
Homework 3 for CSE153 (Winter 2022)

Due: Friday, Wednesday, March 2
Instructions:

* Be brief in your answers. You will be graded for correctness, not on the length of your answers.

* Make sure to write legibly. Incomprehensible writing will be assumed to be incorrect.

I. Consider the following portion of a page table on a system with page size of 1024 bytes
(210):

 Page Physical Page S W
 0 0x10 1 1
 1 0x31 1 0
 2 0x02 1 0
 3 0x24 0 1
 4 0x33 0 0

In the table above, the physical page refers to the physical frame in memory where the page
is stored. The S bit indicates whether the page is supervisor page (kernel only) or not (user
page). The W bit indicates whether the page is writeable (e.g., code pages or constant data
pages are often marked as not writeable). A hex digit (0-f) represents 4 binary digits, eg.
(0x10f2 = 0001 0000 1111 0010). Be careful that the page number and offset are not
multiples of 4.

Explain what happens when the following memory references are executed from a program
(i.e., in user mode). If possible, show the translation then explain what happens.

(a) A store to address 0x00ee? (2 points)

(b) A read from 0x0f01 (2 points)

(c) A store to 0x0415 (2 points)

II. (a) An OS is using two-level paging to implement a 28-bit virtual address space per process.
The page size is 256-bytes, and the machine does not have a TLB. Explain the steps involved
in looking up the virtual address 0x03bf04d, when all pages are present in memory. (2 points)

(b) For the system above, what is the maximum number of page faults that could be generated
in response to a memory access? (2 points)

III. Consider	a	virtual	address	system	with	the	following	parameters.	

•	The	memory	is	byte	addressable.	

•	Virtual	addresses	are	18	bits	wide.	

•	Physical	addresses	are	16	bits	wide.	

•	The	page	size	is	1K	bytes	(note	that	offset	is	more	than	2	hex	digits,	but	less	than	
3).	

•	The	TLB	is	fully	associative	with	16	total	entries.	

Recall	that	a	fully	associative	cache	has	just	one	set	of	entries—The	tag	field	is	
simply	the	VPN	and	we	need	to	search	the	full	TLB	to	check	if	the	VPN	we	are	
seeking	is	in	the	TLB.	In	the	following	tables,	all	numbers	are	given	in	hexadecimal.	
The	contents	of	the	TLB	and	the	page	table	for	the	first	16	virtual	pages	are	as	
follows.	If	a	VPN	is	not	listed	in	the	page	table,	assume	it	generates	a	page	fault.	

	

	

(a)		Which	bits	of	an	address	hold	the	VPO	and	which	hold	the	VPN?	(1	point)	

	

	

	

	

	

	

	

(b) For	the	virtual	address	0x02022,	indicate	the	physical	address.		Indicate	
whether	or	not	there	is	a	TLB	miss.		If	there	is	a	page	fault,	enter	“—”	for	the	
PPN	and	Physical	Address.	All	answers	should	be	given	in	hexadecimal,	but	
be	careful	since	the	offset	and	page	number	are	not	multiples	of	4,	there	will	be	
one	digit	that	contains	some	bits	from	each.		For	example,	given	the	address	
0x12345,	the	digit	3	contains	2	bits	from	the	offset	and	2	bits	from	the	page	
number.		First	convert	to	binary	(01	0010	0011	0100	0101):	the	offset	will	be	
the	bottom	10	bits	(1101000101	or	0x345)	and	the	page	number	the	top	8	bits	
(01001000	or	0x48)		(1	points)	
	
	
	
	
	
	
	
	

	

	
	

(c) Repeat	for	address	0x004F1	(1	points)		

	

	

	

	

	

	

	

(d) Given	an	physical	address	(i.e.,	after	translation)	of	0x460e,	is	it	possible	to	tell	
what	the	virtual	address	was	from	the	given	page	table?		If	so,	show	the	address.	
(1+1	bonus).			Hint:	identify	the	physical	page	number	then	check	if	there	is	a	
TLB	entry	or	Page	table	entry	that	translates	to	this	page	number.	

	

	
	
	
	
	
	
	

	

IV. Consider a process that has been allocated 5 pages of memory: P1, P2, P3, P4, and P5. The
process accesses these pages in the following order:

P1 P2 P3 P4 P1 P2 P5 P1 P2 P3 P4 P5

(i) Illustrate Belady’s anomaly by precisely describing the execution of the FIFO page eviction
algorithm in two cases: a) where the machine has 3 pages of physical memory, and b) where
the machine has 4 pages of physical memory, and by comparing the number of page faults
incurred in these two cases. (When the process begins executing, none of its pages are present
in memory.) (2 points)

(ii) Show how the LRU page eviction algorithm would work in the same scenarios a) and b)
described above. (2 points)

