
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 15/16: Paging/Virtual Memory (1)

Some slides modified from originals by Dave O’hallaron

Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation

A System Using Physical
Addressing

! Used in “simple” systems like embedded microcontrollers
in devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

A System Using Virtual
Addressing

! Used in all modern servers, desktops, and laptops
! One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Address Spaces
! Linear address space: Ordered set of contiguous non-negative integer

addresses:
{0, 1, 2, 3 … }

! Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

! Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

! Clean distinction between data (bytes) and their attributes (addresses)
! Each object can now have multiple addresses
! Every byte in main memory:

one physical address, one (or more) virtual addresses

Why Virtual Memory (VM)?

! Virtual memory is page with a new ingredient
u Allow pages to be on disk

» In a special partition (or file) called swap

! Motivation?
u Uses main memory efficiently
u Use DRAM as a cache for the parts of a virtual address space

! Simplifies memory management
u Each process gets the same uniform linear address space
u With VM, this can be big!

Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation

VM as a Tool for Caching
! Virtual memory is an array of N contiguous bytes

stored on disk.
! The contents of the array on disk are cached in

physical memory (DRAM cache)
u These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

DRAM Cache Organization

! DRAM cache organization driven by the enormous miss penalty

u DRAM is about 10x slower than SRAM

u Disk is about 10,000x slower than DRAM

! Consequences

u Large page (block) size: typically 4-8 KB, sometimes 4 MB

u Fully associative

» Any VP can be placed in any PP

» Requires a “large” mapping function – different from CPU caches

u Highly sophisticated, expensive replacement algorithms

» Too complicated and open-ended to be implemented in hardware

u Write-back rather than write-through

Page Tables
! A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages.
u Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page Hit
! Page hit: reference to VM word that is in physical memory (DRAM

cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page Fault

! Page fault: reference to VM word that is not in physical memory
(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
! Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid

0
1

1
0
0

1
0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)
! Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid

0
1

1
0
0

1
0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Locality to the Rescue!

! Virtual memory works because of locality

! At any point in time, programs tend to access a set of
active virtual pages called the working set
u Programs with better temporal locality will have smaller working

sets

! If (working set size < main memory size)
u Good performance for one process after compulsory misses

! If (SUM(working set sizes) > main memory size)
u Thrashing: Performance meltdown where pages are swapped

(copied) in and out continuously

Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation

VM as a Tool for Memory
Management
! Key idea: each process has its own virtual address space

u It can view memory as a simple linear array
u Mapping function scatters addresses through physical memory

» Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2...

0

N-1

VP 1
VP 2...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Memory
Management
! Memory allocation

u Each virtual page can be mapped to any physical page
u A virtual page can be stored in different physical pages at different times

! Sharing code and data among processes
u Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2...

0

N-1

VP 1
VP 2...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Sharing
! Can map shared memory at same or different virtual

addresses in each process’ address space
u Different:

» 10th virtual page in P1 and 7th virtual page in P2 correspond to
the 2nd physical page

» Flexible (no address space conflicts), but pointers inside the
shared memory segment are invalid

u Same:
» 2nd physical page corresponds to the 10th virtual page in both P1

and P2
» Less flexible, but shared pointers are valid

Copy on Write
! OSes spend a lot of time copying data

u System call arguments between user/kernel space
u Entire address spaces to implement fork()

! Use Copy on Write (CoW) to defer large copies as
long as possible, hoping to avoid them altogether
u Instead of copying pages, create shared mappings of parent

pages in child virtual address space
u Shared pages are protected as read-only in parent and child

» Reads happen as usual
» Writes generate a protection fault, trap to OS, copy page, change

page mapping in client page table, restart write instruction
u How does this help fork()?

Execution of fork()

Page 1

Physical Memory

Page 2

Parent process’s
page table

Page 1

Child process’s
page table

Page 2

fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s
page table

Page 1

Child process’s
page table

Page 2
Protection bits set to prevent either
process from writing to any page

When either process modifies Page 1,
page fault handler allocates new page

and updates PTE in child process

Simplifying Linking and Loading

! Linking
u Each program has similar virtual

address space
u Code, stack, and shared libraries

always start at the same address

! Loading
u execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

u The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation

VM as a Tool for Memory
Protection
! Extend PTEs with permission bits
! Page fault handler checks these before remapping

u If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation

Address Translation With a
Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA
PTE1

2

3

4

5

Address Translation: Page
Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Integrating VM and Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Elephant(s) in the room

• Problem 1: Translation is slow!
• Many memory accesses for each memory access
• Caches are useless!

• Problem 2: Page
table can be
gigantic!

• We need one for
each process

• All your memory
are belong to us!

