
April 4-7, 2016 | Silicon Valley

Nikolay Sakharnykh, 4/5/2016

THE FUTURE OF UNIFIED MEMORY

2

HETEROGENEOUS ARCHITECTURES
Memory hierarchy

4/8/2016

CPU

System
Memory

GPU
Memory

GPU 0 GPU 1 GPU N

4

UNIFIED MEMORY
Starting with Kepler and CUDA 6

4/8/2016

Custom Data Management

System
Memory GPU Memory

Developer View With
Unified Memory

Unified Memory

6

UNIFIED MEMORY
Single pointer for CPU and GPU

4/8/2016

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

CPU code GPU code with Unified Memory

7

UNIFIED MEMORY ON PRE-PASCAL
Code example explained

GPU always has address translation during the kernel execution

Pages allocated before they are used – cannot oversubscribe GPU

Pages migrate to GPU only on kernel launch – cannot migrate on-demand

4/8/2016

cudaMallocManaged(&ptr, ...);

*ptr = 1;

qsort<<<...>>>(ptr);

CPU page fault: data migrates to CPU

Pages are populated in GPU memory

Kernel launch: data migrates to GPU

8

UNIFIED MEMORY ON PRE-PASCAL
Kernel launch triggers bulk page migrations

4/8/2016

GPU memory
~0.3 TB/s

System memory
~0.1 TB/s

PCI-E
kernel
launch page

fault

page
fault

cudaMallocManaged

10

UNIFIED MEMORY ON PASCAL
Now supports GPU page faults

If GPU does not have a VA translation, it issues an interrupt to CPU

Unified Memory driver could decide to map or migrate depending on heuristics

Pages populated and data migrated on first touch

4/8/2016

cudaMallocManaged(&ptr, ...);

*ptr = 1;

qsort<<<...>>>(ptr);

CPU page fault: data allocates on CPU

 Empty, no pages anywhere (similar to malloc)

GPU page fault: data migrates to GPU

11

UNIFIED MEMORY ON PASCAL
True on-demand page migrations

4/8/2016

GPU memory
~0.7 TB/s

System memory
~0.1 TB/s

interconnect page
fault
page
fault

page
fault

map VA to
system memory

cudaMallocManaged

12

UNIFIED MEMORY ON PASCAL
Improvements over previous GPU generations

On-demand page migration

GPU memory oversubscription is now practical (*)

Concurrent access to memory from CPU and GPU (page-level coherency)

Can access OS-controlled memory on supporting systems

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory

4/8/2016

13

UNIFIED MEMORY: ATOMICS

Pre-Pascal: atomics from the GPU are atomic only for that GPU

 GPU atomics to peer memory are not atomic for remote GPU

 GPU atomics to CPU memory are not atomic for CPU operations

Pascal: Unified Memory enables wider scope for atomic operations

 NVLINK supports native atomics in hardware

 PCI-E will have software-assisted atomics

4/8/2016

14

UNIFIED MEMORY: MULTI-GPU

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem

 Use CUDA_MANAGED_FORCE_DEVICE_ALLOC to mitigate this

Pascal: Unified Memory works very similar to CPU-GPU scenario

GPU A accesses GPU B memory: GPU A takes a page fault

 Can decide to migrate from GPU B to GPU A, or map GPU A

GPUs can map each other’s memory, but CPU cannot access GPU memory directly

4/8/2016

15

NEW APPLICATION USE CASES

17

2/4

1/1 1/2

1/4

2/5
2/4 2/2

3/3

ON-DEMAND PAGING
Maximum flow

4/8/2016

source
sink

1/3

18

ON-DEMAND PAGING
Maximum flow

Edmonds-Karp algorithm pseudo-code:

Implementing this algorithm without Unified Memory is just painful

Hard to predict what edges will be touched on GPU or CPU, very data-driven

4/8/2016

while (augmented path exists)
{
 run BFS to find augmented path
 backtrack and update flow graph
}

Parallel: run on GPU
Serial: run on CPU

19

ON-DEMAND PAGING
Maximum flow with Unified Memory

Pre-Pascal:

 The whole graph has to be migrated to GPU memory

 Significant start-up time, and graph size limited to GPU memory size

Pascal:

 Both CPU and GPU bring only necessary vertices/edges on-demand

 Can work on very large graphs that cannot fit into GPU memory

 Multiple BFS iterations can amortize the cost of page migration

4/8/2016

20

ON-DEMAND PAGING
Maximum flow performance projections

4/8/2016

GPU memory
oversubscription

Speed-up vs GPU directly
accessing CPU memory (zero-copy)

Baseline:
migrate on first touch

Optimized:
developer assists with hints for
best placement in memory

On-demand migration

21

GPU OVERSUBSCRIPTION
Now possible with Pascal

Many domains would benefit from GPU memory oversubscription:

 Combustion – many species to solve for

 Quantum chemistry – larger systems

 Ray-tracing - larger scenes to render

Unified Memory on Pascal will provide oversubscription by default!

4/8/2016

22

GPU OVERSUBSCRIPTION
HPGMG: high-performance multi-grid

4/8/2016

Tesla K40 (12 GB)

Tesla P100 (16 GB)

*Tesla P100 performance is very early modelling results

23

ON-DEMAND ALLOCATION
Dynamic queues

4/8/2016

Problem: GPU populates queues with unknown size, need to overallocate

Solution: use Unified Memory for allocations (on Pascal)

Here only 35% of memory is actually used!

24

ON-DEMAND ALLOCATION
Dynamic queues

4/8/2016

Memory is allocated on-demand so we don’t waste resources

All translations from a given SM stall on page fault on Pascal

page page

25

PERFORMANCE TUNING

26

PERFORMANCE TUNING
General guidelines

Minimize page fault overhead:

 Fault handling can take 10s of μs, while execution stalls

Keep data local to the accessing processor:

 Higher bandwidth, lower latency

Minimize thrashing:

 Migration overhead can exceed locality benefits

4/8/2016

27

PERFORMANCE TUNING
New hints in CUDA 8

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

 Unified Memory alternative to cudaMemcpyAsync

 Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

 Specifies allocation and usage policy for memory region

 User can set and unset advices at any time

4/8/2016

28

PREFETCHING
Simple code example

4/8/2016

void foo(cudaStream_t s) {
 char *data;
 cudaMallocManaged(&data, N);

 init_data(data, N);

 cudaMemPrefetchAsync(data, N, myGpuId, s);
 mykernel<<<..., s>>>(data, N, 1, compare);
 cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s);
 cudaStreamSynchronize(s);

 use_data(data, N);

 cudaFree(data);
}

CPU faults are less expensive
may still be worth avoiding

GPU faults are expensive
prefetch to avoid excess faults

29

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);

mykernel<<<...>>>(data, N);

use_data(data, N);

READ DUPLICATION

cudaMemAdviseSetReadMostly

 Use when data is mostly read and occasionally written to

4/8/2016

Read-only copy will be
created on GPU page fault

CPU reads will not page fault

30

READ DUPLICATION

Prefetching creates read-duplicated copy of data and avoids page faults

Note: writes are allowed but will generate page fault and remapping

4/8/2016

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);
cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy);
mykernel<<<...>>>(data, N);

use_data(data, N);

Read-only copy will be
created during prefetch

CPU and GPU reads
will not fault

32

DIRECT MAPPING
Preferred location and direct access

cudaMemAdviseSetPreferredLocation

 Set preferred location to avoid migrations

 First access will page fault and establish mapping

cudaMemAdviseSetAccessedBy

 Pre-map data to avoid page faults

 First access will not page fault

 Actual data location can be anywhere

4/8/2016

41

INTERACTION WITH OPERATING SYSTEM

42

LINUX AND UNIFIED MEMORY
ANY memory will be available for GPU*

4/8/2016

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 free(data);
}

CPU code GPU code with Unified Memory

*on supported operating systems

43

HETEROGENEOUS MEMORY MANAGER
HMM

HMM will manage a GPU page table and keep it synchronize with the CPU page table

 Also handle DMA mapping on behalf of the device

HMM allows migration of process memory to device memory

 CPU access will trigger fault that will migrate memory back

HMM is not only for GPUs, network devices can use it as well

 Mellanox has on-demand paging mechanism, so RDMA will work in future

4/8/2016

44

TAKEAWAYS

Use Unified Memory now! Your programs will work even better on Pascal

Think about new use cases to take advantage of Pascal capabilities

Performance hints will provide more flexibility for advanced developers

Even more powerful on supported OS platforms

4/8/2016

