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Today
! Address spaces
! VM as a tool for caching
! VM as a tool for memory management
! VM as a tool for memory protection
! Address translation



A System Using Physical 
Addressing

! Used in “simple” systems like embedded microcontrollers 
in devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4



A System Using Virtual 
Addressing

! Used in all modern servers, desktops, and laptops
! One of the great ideas in computer science
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Address Spaces
! Linear address space: Ordered set of contiguous non-negative integer 

addresses:
{0, 1, 2, 3 … }

! Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

! Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

! Clean distinction between data (bytes) and their attributes (addresses)
! Each object can now have multiple addresses
! Every byte in main memory: 

one physical address, one (or more) virtual addresses



Why Virtual Memory (VM)?

! Virtual memory is page with a new ingredient
u Allow pages to be on disk 

» In a special partition (or file) called swap

! Motivation?
u Uses main memory efficiently
u Use DRAM as a cache for the parts of a virtual address space

! Simplifies memory management 
u Each process gets the same uniform linear address space
u With VM, this can be big!
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VM as a Tool for Caching
! Virtual memory is an array of N contiguous bytes 

stored on disk. 
! The contents of the array on disk are cached in 

physical memory (DRAM cache)
u These cache blocks are called pages (size is P = 2p bytes)
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DRAM Cache Organization

! DRAM cache organization driven by the enormous miss penalty

u DRAM is about 10x slower than SRAM

u Disk is about 10,000x slower than DRAM

! Consequences

u Large page (block) size: typically 4-8 KB, sometimes 4 MB

u Fully associative 

» Any VP can be placed in any PP

» Requires a “large” mapping function – different from CPU caches

u Highly sophisticated, expensive replacement algorithms

» Too complicated and open-ended to be implemented in hardware

u Write-back rather than write-through



Page Tables
! A page table is an array of page table entries (PTEs) that maps 

virtual pages to physical pages. 
u Per-process kernel data structure in DRAM
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Page Hit
! Page hit: reference to VM word that is in physical memory (DRAM 

cache hit)
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Page Fault

! Page fault: reference to VM word that is not in physical memory 
(DRAM cache miss)
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Handling Page Fault
! Page miss causes page fault (an exception)
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Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
! Page miss causes page fault (an exception)
! Page fault handler selects a victim to be evicted (here VP 4)
! Offending instruction is restarted: page hit!
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Locality to the Rescue!

! Virtual memory works because of locality

! At any point in time, programs tend to access a set of 
active virtual pages called the working set
u Programs with better temporal locality will have smaller working 

sets

! If (working set size < main memory size) 
u Good performance for one process after compulsory misses

! If ( SUM(working set sizes) > main memory size ) 
u Thrashing: Performance meltdown where pages are swapped 

(copied) in and out continuously
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VM as a Tool for Memory 
Management
! Key idea: each process has its own virtual address space

u It can view memory as a simple linear array
u Mapping function scatters addresses through physical memory

» Well chosen mappings simplify memory allocation and management
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VM as a Tool for Memory 
Management
! Memory allocation

u Each virtual page can be mapped to any physical page
u A virtual page can be stored in different physical pages at different times

! Sharing code and data among processes
u Map virtual pages to the same physical page (here: PP 6)
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Sharing
! Can map shared memory at same or different virtual 

addresses in each process’ address space
u Different:

» 10th virtual page in P1 and 7th virtual page in P2 correspond to 
the 2nd physical page 

» Flexible (no address space conflicts), but pointers inside the 
shared memory segment are invalid

u Same:
» 2nd physical page corresponds to the 10th virtual page in both P1 

and P2 
» Less flexible, but shared pointers are valid



Copy on Write
! OSes spend a lot of time copying data

u System call arguments between user/kernel space
u Entire address spaces to implement fork()

! Use Copy on Write (CoW) to defer large copies as 
long as possible, hoping to avoid them altogether
u Instead of copying pages, create shared mappings of parent 

pages in child virtual address space
u Shared pages are protected as read-only in parent and child

» Reads happen as usual
» Writes generate a protection fault, trap to OS, copy page, change 

page mapping in client page table, restart write instruction
u How does this help fork()?
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fork() with Copy on Write
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Simplifying Linking and Loading

! Linking 
u Each program has similar virtual 

address space
u Code, stack, and shared libraries 

always start at the same address

! Loading 
u execve() allocates virtual pages 

for .text and .data sections 
= creates PTEs marked as invalid

u The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system
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VM as a Tool for Memory 
Protection
! Extend PTEs with permission bits
! Page fault handler checks these before remapping

u If violated, send process SIGSEGV (segmentation fault)
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Address Translation With a 
Page Table
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor
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Address Translation: Page 
Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
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Integrating VM and Cache
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Elephant(s) in the room

• Problem 1: Translation is slow!
• Many memory accesses for each memory access
• Caches are useless!

• Problem 2: Page 
table can be 
gigantic!

• We need one for 
each process

• All your memory 
are belong to us!


