
CSE 153
Design of Operating

Systems

Winter 23

Lecture 7/8: Synchronization (1)

CSE 153 – Lecture 7 – Synchronization 2

Threads: Sharing Data
int num_connections = 0;

web_server() {
while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}
}

handle_request(int sock) {
++num_connections;
Process request
close(sock);

}

CSE 153 – Lecture 7 – Synchronization 3

Threads: Cooperation
! Threads voluntarily give up the CPU with thread_yield

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

CSE 153 – Lecture 7 – Synchronization 4

Synchronization
! For correctness, we need to control this cooperation

u Threads interleave executions arbitrarily and at different rates
u Scheduling is not under program control

! We control cooperation using synchronization
u Synchronization enables us to restrict the possible inter-

leavings of thread executions

What about processes?
! Does this apply to processes too?

u Yes!

! Processes are a little easier because they don’t share
by default

! But share the OS structures and machine resources
so we need to synchronize them too

u Basically, the OS is a multi-threaded program

CSE 153 – Lecture 7 – Synchronization 5

CSE 153 – Lecture 7 – Synchronization 6

Shared Resources
We initially focus on coordinating access to shared resources
! Basic problem

u If two concurrent threads are accessing a shared variable, and that
variable is read/modified/written by those threads, then access to
the variable must be controlled to avoid erroneous behavior

! Over the next couple of lectures, we will look at
u Exactly what problems occur
u How to build mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, etc.
u Patterns for coordinating accesses to shared resources

» Bounded buffer, producer-consumer, etc.

CSE 153 – Lecture 7 – Synchronization 7

A First Example
! Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

! Now suppose that you and your father share a bank
account with a balance of $1000

! Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account

CSE 153 – Lecture 7 – Synchronization 8

Example Continued
! We’ll represent the situation by creating a separate

thread for each person to do the withdrawals
! These threads run on the same bank machine:

! What’s the problem with this implementation?
u Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

CSE 153 – Lecture 7 – Synchronization 9

Interleaved Schedules
! The problem is that the execution of the two threads

can be interleaved:

! What is the balance of the account now?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

CSE 153 – Lecture 7 – Synchronization 10

Shared Resources
! Problem: two threads accessed a shared resource

u Known as a race condition (remember this buzzword!)

! Need mechanisms to control this access
u So we can reason about how the program will operate

! Our example was updating a shared bank account

! Also necessary for synchronizing access to any
shared data structure
u Buffers, queues, lists, hash tables, etc.

CSE 153 – Lecture 7 – Synchronization 11

When Are Resources
Shared?

! Local variables?
u Not shared: refer to data on the stack
u Each thread has its own stack
u Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

! Global variables and static objects?
u Shared: in static data segment, accessible by all threads

! Dynamic objects and other heap objects?
u Shared: Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

CSE 153 – Lecture 7 – Synchronization 12

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleavings be?
! We'll assume that the only atomic operations are reads

and writes of individual memory locations
u Some architectures don't even give you that!

! We'll assume that a context
switch can occur at any time

! We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

What do we do about it?
! Does this problem matter in practice?

! Are there other concurrency problems?

! And, if so, how do we solve it?
u Really difficult because behavior can be different every time

! How do we handle concurrency in real life?

CSE 153 – Lecture 7 – Synchronization 13

CSE 153 – Lecture 7 – Synchronization 14

Mutual Exclusion
! Mutual exclusion to synchronize access to shared

resources
u This allows us to have larger atomic blocks
u What does atomic mean?

! Code that uses mutual called a critical section
u Only one thread at a time can execute in the critical section
u All other threads are forced to wait on entry
u When a thread leaves a critical section, another can enter
u Example: sharing an ATM with others

! What requirements would you place on a critical
section?

CSE 153 – Lecture 7 – Synchronization 15

Critical Section Requirements
Critical sections have the following requirements:
1) Mutual exclusion (mutex)

u If one thread is in the critical section, then no other is
2) Progress

u A thread in the critical section will eventually leave the critical section
u If some thread T is not in the critical section, then T cannot prevent

some other thread S from entering the critical section
3) Bounded waiting (no starvation)

u If some thread T is waiting on the critical section, then T will
eventually enter the critical section

4) Performance
u The overhead of entering and exiting the critical section is small with

respect to the work being done within it

CSE 153 – Lecture 7 – Synchronization 16

About Requirements
There are three kinds of requirements that we'll use
! Safety property: nothing bad happens

u Mutex
! Liveness property: something good happens

u Progress, Bounded Waiting
! Performance requirement

u Performance
! Properties hold for each run, while performance

depends on all the runs
u Rule of thumb: When designing a concurrent algorithm, worry

about safety first (but don't forget liveness!).

CSE 153 – Lecture 7 – Synchronization 17

Mechanisms For Building
Critical Sections

! Locks
u Primitive, minimal semantics, used to build others

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit

! Architecture help
u Atomic read/write

» Can it be done?

How do we implement a lock?
First try

! Does this work?
Assume reads/writes
are atomic

! The lock itself is a
critical region!
u Chicken and egg

! Computer scientist
struggled with how to
create software locks

CSE 153 – Lecture 7 – Synchronization 18

pthread_trylock(mutex) {
if (mutex==0) {
mutex= 1;
return 1;
} else return 0;

}

Thread 0, 1, …

…//time to access critical region
while(!pthread_trylock(mutex); // wait
<critical region>
pthread_unlock(mutex)

CSE 153 – Lecture 7 – Synchronization 19

Second try

while (true) {
while (turn != 1) ;
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2) ;
critical section
turn = 1;
outside of critical section

}

int turn = 1;

This is called alternation
It satisfies mutex:

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then
turn == 2

• (turn == 1) ≡ (turn != 2)

Is there anything wrong with this solution?

CSE 153 – Lecture 7 – Synchronization 20

Third try – two variables

while (flag[1] != 0);
flag[0] = 1;
critical section
flag[0]=0;
outside of critical section

while (flag[0] != 0);
flag[1] = 1;
critical section
flag[1]=0;
outside of critical section

Bool flag[2]

We added two variables to try to break the race for the same variable

Is there anything wrong with this solution?

CSE 153 – Lecture 7 – Synchronization 21

Fourth try – set before you
check

Is there anything wrong with this solution?

flag[0] = 1;
while (flag[1] != 0);
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0);
critical section
flag[1]=0;
outside of critical section

Bool flag[2]

Fifth try – double check and
back off

CSE 153 – Lecture 7 – Synchronization 22

flag[0] = 1;
while (flag[1] != 0) {

flag[0] = 0;
wait a short time;
flag[0] = 1;

}
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

flag[1] = 0;
wait a short time;
flag[1] = 1;

}
critical section
flag[1]=0;
outside of critical section

Bool flag[2]

Six try – Dekker’s Algorithm

CSE 153 – Lecture 7 – Synchronization 23

flag[0] = 1;
while (flag[1] != 0) {

if(turn == 2) {
flag[0] = 0;
while (turn == 2);

flag[0] = 1;
} //if

}//while
critical section
flag[0]=0;
turn=2;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

if(turn == 1) {
flag[1] = 0;
while (turn == 1);

flag[1] = 1;
} //if

}//while
critical section
flag[1]=0;
turn=1;
outside of critical section

Bool flag[2]l
Int turn = 1;

CSE 153 – Lecture 7 – Synchronization 25

Another solution: Peterson's
Algorithm

while (true) {
try1 = true;
turn = 2;
while (try2 && turn != 1) ;
critical section
try1 = false;
outside of critical section

}

while (true) {
try2 = true;
turn = 1;
while (try1 && turn != 2) ;
critical section
try2 = false;
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

• This satisfies all the requirements
• Here's why...

CSE 153 – Lecture 7 – Synchronization 26

Mutex with Atomic R/W:
Peterson's Algorithm

while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

2 turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

3 while (try2 && turn != 1) ;
{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨

(try2 ∧ (yellow at 6 or at 7)) }
critical section

4 try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

6 turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2) ;
{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨

(try1 ∧ (blue at 2 or at 3)) }
critical section

8 try2 = false;
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7))
∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blue at 2 or at 3))

... ⇒ (turn == 1 ∧ turn == 2)

Some observations
! This stuff (software locks) is hard

u Hard to get right
u Hard to prove right

! It also is inefficient
u A spin lock – waiting by checking the condition repeatedly

! Even better, software locks don’t really work
u Compiler and hardware reorder memory references from

different threads
! Something called memory consistency model
! Well beyond the scope of this class J

! So, we need to find a different way
u Hardware help; more in a second

CSE 153 – Lecture 7 – Synchronization 27

