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THE FUTURE OF UNIFIED MEMORY 
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HETEROGENEOUS ARCHITECTURES 
Memory hierarchy 
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UNIFIED MEMORY 
Starting with Kepler and CUDA 6 
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Custom Data Management 

System 
Memory GPU Memory 

Developer View With 
Unified Memory 

Unified Memory 
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UNIFIED MEMORY 
Single pointer for CPU and GPU 

4/8/2016 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  cudaFree(data); 
} 

CPU code GPU code with Unified Memory 
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UNIFIED MEMORY ON PRE-PASCAL 
Code example explained 

 

 

 

 

GPU always has address translation during the kernel execution 

Pages allocated before they are used – cannot oversubscribe GPU 

Pages migrate to GPU only on kernel launch – cannot migrate on-demand 
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cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data migrates to CPU  

Pages are populated in GPU memory 

Kernel launch: data migrates to GPU  
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UNIFIED MEMORY ON PRE-PASCAL 
Kernel launch triggers bulk page migrations 

4/8/2016 
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~0.3 TB/s 
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cudaMallocManaged 
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UNIFIED MEMORY ON PASCAL 
Now supports GPU page faults 

 

 

 

 

If GPU does not have a VA translation, it issues an interrupt to CPU 

Unified Memory driver could decide to map or migrate depending on heuristics 

Pages populated and data migrated on first touch 
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cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data allocates on CPU  

       Empty, no pages anywhere (similar to malloc) 

GPU page fault: data migrates to GPU  
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UNIFIED MEMORY ON PASCAL 
True on-demand page migrations 
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UNIFIED MEMORY ON PASCAL 
Improvements over previous GPU generations 

On-demand page migration  

GPU memory oversubscription is now practical (*) 

Concurrent access to memory from CPU and GPU (page-level coherency) 

Can access OS-controlled memory on supporting systems 

 

 

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory 
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UNIFIED MEMORY: ATOMICS 

Pre-Pascal: atomics from the GPU are atomic only for that GPU 

 GPU atomics to peer memory are not atomic for remote GPU 

 GPU atomics to CPU memory are not atomic for CPU operations 

 

Pascal: Unified Memory enables wider scope for atomic operations 

 NVLINK supports native atomics in hardware 

 PCI-E will have software-assisted atomics 
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UNIFIED MEMORY: MULTI-GPU 

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem 

 Use CUDA_MANAGED_FORCE_DEVICE_ALLOC to mitigate this 

 

Pascal: Unified Memory works very similar to CPU-GPU scenario 

GPU A accesses GPU B memory: GPU A takes a page fault 

 Can decide to migrate from GPU B to GPU A, or map GPU A 

GPUs can map each other’s memory, but CPU cannot access GPU memory directly 

4/8/2016 
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NEW APPLICATION USE CASES 
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ON-DEMAND PAGING 
Maximum flow 
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ON-DEMAND PAGING 
Maximum flow 

Edmonds-Karp algorithm pseudo-code: 

 

 

 

 

Implementing this algorithm without Unified Memory is just painful 

Hard to predict what edges will be touched on GPU or CPU, very data-driven 
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while (augmented path exists)  
{ 
  run BFS to find augmented path 
  backtrack and update flow graph 
} 

Parallel: run on GPU 
Serial: run on CPU 
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ON-DEMAND PAGING 
Maximum flow with Unified Memory 

Pre-Pascal:  

 The whole graph has to be migrated to GPU memory 

 Significant start-up time, and graph size limited to GPU memory size 

Pascal:  

 Both CPU and GPU bring only necessary vertices/edges on-demand 

 Can work on very large graphs that cannot fit into GPU memory 

 Multiple BFS iterations can amortize the cost of page migration 
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ON-DEMAND PAGING 
Maximum flow performance projections 
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GPU memory 
oversubscription 

Speed-up vs GPU directly  
accessing  CPU memory (zero-copy) 
 
Baseline:  
migrate on first touch 
 
Optimized:  
developer assists with hints for 
best placement in memory  

On-demand migration 
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GPU OVERSUBSCRIPTION 
Now possible with Pascal 

Many domains would benefit from GPU memory oversubscription: 

 Combustion – many species to solve for 

 Quantum chemistry – larger systems 

 Ray-tracing - larger scenes to render 

 

 

Unified Memory on Pascal will provide oversubscription by default! 

4/8/2016 
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GPU OVERSUBSCRIPTION 
HPGMG: high-performance multi-grid 
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Tesla K40 (12 GB) 

Tesla P100 (16 GB) 

*Tesla P100 performance is very early modelling results 
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ON-DEMAND ALLOCATION 
Dynamic queues 
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Problem: GPU populates queues with unknown size, need to overallocate 

Solution: use Unified Memory for allocations (on Pascal) 

Here only 35% of memory is actually used! 
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ON-DEMAND ALLOCATION 
Dynamic queues 
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Memory is allocated on-demand so we don’t waste resources 

All translations from a given SM stall on page fault on Pascal 

page page 
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PERFORMANCE TUNING 
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PERFORMANCE TUNING 
General guidelines 

Minimize page fault overhead:  

 Fault handling  can take 10s of μs, while execution stalls 

Keep data local to the accessing processor:  

 Higher bandwidth, lower latency 

Minimize thrashing:  

 Migration overhead can exceed locality benefits 

 

4/8/2016 
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PERFORMANCE TUNING 
New hints in CUDA 8 

cudaMemPrefetchAsync(ptr, length, destDevice, stream) 

 Unified Memory alternative to cudaMemcpyAsync 

 Async operation that follows CUDA stream semantics  

cudaMemAdvise(ptr, length, advice, device) 

 Specifies allocation and usage policy for memory region 

 User can set and unset advices at any time 

 

4/8/2016 
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PREFETCHING 
Simple code example 
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void foo(cudaStream_t s) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  init_data(data, N);  
 
  cudaMemPrefetchAsync(data, N, myGpuId, s); 
  mykernel<<<..., s>>>(data, N, 1, compare); 
  cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s); 
  cudaStreamSynchronize(s); 
 
  use_data(data, N); 
 
  cudaFree(data); 
} 

CPU faults are less expensive  
may still be worth avoiding 

GPU faults are expensive 
prefetch to avoid excess faults 
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init_data(data, N); 
 
cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId); 
 
mykernel<<<...>>>(data, N);  
 
use_data(data, N); 
 

READ DUPLICATION 

cudaMemAdviseSetReadMostly 

 Use when data is mostly read and occasionally written to 

4/8/2016 

Read-only copy will be 
created on GPU page fault 

CPU reads will not page fault 
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READ DUPLICATION 

Prefetching creates read-duplicated copy of data and avoids page faults 

Note: writes are allowed but will generate page fault and remapping 

 

4/8/2016 

 
init_data(data, N); 
 
cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId); 
cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy); 
mykernel<<<...>>>(data, N);  
 
use_data(data, N); 
 

Read-only copy will be 
created during prefetch 

CPU and GPU reads  
will not fault 
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DIRECT MAPPING 
Preferred location and direct access 

cudaMemAdviseSetPreferredLocation 

 Set preferred location to avoid migrations 

 First access will page fault and establish mapping 

cudaMemAdviseSetAccessedBy 

 Pre-map data to avoid page faults 

 First access will not page fault 

 Actual data location can be anywhere 

4/8/2016 
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INTERACTION WITH OPERATING SYSTEM 
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LINUX AND UNIFIED MEMORY 
ANY memory will be available for GPU* 
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void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  free(data); 
} 

CPU code GPU code with Unified Memory 

*on supported operating systems 
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HETEROGENEOUS MEMORY MANAGER 
HMM 

HMM will manage a GPU page table and keep it synchronize with the CPU page table 

 Also handle DMA mapping on behalf of the device 

HMM allows migration of process memory to device memory 

 CPU access will trigger fault that will migrate memory back 

HMM is not only for GPUs, network devices can use it as well 

 Mellanox has on-demand paging mechanism, so RDMA will work in future 

 

 
4/8/2016 
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TAKEAWAYS 

Use Unified Memory now! Your programs will work even better on Pascal 

Think about new use cases to take advantage of Pascal capabilities 

Performance hints will provide more flexibility for advanced developers 

Even more powerful on supported OS platforms 
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