
CSE 153
Design of Operating

Systems

Winter 23

Lecture 8/9: Synchronization (2)

Goals of this lecture

1. Show that software locks don’t work
u àWe need help from the hardware

2. Introduce some hardware primitives that can help us
u Use them to build locks
u Understand their properties

3. Start building higher level synchronization
mechanisms
u Introducing Semaphores

CSE 153 – Lecture 8 – Synchronization 2

Synchronization so far…

! We looked at how to build software locks
u Difficult
u Worse: it doesn’t really work

» Compilers don’t think multi-threaded
» Hardware reorders memory ops: memory consistency models

! Lets get help from the hardware!

CSE 153 – Lecture 8 – Synchronization 3

while (true) {
try1 = true;
turn = 2;
while (try2 && turn != 1) ;
critical section
try1 = false;
outside of critical section

}

try1 = false;
turn = 2;

while (true) {
while (try2 && turn != 1) ;
critical section
outside of critical section

}

Compiler
transforms to

CSE 153 – Lecture 8 – Synchronization 4

Hardware to the rescue

! Crux of the problem:
u We get interrupted between checking the lock and setting it to 1
u Software locks reordered by compiler/hardware

! Possible solutions?
u Atomic instructions: create a new assembly language instruction

that checks and sets a variable atomically
» Cannot be interrupted!
» How do we use them?

u Disable interrupts altogether (no one else can interrupt us)

CSE 153 – Lecture 8 – Synchronization 5

Atomic Instructions:
Test-And-Set

! The semantics of test-and-set are:
u Record the old value
u Set the value to indicate available
u Return the old value

! Hardware executes it atomically!

! When executing test-and-set on “flag”
u What is value of flag afterwards if it was initially False? True?
u What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

CSE 153 – Lecture 8 – Synchronization 6

Using Test-And-Set
! Here is our lock implementation with test-and-set:

! When will the while return? What is the value of held?
! Does it satisfy critical region requirements? (mutex,

progress, bounded wait, performance?)

struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}

CSE 153 – Lecture 8 – Synchronization 7

Still a Spinlocks
! The problem with spinlocks is that they are wasteful

u Although still useful in some cases; lets discuss advantages
and disadvantages

! If a thread is spinning on a lock, then the scheduler
thinks that this thread needs CPU and puts it on the
ready queue

! If N threads are contending for the lock, the thread
which holds the lock gets only 1/N’th of the CPU

CSE 153 – Lecture 8 – Synchronization 8

Another solution: Disabling Interrupts

! Another implementation of acquire/release is to
disable interrupts:

! Note that there is no state associated with the lock
! Can two threads disable interrupts simultaneously?

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;
}

CSE 153 – Lecture 8 – Synchronization 9

On Disabling Interrupts
! Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)
! In a “real” system, this is only available to the kernel

u Why?

! Disabling interrupts is insufficient on a multiprocessor
u Back to atomic instructions

! Like spinlocks, only want to disable interrupts to
implement higher-level synchronization primitives
u Don’t want interrupts disabled between acquire and release

CSE 153 – Lecture 8 – Synchronization 10

Summarize Where We Are
! Goal: Use mutual exclusion to protect critical sections

of code that access shared resources
! Method: Use locks (spinlocks or disable interrupts)
! Problem: Critical sections can be long

acquire(lock)
…
Critical section
…
release(lock)

Disabling Interrupts:
! Should not disable interrupts
for long periods of time
! Can miss or delay important
events (e.g., timer, I/O)

Spinlocks:
! Threads waiting to acquire
lock spin in test-and-set loop
! Wastes CPU cycles
! Longer the CS, the longer
the spin
! Greater the chance for lock
holder to be interrupted
!Memory consistency model
causes problems (out of
scope of this class)

CSE 153 – Lecture 8 – Synchronization 11

Higher-Level Synchronization
! Spinlocks and disabling interrupts are useful for short

and simple critical sections
u Can be wasteful otherwise
u These primitives are “primitive” – don’t do anything besides

mutual exclusion
! Need higher-level synchronization primitives that:

u Block waiters
u Leave interrupts enabled within the critical section

! All synchronization requires atomicity
! So we’ll use our “atomic” locks as primitives to

implement them

12

Higher-Level Synchronization
! We looked at using locks to provide mutual exclusion
! Locks work, but they have some drawbacks when

critical sections are long
u Spinlocks – inefficient
u Disabling interrupts – can miss or delay important events

! Instead, we want synchronization mechanisms that
u Block waiters
u Leave interrupts enabled inside the critical section

CSE 153 – Lecture 8 – Synchronization

! Block waiters, interrupts enabled in critical sections
void release (lock) {

Disable interrupts;
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;
Enable interrupts;

}

CSE 153 – Lecture 8 – Synchronization 13

Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

Disable interrupts;
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
Enable interrupts;

}

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

! Can use a spinlock instead of disabling interrupts
void release (lock) {

spinlock->acquire();
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;
spinlock->release;

}

CSE 153 – Lecture 8 – Synchronization 14

Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

spinlock->acquire();
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
spinlock->release();

}

acquire(lock)
…
Critical section
…
release(lock)

Running or Blocked

spinning

spinning

15

Semaphores
! Semaphores are an abstract data type that provide mutual

exclusion to critical sections
u Block waiters, interrupts enabled within critical section
u Described by Dijkstra in THE system in 1968

! Semaphores are integers that support two operations:
u wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()
u signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()
u That's it! No other operations – not even just reading its value – exist

! Semaphore safety property: the semaphore value is always
greater than or equal to 0

CSE 153 – Lecture 8 – Synchronization

CSE 153 – Lecture 8 – Synchronization 16

Blocking in Semaphores
! Associated with each semaphore is a queue of waiting

threads/processes
! When wait() is called by a thread:

u If semaphore is open, thread continues
u If semaphore is closed, thread blocks on queue

! Then signal() opens the semaphore:
u If a thread is waiting on the queue, the thread is unblocked
u If no threads are waiting on the queue, the signal is

remembered for the next thread

CSE 153 – Lecture 8 – Synchronization 17

Semaphore Types
! Semaphores come in two types
! Mutex semaphore (or binary semaphore)

u Represents single access to a resource
u Guarantees mutual exclusion to a critical section

! Counting semaphore (or general semaphore)
u Multiple threads pass the semaphore determined by count

» mutex has count = 1, counting has count = N
u Represents a resource with many units available
u or a resource allowing some unsynchronized concurrent

access (e.g., reading)

18

Using Semaphores
! Use is similar to our locks, but semantics are different

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

wait(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
signal(S);
return balance;

}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads
block

It is undefined which thread
runs after a signal

critical
section

CSE 153 – Lecture 8 – Synchronization

19

Using Semaphores
! We’ve looked at a simple example for using

synchronization
u Mutual exclusion while accessing a bank account

! We’re going to use semaphores to look at more
interesting examples
u Counting critical region
u Ordering threads
u Readers/Writers
u Producer consumer with bounded buffers
u More general examples

CSE 153 – Lecture 8 – Synchronization

Example Problem(s)
! Create a critical region where up to three threads (but

no more) may enter at a time
u Exploits the counting feature of semaphores

! Order operations across two threads; thread A
executes first, then thread B executes
u Exploits the ability to initialize semaphores to different values

20CSE 153 – Lecture 8 – Synchronization

Bakery algorithm

CSE 153 – Lecture 8 – Synchronization 21

//choosing, ticket are shared
...
choosing[i] = TRUE;
ticket[i] = max (ticket[0], ticket [1] ...
ticket [n]) + 1;
choosing[i] = FALSE;
for(j = 0; j < n; j++) {
while (choosing[j] == TRUE);
while (ticket[j] != 0 &&
(ticket[j],j) < (ticket [i],i));
}
[Critical Section]
ticket[i] = 0;
...

