
CSE 153
Design of Operating

Systems

Winter 2023

Lecture 10: Monitors

Today/Looking ahead

! Today:
u Monitors (briefly)
u Synchronization wrap up
u Examples

! What’s next?
u Scheduling – how to decide which thread/process to run next?

» Lab 2 J
u Other concurrency issues

» Deadlock – the deadly embrace!

! Midterm!
CSE 153 – Lecture 10 -- Monitors 2

CSE 153 – Lecture 10 -- Monitors 3

Monitors
! A monitor is a programming language construct that

controls access to shared data
u Synchronization code added by compiler, enforced at runtime
u Why is this an advantage?

! A monitor encapsulates
u Shared data structures
u Procedures that operate on the shared data structures
u Synchronization between concurrent threads that invoke the

procedures

CSE 153 – Lecture 10 -- Monitors 4

Monitor Semantics
! A monitor guarantees mutual exclusion

u Only one thread can execute any monitor procedure at any
time (the thread is “in the monitor”)

u If a second thread invokes a monitor procedure when a first
thread is already executing one, it blocks

» So the monitor has to have a wait queue…

! Monitors also support waiting on conditions
u Situation: we enter a monitor and find that we need to wait

» E.g., producer when the buffer is full
u If we just wait, the monitor is blocked

» So, monitors support waiting while releasing the monitor

CSE 153 – Lecture 10 -- Monitors 5

Account Example

u Hey, that was easy!
u But what if a thread wants to wait inside the monitor?

» Such as “mutex(empty)” by reader in bounded buffer?

Monitor account {
double balance;

double withdraw(amount) {
balance = balance – amount;
return balance;

}
}

withdraw(amount)
balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount
return balance;

balance = balance – amount;
return balance;

Threads
block

waiting
to get
into

monitor

When first thread exits, another can
enter. Which one is undefined.

CSE 153 – Lecture 10 -- Monitors 6

Monitors, Monitor Invariants
and Condition Variables

! A monitor invariant is a safety property associated with the
monitor, expressed over the monitored variables. It holds
whenever a thread enters or exits the monitor.

! A condition variable is associated with a condition needed for a
thread to make progress once it is in the monitor.

Monitor M {
... monitored variables
Condition c;

void enter_mon (...) {
if (extra property not true) wait(c); waits outside of the monitor's mutex
do what you have to do
if (extra property true) signal(c); brings in one thread waiting on condition

}

CSE 153 – Lecture 10 -- Monitors 7

Condition Variables
! Condition variables support three operations:

u Wait – release monitor lock, wait for C/V to be signaled
» So condition variables have wait queues, too

u Signal – wakeup one waiting thread
u Broadcast – wakeup all waiting threads

! Condition variables are not boolean objects
u “if (condition_variable) then”… does not make sense
u “if (num_resources == 0) then wait(resources_available)”

does
u An example will make this more clear

CSE 153 – Lecture 10 -- Monitors 8

Monitor Bounded Buffer

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
if (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

Resource get_resource() {
if (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

u What happens if no threads are waiting when signal is called?

CSE 153 – Lecture 10 -- Monitors 9

Monitor Queues
Monitor bounded_buffer {

Condition not_full;
…other variables…
Condition not_empty;

void put_resource () {
…wait(not_full)…
…signal(not_empty)…

}
Resource get_resource () {

…
}

}

Waiting to enter

Waiting on
condition variables

Executing inside
the monitor

CSE 153 – Lecture 10 -- Monitors 14

Monitors and Java
! A lock and condition variable are in every Java object

u No explicit classes for locks or condition variables
! Every object is/has a monitor

u At most one thread can be inside an object’s monitor
u A thread enters an object’s monitor by

» Executing a method declared “synchronized”
! Can mix synchronized/unsynchronized methods in same class

» Executing the body of a “synchronized” statement
! Supports finer-grained locking than an entire procedure

! Every object can be treated as a condition variable
u Object::notify() has similar semantics as Condition::signal()

Advanced synchronization (FYI)

! Concurrency patterns (see little book of semaphores)

! Other advanced primitives
u Read-Copy-Update locks, Seqlocks, Futexes, transactional

memory

! Lock free synchronization

! Synchronization pathologies and performance tuning
u e.g., Convoying, contention

CSE 153 – Lecture 10 -- Monitors 16

More synchronization
practice

! You take a break from studying cs153 to play frisbee
with your friends. We have one or more frisbees, and
there are two or more of you. Each student waits until
they have a frisbee and their neighbor doesn’t have
one and then throws the frisbee.

! What happens if the number of frisbees is equal to the
number of players?

CSE 153 – Lecture 10 -- Monitors 17

More synchronization
practice

! CS153 students are studying for the midterm over the
national CS dish (Pizza). Each pizza pie has 8 slices.
Each student eyes the pie, then grabs the next slice.
u What race conditions can happen?
u How can you resolve them?

! A student that grabs the last slice should order the
next pie. Extend your implementation to do that

CSE 153 – Lecture 10 -- Monitors 18

