• Other organizations (e.g., with a network) 

have NUMA issues
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Problem of Memory 
Coherence

• Assume just single level caches and main 
memory

• Processor writes to location in its cache
• Other caches may hold shared copies - these 

will be out of date
• Updating main memory alone is not enough
• What happens if two updates happen at 

(nearly) the same time?
– Can two different processors see them out of order?
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Example
CPU

Cache

CPU
Cache

CPU
Cache

Shared Bus

Shared
Memory

X:  24

Processor 1 reads X: obtains 24 from memory and caches it
Processor 2 reads X: obtains 24 from memory and caches it
Processor 1 writes 32 to X: its locally cached copy is updated
Processor 3 reads X: what value should it get?  

Memory and processor 2 think it is 24
Processor 1 thinks it is 32

Notice that having write-through caches is not good enough

1 2 3
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Cache Coherence
• Try to make the system behave as if there are no 

caches!
• How?  Idea: Try to make every CPU know who has a copy 

of its cached data?
• too complex!

• More practical:
– Snoopy caches

• Each CPU snoops memory bus 
• Looks for read/write activity concerned with data addresses which it 

has cached.
– What does it do with them?

• This assumes a bus structure where all communication can be seen by 
all.

• More scalable solution: ‘directory based’ coherence 
schemes
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Snooping Protocols
• Write Invalidate

– CPU with write operation sends invalidate 
message

– Snooping caches invalidate their copy 
– CPU writes to its cached copy

• Write through or write back? 
– Any shared read in other CPUs will now 

miss in cache and re-fetch new data.
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Snooping Protocols

• Write Update
– CPU with write updates its own copy
– All snooping caches update their copy

• Note that in both schemes, problem of 
simultaneous writes is taken care of 
by bus arbitration - only one CPU can 
use the bus at any one time.
• Harder problem for arbitrary networks
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Update or Invalidate?

• Which should we use?
• Bus bandwidth is a precious commodity 

in shared memory multi-processors
– Contention/cache interrogation can lead 

to 10x or more drop in performance
– (also important to minimize false sharing)

• Therefore, invalidate protocols used in 
most commercial SMPs
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Implementation Issues

• In both schemes, knowing if a cached value 
is not shared (copy in another cache) can 
avoid sending any messages.

• Invalidate description assumed that a cache 
value update was written through to 
memory. If we used a ‘copy back’ scheme 
other processors could re-fetch old value on 
a cache miss.

• We need a protocol to handle all this.
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MESI – locally initiated 
accesses

Invalid

Modified Exclusive

Shared
Read
Hit

Read
HitRead

Hit

Read
Miss(sh)

Read
Miss(ex)

Write
Hit

Write
Hit

Write
HitWrite

Miss

RWITM

Invalidate

Mem Read

Mem Read

= bus transaction
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MESI – remotely initiated 
accesses

Invalid

Modified Exclusive

Shared

Mem Read

Mem Read

Mem Read

Invalidate

RWITMRWITM

= copy back
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MESI notes
• There are other protocols and minor variations 

(particularly to do with write miss)
• Normal ‘write back’ when cache line is evicted 

is done if line state is M
• Multi-level caches

– If caches are inclusive, only the lowest level cache 
needs to snoop on the bus
• Most modern CPUs have inclusive caches
• But they don’t perform as well as non-inclusive caches



Cache Coherence summary

• Reads and writes are atomic
– What does atomic mean?

• As if there is no cache

• Some magic to make things work
– Have performance implications
– …and therefore, have implications on 

performance of programs
26
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Directory Schemes

• Snoopy schemes do not scale because they rely 
on broadcast

• Directory-based schemes allow scaling.
– avoid broadcasts by keeping track of all PEs caching 
a  memory block, and then using point-to-point 
messages to maintain coherence

– they allow the flexibility to use any scalable point-
to-point network 
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Basic Scheme (Censier & Feautrier)

• Assume "k" processors.  
• With each cache-block in memory: k  presence-bits, 

and 1 dirty-bit
• With each cache-block in cache:   1valid bit, and 1 

dirty (owner) bit

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

– Read from main memory by PE-i:
• If dirty-bit is OFF then { read from main memory; turn p[i] 
ON; }

• if dirty-bit is ON   then { recall line from dirty PE (cache 
state to shared); update memory; turn dirty-bit OFF; turn p[i] 
ON; supply recalled data to PE-i; }

– Write to main memory:
• If dirty-bit OFF then { send invalidations to all PEs caching 
that block; turn dirty-bit ON; turn P[i] ON; ... }

• ...



Key Issues

• Scaling of memory and directory bandwidth
– Can not have main memory or directory memory 
centralized

– Need a distributed memory and directory structure
• Directory memory requirements do not scale well

– Number of presence bits grows with number of PEs
– Many ways to get around this problem

• limited pointer schemes of many flavors

• Industry standard
– SCI: Scalable Coherent Interface


