
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 14/15: Memory Management (1)

Some slides from Dave O’Hallaron

OS Abstractions

2

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

CSE 153 – Lecture 14 – Memory Management

Our plan of action
! Memory/storage technologies and trends

u Memory wall!

! Locality of reference to the rescue
u Caching in the memory hierarchy

! Abstraction: Address spaces and memory sharing
! Virtual memory

! Today: background and bird’s eye view – more details
to follow later

CSE 153 – Lecture 14 – Memory Management 3

SRAM vs DRAM Summary

Trans. AccessNeeds Needs
per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

CSE 153 – Lecture 14 – Memory Management 5

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Disk

DRAM

CPU

SSD

CSE 153 – Lecture 14 – Memory Management 20

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a
fundamental property of computer programs known as
locality

CSE 153 – Lecture 14 – Memory Management 21

Today
! Storage technologies and trends
! Locality of reference
! Caching in the memory hierarchy
! Virtual memory and memory sharing

CSE 153 – Lecture 14 – Memory Management 22

Locality

! Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

! Temporal locality:
u Recently referenced items are likely

to be referenced again in the near future

! Spatial locality:
u Items with nearby addresses tend

to be referenced close together in time

CSE 153 – Lecture 14 – Memory Management 23

Locality Example

! Data references
u Reference array elements in

succession (stride-1 reference
pattern).

u Reference variable sum each iteration.

! Instruction references
u Reference instructions in sequence.
u Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

CSE 153 – Lecture 14 – Memory Management 24

Today
! Storage technologies and trends
! Locality of reference
! Caching in the memory hierarchy
! Virtual memory and memory sharing

CSE 153 – Lecture 14 – Memory Management 29

An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

CSE 153 – Lecture 14 – Memory Management 30

Memory hierarchy

! Cache: A smaller, faster storage device that acts as a staging area for
a subset of the data in a larger, slower device.

! Fundamental idea of a memory hierarchy:
� For each layer, faster, smaller device caches larger, slower device
.

! Why do memory hierarchies work?
� Because of locality!

» Hit fast memory much more frequently even though its smaller
� Thus, the storage at level k+1 can be slower (but larger and cheaper!)

! Big Idea: The memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but that serves
data to programs at the rate of the fast storage near the top.CSE 153 – Lecture 14 – Memory Management 31

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

CSE 153 – Lecture 14 – Memory Management 32

General Cache Concepts: Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

CSE 153 – Lecture 14 – Memory Management 33

General Cache Concepts:
Miss

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

CSE 153 – Lecture 14 – Memory Management 34

General Caching Concepts:
Types of Cache Misses

! Cold (compulsory) miss
u Cold misses occur because the cache is empty.

! Conflict miss
u Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.
» E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

u Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

! Capacity miss
u Occurs when the set of active cache blocks (working set) is larger

than the cache.

CSE 153 – Lecture 14 – Memory Management 35

Summary so far
! The speed gap between CPU, memory and mass

storage continues to widen.

! Well-written programs exhibit a property called locality.

! Memory hierarchies based on caching close the gap
by exploiting locality.

CSE 153 – Lecture 14 – Memory Management 37

CSE 153 – Lecture 14 – Memory Management 38

Sharing Memory
! Rewind to the days of “second-generation” computers

u Programs use physical addresses directly
u OS loads job, runs it, unloads it

! Multiprogramming changes all of this
u Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs
u How to share physical memory across multiple processes?

» Many programs do not need all of their code and data at once (or
ever) – no need to allocate memory for it

» A program can run on machine with less memory than it “needs”

CSE 153 – Lecture 14 – Memory Management 39

Virtual Addresses
! To make it easier to manage the memory of processes

running in the system, we’re going to make them use
virtual addresses (logical addresses)
u Virtual addresses are independent of the actual physical

location of the data referenced
u OS determines location of data in physical memory

! Instructions executed by the CPU issue virtual
addresses
u Virtual addresses are translated by hardware into physical

addresses (with help from OS)
u The set of virtual addresses that can be used by a process

comprises its virtual address space

CSE 153 – Lecture 14 – Memory Management 40

Virtual Addresses

! Many ways to do this translation…
u Need hardware support and OS management algorithms

! Requirements
u Need protection – restrict which addresses jobs can use
u Fast translation – lookups need to be fast
u Fast change – updating memory hardware on context switch

vmapprocessor physical
memory

virtual
addresses

physical
addresses

CSE 153 – Lecture 14 – Memory Management 41

Fixed Partitions
! Physical memory is broken up into

fixed partitions
u Size of each partition is the same and

fixed
u Hardware requirements: base register
u Physical address = virtual address +

base register
u Base register loaded by OS when it

switches to a process

Physical Memory

P1

P2

P3

P4

P5

CSE 153 – Lecture 14 – Memory Management 42

Fixed Partitions

P4’s Base

+Offset
Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5
How do we provide protection?

43

Fixed Partitions
! Advantages

u Easy to implement
» Need base register
» Verify that offset is less than fixed partition size

u Fast context switch

! Problems?
u Internal fragmentation: memory in a partition not used by a

process is not available to other processes
u Partition size: one size does not fit all (very large processes?)

CSE 153 – Lecture 14 – Memory Management

44

Variable Partitions
! Natural extension – physical memory is broken up into

variable sized partitions
u Hardware requirements: base register and limit register
u Physical address = virtual address + base register

! Why do we need the limit register?
u Protection: if (virtual address > limit) then fault

CSE 153 – Lecture 14 – Memory Management

CSE 153 – Lecture 14 – Memory Management 45

Variable Partitions

P3’s Base

+Offset

Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

P3’s Limit

Limit Register

P1

46

Variable Partitions
! Advantages

u No internal fragmentation: allocate just enough for process
! Problems?

u External fragmentation: job loading and unloading produces
empty holes scattered throughout memory

CSE 153 – Lecture 14 – Memory Management

P2

P3

P1

P4

CSE 153 – Lecture 14 – Memory Management 47

Paging
! New Idea: split virtual address space into multiple

partitions
u Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by
using fixed sized units in both physical and virtual memory But need to keep track

of where things are!

CSE 153 – Lecture 14 – Memory Management 50

Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

53

Paging Advantages
! Easy to allocate memory

u Memory comes from a free list of fixed size chunks
u Allocating a page is just removing it from the list
u External fragmentation not a problem

» All pages of the same size

! Simplifies protection
u All chunks are the same size
u Like fixed partitions, don’t need a limit register

! Simplifies virtual memory – later

CSE 153 – Lecture 14 – Memory Management

CSE 153 – Lecture 14 – Memory Management 54

Paging Limitations
! Can still have internal fragmentation

u Process may not use memory in multiples of a page
! Memory reference overhead

u 2 references per address lookup (page table, then memory)
u What can we do?

! Memory required to hold page table can be significant
u Need one PTE per page
u 32 bit address space w/ 4KB pages = 220 PTEs
u 4 bytes/PTE = 4MB/page table
u 25 processes = 100MB just for page tables!
u What can we do?

CSE 153 – Lecture 14 – Memory Management 55

Segmentation
! Segmentation: partition memory into logically related units

u Module, procedure, stack, data, file, etc.
u Units of memory from user’s perspective

! Natural extension of variable-sized partitions
u Variable-sized partitions = 1 segment/process
u Segmentation = many segments/process
u Fixed partition : Paging :: Variable partition : Segmentation

! Hardware support
u Multiple base/limit pairs, one per segment (segment table)
u Segments named by #, used to index into table
u Virtual addresses become <segment #, offset>

CSE 153 – Lecture 14 – Memory Management 56

Segment Lookups

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

