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Abstract—Information-Centric Networks (ICN) enable access
to content, services and objects based on identity, independent
of location. The different ICN architectures, Named Data Net-
working (NDN), MobilityFirst (MF), etc., are likely to begin
as islands of distinct networks, while they evolve and gain
acceptance. Information currently predominantly accessible over
IP infrastructures, will also begin residing in the other domains.
Thus, there is a strong need to interoperate across these network
architectures and access content residing in any of them. We
present a framework for interoperability across three very
different (NDN, MobilityFirst and IP) network architectures.
Our framework uses Object Resolution Services to map end-user
keyword-based search queries to object names across domains,
and uses gateways that retain essential interoperability state.
The framework and gateway design supports interoperability
in a general way, allowing “adapter plugins” to accommodate
different ICN architectures (including others beyond NDN and
MF) or IP on each gateway interface. Additionally, we provide a
formal approach for modeling and verifying essential properties
such as reachability, returnability and no-conflict via exhaustive
search in configurations based on our framework. Measurement
results from an implementation of the gateways between IP, NDN
and MF show that the added latency is small and manageable.

I. INTRODUCTION

Users primarily seek information over the network without
necessarily wanting to focus on its location or the underlying
mechanisms used to retrieve that information. However, the
current way of using “location-based” access in IP results
in a less convenient and less efficient means for informa-
tion dissemination and retrieval. Information-Centric Networks
(ICNs) separate content identity from location. ICN enables
access of content based on its name, from wherever it resides,
supporting mobility as well as accessing the named content
from the “best” source. It also allows for ubiquitous network
wide caching to reduce access latency. There are a number
of ICN architectures – Named Data Networking (NDN) [1],
[2] and MobilityFirst (MF) [3], XIA [4], PURSUIT [5], to
mention a few – we primaily focus on NDN and MF here.

NDN [2] (a follow-on to Content Centric Networking
(CCN) [1]), uses hierarchical, human readable content names
to access information. NDN is based on a request/response,
pull-based data retrieval model for all applications. The user-
readable hierarchical names in NDN capture relationships
between related content items. Mobility in NDN is supported
by clients re-issuing Interest (request) packets. NDN routers
cache content, thus benefiting subsequent requests for the
same content. MobilityFirst (MF) [3], on the other hand, uses
20-byte flat Globally Unique Identifiers (GUIDs) to identify
each content, user, object or service. A comparison between
the two naming schemas, i.e., hierarchical and flat labels is
provided in [6]. The fact that each object can have a single
GUID that can be mapped to different Network Addresses
(NAs) as the object moves makes MF suitable for mobility.

MF also supports in-network caching on routers. MF uses a
reliable transport and store-and-forward capability in routers to
support mobile nodes, disconnected operation and poor quality
links. NDN propagates content names from publishers to the
entire network, thus populating the Forwarding Information
Base (FIB) of NDN routers. Thus, the mapping from content
names to the location of the content is done implicitly, “on
path”, when a request for the content name is routed along the
shortest path to the nearest publisher. MF on the other hand
has a logically centralized Global Name Resolution System
(GNRS) to perform the content/object name to location (i.e.,
network address) mapping.

The fundamental architectural differences between the Fu-
ture Internet Architectures (FIA) NDN and MF, and with the
current IP architecture, requires a framework for interoperabil-
ity to allow producers and consumers to access information
freely across these distinct architectures. Then, content can be
anywhere, with the interoperability framework bridging these
islands that have distinct architectures and creating an overall
connected environment for seamless information sharing.

The differences between each of these architectures, how-
ever, makes interoperability challenging: they have different
service interfaces, different routing policies (RPF in NDN, uni-
directional shortest-path forwarding in IP and MF), different
naming schemas (hierarchical name space in NDN and flat-
ids in MF) and different semantics (destination in IP packets
denote nodes, in MF packets it denotes either objects or con-
tent, and content names in NDN). Name-to-location resolution
is different (on-path for NDN vs. off-path for MF with the
GNRS or for IP with DNS) and different types of packets
(dual interest/data packets in NDN, one type of packet in IP
and MF) and packet formats (different header fields in each).

We seek to overcome these challenges for interoperability
across these ICN architectures and IP in this paper. There
are some key properties that our interoperability framework
supports. Our foremost goal is an obvious one: not require
the individual architectures (IP, NDN or MF) to change
to accommodate interoperability. Routers and end-systems
should operate as is, without change. The naming schema in
each architecture should not have to change, and be allowed
to evolve independently. As far as possible, all the services
offered in each of the domains should be available to be used
across domains. We also seek to avoid creating yet another
canonical network layer that spans all the domains.

In this paper, we present an ICN interoperability framework
and protocol that supports three main services across NDN,
MF and IP architectures: 1) queries for dynamic content,
exemplified by the task of object resolution to obtain names
(search for a keyword and get a list of content names asso-
ciated with it), 2) static content retrieval (getting the content
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associated with a requested name) and 3) publish/subscribe
(getting all future publications associated with a subscrip-
tion keyword). The interoperability between domains with
different architectures is achieved by having an appropriate
translating gateway at the intersection of the domains. The
gateway maintains state for each session, so as to map and
demultiplex packet flows in each direction (match requests
to responses). The protocols and mechanisms in each of the
domains remains unchanged. We implement the gateway with
a common core and having an “adapter” on its interface to
be able to communicate with the architecture of the domain
that it connects to on that interface. While the framework
and protocols we design address interoperability between
IP, NDN and MF, the approach allows for interoperability
with other network architectures as well, as long as they
have a set of information elements to support the common
communication patterns. Then, an adapter can be built for the
new domain’s architecture. One aspect that is implicit with all
the architectures is the assumption that the name of an object
or content desired by the user/client application is known and
is used for constructing a request. We incorporate an “Object
Resolution Service” (ORS) [7] to provide client applications
with the object/content name and the domain type it resides
in, so that the client can incorporate the domain type in the
content request.

To demonstrate that our framework is correct, we formally
model the proposed specification and verify essential proper-
ties using the Alloy tool [8]. We also seek to have a gateway
that is efficient and scalable. Our measurements on a testbed
implementing the gateway between NDN, IP and MF, indicate
that the overhead is reasonable.

The contributions of this paper are the following: 1) a
generic framework among ICN domains for interoperability,
including static/dynamic content retrieval and publish/sub-
scribe; 2) an implementation of the framework which provides
interoperability among IP (HTTP), NDN and MF; 3) a formal
model for interoperability to verify properties in all possible
configurations; and 4) measurements from an implementation
of the framework across three different domains to show the
performance of our approach.

II. DESIGN RATIONALE

In this section, we address what we believe are the important
design goals considering the communication patterns and
services supported across the ICNs and how application layers
have used the underlying IP communication fabric. We then
examine a number of alternatives that have been proposed in
the literature and discuss possible alternative interoperability
solutions.

A. ICN Architectures

NDN [1], [2] is a network architecture made up of human-
readable, hierarchical names for content, special packets In-
terest/Data that carry request/response for named content, and
routers that are capable of forwarding and caching content.
NDN uses Reverse Path Forwarding (RPF) to deliver requested

content back to the client based on request state maintained
in the network. For static content, i.e., content that does
not change frequently or is independent of time of request,
router caches can respond, thus reducing the response time
for content access.
MobilityFirst(MF [3]) uses flat Globally Unique Identifiers
(GUIDs) to identify each content, user, device, etc. A key
component of MF, is a distributed Global Name Resolution
Service (GNRS [9], [10], [11]) for name-to-address resolu-
tion. GNRS keeps a mapping between GUIDs and Network
Addresses (NAs). MF helps when nodes are mobile, since the
GUIDs are fixed, despite frequently varying NAs. MF allows
for late binding, so that packets are forwarded towards the
destination, but the router close to the destination can perform
another lookup to reach a mobile destination with a new NA.

B. Communication Patterns

We recognize that there are a number of different services
that are provided by the different ICN architectures and IP.
The interoperability design needs to support all of these.
Content retrieval is key. This is supported across all of the
architectures. We differentiate between “static” and “dynamic”
content. Static content does not change (at least not frequently)
and is independent of the particular request instance. Examples
of these are multimedia content or static web pages. Static
content can be cached in the network. Dynamic content is
such that the response data depends on the information in the
request, as for example keywords in a search query. Dynamic
content can based on a current server-generated response
and be based on the current state of the information layer.
Examples may be a query for the current weather or keyword
search. Thus, the retrieved response should generally not be
from a cache.

We also have additional service interfaces that are widely
used for information access. E.g. publish/subscribe, where
a user subscribes to an information item (or a group of
items based on a topic hierarchy). The information may be
generated at any point after the subscription is made (the usual
case) or it may be generated even before the subscription
(in which case respositories or information brokers of past
publications have to be set up to respond).

The underlying communication capability in each domain
supports both unicast and multicast. At the naming layer,
content items may be assigned individual names. In addition,
architectures such as NDN and IP support name relationships
such as hierarchies to be used for identifying information
aggregates.

C. Existing Interoperability Solutions

Interoperability between different network architectures has
been studied in the past [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21]. Interoperability approaches can generally be
classified into tunneling/overlay, translation at the intersection
between two domains, or conversion to a single canonical
form (essentially introducing a new common layer). Many
of the current approaches use tunneling to go across other
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Fig. 1: Alternative solutions for interoperability across different domains.

domains, and typically consider the pairwise interoperability
between domains (often between an ICN and an IP network
carrying with HTTP/TCP). Some approaches propose the use
of a new layer (serving as a new “thin waist”) to enable
the interoperability across multiple domains. The translation
approaches so far have sought to translate between a specific
ICN architecture and IP (HTTP) traffic.

1) Tunneling: To support interoperability between ICN and
IP, tunneling solutions have been proposed. One protocol is an
overlay and tunnels are created to traverse routers of another
protocol (see Fig. 1a). They can be generally classified into
NDN-overlay and IP-overlay methods. The basic design of
NDN [1], [12] and its pub/sub extension [13], [14] adopt
an NDN-overlay – NDN packets are encapsulated into UDP,
TCP or native IP packets while going through IP routers. This
design enables the incremental deployment of ICN over IP
– starting from having key nodes (e.g., end hosts, RPs) in
the network support basic ICN functionality. Then, deploying
more ICN-capable nodes provides better scalability.

In contrast to NDN-over-IP overlay solutions, IP-over-NDN
overlay solutions (e.g., VoCCN [15], TCP/ICN [16], IP-over-
ICN [17]) allow legacy (TCP- or HTTP-based) applications
function across an ICN infrastructure. Fig. 1a shows an
example of an IP (or HTTP/TCP) network on top of NDN,
where IP packets are encapsulated in NDN headers. These
headers are decapsulated when leaving the NDN domain.
VoCCN encapsulates SIP [22] and (S)RTP [23], [24] in the
NDN Data packets as part of the overlay approach. Since
vanilla NDN does not support a sender pushing content to
the receiver, VoCCN makes the receiver initiate a request
for each next possible segment (identified by “/prefix/call-
id/rtp/seq-no”). To enable efficient data push (similar to TCP)
in NDN, TCP/ICN adopts two NDN proxies (forward and
reverse) in the process: the forward proxy caches the data
(encapsulated TCP packet from the sender) to be pushed and
sends an Interest (with TCP/IP headers as notification) to the
reverse proxy; the reverse proxy then requests the cached data,
decapsulates it and forwards the TCP packet to the receiver.
Each data chunk is identified by “/prefix/conn-id/seq #”.

While these solutions made significant contributions in
the early stage of ICN (enabling rapid deployment of ICN,
and supporting legacy functionality in ICN), there are still
several challenges while designing a general platform for
interoperability among all these domains. The first is that the
provider and consumer have to be in the same domain (the
overlay domain). This prevents an NDN client from requesting
content provided by an IP repository unless the IP repository

is willing to be an NDN node. While such an approach may
be feasible when we only consider two architectures such as
NDN and IP, it can be difficult when there are more domains
like MF, XIA [4], PURSUIT [5], NetInf [25], etc. To ensure
the global reachability, it would require all the consumers (or
providers) to have access to services across all domains. This
needs to be done in an efficient manner. Further, it becomes
increasingly inflexible as we add new domains.

Secondly, tunneling cannot take advantage of the capabili-
ties (e.g., caching) in the underlying domain since the underlay
usually does not understand the semantics of the overlay.
While such solutions are acceptable for content that will only
be consumed once (e.g., VoCCN), they are inefficient when de-
livering popular content that is repeatedly accessed.Therefore,
we believe there is a need to rethink interoperability – espe-
cially taking advantage of the capabilities (e.g., caching) in all
of the domains. We also need to recognize the need to treat
both static and dynamic content as separate classes.

2) A common (canonical) name layer: We could provide
the interoperability among all the ICN domains and IP using
another unified/canonical name layer (e.g., “Can” layer in
Fig. 1b). This layer provides the service interface for the
common communication patterns, §II-B. To send a canonical
packet (“Can packet” in the Fig.), the end-hosts need to create
an equivalent domain-specific encapsulation (NDN header on
the consumer side and MF header on the repository side).
At the border of each domain, the gateways (Gateway1 and
Gateway2) need to recreate the domain-specific encapsulation
similar to the end-hosts (e.g., IP header through a set of IP
routers).

The benefit of the solution is that it can take ad-
vantage of the domain capabilities since the canoni-
cal packet can be translated to something the domain
nodes understand. E.g., a content with canonical name
“ICDCS18.Interoperability.pdf” can be mapped to NDN chunk
names “ccnx://ICDCS18/Interoperability.pdf/20170508/ seg”,
HTTP URL “http://ICDCS18/Inter-operability.pdf”, and MF
GUID “FC 27. . . 9483”. Each domain can then leverage either
the in-network cache (in NDN and MF) or the application-
layer cache (CDN in HTTP/IP) to improve performance in
content retrieval. Moreover, the end-hosts do not need to
worry about supporting multiple domains as is required in
tunneling solutions, since all the end-hosts communicate over
the canonical layer.

While this solution addresses the issues with the tunneling
solutions, it also poses several challenges. The most critical is
that it requires another modification on the end-host logic and

3



gateway functionality, in addition to supporting the particular
ICN.This would make the deployment of the new canonical
layer to be even more difficult. Another concern with the
canonical layer solution is the namespace size in each of the
domains. Since each content, no matter where it is served,
requires a name in the canonical domain, the namespace size
in the canonical domain is the union of the total number of
contents in all the domains. This makes it difficult for the
domains/gateways to maintain the mapping between canonical
names and domain-specific names (e.g., MF GUIDs).

3) Translation:: A number of existing interoperability solu-
tions [20], [18], [19] perform direct translation between HTTP
and NDN/MF traffic. Work in [20] further optimizes the ability
to cache in the network by adding heuristic rules (e.g., treating
two similar URLs as being same content item based on the
content format of the HTTP server). Moiseenko et al. [21] also
seek for solutions to modify NDN packets to better support
HTTP-like communications (e.g., uploading a large piece of
data using POST).

While these solutions enjoy the benefits of interoperabil-
ity without the penalty of creating another layer, there still
exists several concerns. First, these solutions use a one-to-
one mapping between NDN names (or GUIDs) and HTTP
URLs, or vice versa. This could enlarge the namespace just
like the canonical layer solution. Second, these proposals
only consider pairwise translations, and primarily focused
on content request/response, lacking a more general support
for the range of ICN communication patterns. We believe it
will be difficult for these solutions to add support for other
ICN domains, or even non-ICN domains that support generic
communication patterns (e.g., P2P, FTP).

Beyond the challenges in providing functionality, it is im-
portant to consider the amount of state needed in each solution,
as this will affect scalability. In the tunneling solution, the
state of the tunnels are kept at the routers (especially at
entry/exit) in the the underlying domain. In the translation
solution, the gateways need to maintain more comprehensive
state to keep the context of the flow on each side meaningful to
the domain, and potentially added context to match them up.
While we acknowledge that the amount of state is a challenge
for translation-oriented solutions, we still believe this solution
can better support the range of capabilities desired (services,
rich name space, in-network caching). Moreover, we make the
observation that maintaining a stateful forwarding plane as in
NDN routers and HTTP proxies has become a common prac-
tice demonstrating its benefit in enhancing content retrieval
and distribution as well as supporting mobility.

D. Summary of Requirements

Our interoperability framework seeks to achieve a set of
important design goals to achieve a robust, efficient and
deployable framework.
• It should add minimal or no architecture or protocol change

to the individual domains.

• Be seamless to clients: a client in one domain uses the native
mechanisms of the domain to exchange information with an
entity in another domain.
• Support both static (e.g., a movie) and dynamic content (e.g.,

query for current weather information).
• Support in-network caching whenever the domain supports

it.
• We do not want each domain’s content name space to

include all objects in the whole world; i.e., no equivalent
names need to be necessary in every domain. Rather, we
wish the name space size to be limited to what the domain
has.

E. Overview of Our Solution

The interoperability solution framework we adopt is to
have gateways perform a minimal translation of requests and
responses across domains. Our framework ensures that there
are no changes to the clients or servers on each of the domains
and the routers/forwarding engines within each domain are
not altered. The framework itself enables the gateway imple-
mentation to be designed to be a “universal” one with the
appropriate adapters for each of the interfaces that connect
to different domains (see Fig. 1c). The gateway translates
requests to an internal canonical form to provide extensibility
and flexibility to support interoperability across a number
of different ICN architectures and with IP. Our approach
allows for interoperability that can span multiple intervening
domains between a requesting client and a destination content
repository.

Our approach does not seek to perform a one-to-one map-
ping of names from one domain to another. Rather, the client
uses a form that is native to the client’s domain by specifying
a remote domain’s name/identity as a domain prefix and an
opaque string (as far as the client or intervening domains are
concerned) that is the ultimate destination domain name. This
allows the query to be in the client domain’s native format.
Similarly, the response is in the repository domain’s native
format. We enable caching in the domain’s routers based
directly on the opaque “name”. Ensuring the delivery of the
most current version of static content is by translating between
HTTP’s “if-modified-since” values and the “exclude” field
in NDN. The interoperability gateway explicitly differentiates
access to static content vs. dynamic content by examining the
HTTP method (for IP and MF) or version number (NDN).
This also ensures that routers in an individual domain (e.g.,
NDN) do not cache dynamic data by having the client exploit
the version number to create a different name for requests for
dynamic data. By extending NDN to support pub/sub with an
approach like [13] and treating subscriptions as “standing”
queries (not consumed by a corresponding response), the
interoperability framework also supports the varied service in-
terfaces for information delivery (query/response and pub/sub).

The key to our approach is to have a content/object name
provided in a form that enables the client to construct a query
in its native form without having to translate it. The destination
domain is also provided to the client as part of the name, if the
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content resides in a remote domain. This enables routing of
the request appropriately towards the destination domain. The
name is provided to the client either by out-of-band means
(e.g., a user typing in the name), or, more likely by an object
resolution server (ORS) [7]. The client tells the ORS the
domain it is residing in (similar to the user agent field in
HTTP with the web browser type, OS type). The ORS forms
the response in a format that can be used by the client.

translates Alloy expressions to conjunctive normal form
statements and applies satisfiability algorithms to them

III. ARCHITECTURAL DESIGN

In this section, we present the high-level architectural view
of the interoperability framework and its essential components,
explain the details of the protocol exchange for various ser-
vices and scenarios, and describe the gateway implementation.

A. Common Information Elements

We first list the set of common information elements shared
(and needed) by all the domains. We use HTTP, NDN and
MF as examples but the architecture supports all protocols
that have these common elements (e.g., XIA, NetInf, or even
FTP).
Request type: In our current gateway implementation, we
treat HTTP with “method=GET” as a request for static data
(assuming the content is RESTful [26]) while POST is in-
terpreted as a request for dynamic data since the client can
provide extra information (e.g., key words) to get different
results even when using the same server/content name. We
can do the same thing for MF (since it also uses HTTP at
the application layer). HTTP CONNECTION is interpreted
as a subscription, overloading this method due to the lack of
pub/sub support in HTTP. In NDN, we observe that while
querying for static content, common practice is to query for
a name prefix without a version and segmen id. A version
(current time) is added in the query for dynamic content, to
avoid routers caching the response. Our implementation treats
requests with a version as dynamic content requests; otherwise
as static content requests. COPSS subscription packets are
treated as subscription messages.
Destination domain & content name: To avoid an equivalent
name in each domain, we choose to use “DstDomain/Con-
tentName” to identify content in queries. Note that this is not
“another name” in the consumer (or intervening) domains as
the name itself does not create another entry for resolution
(e.g., DNS in IP, FIB in NDN and GNRS in MF) therefore it
is scalable. We only assume that the ContentName is under-
standable by the destination domain while the other domains
(including the consumer) just see it as a binary string. We need
a resolution entry for each destination domain which points to
the proper gateway. E.g., in DNS, “DOM NDN” 7→IPGW, in
MF, GUIDDOM IP 7→NAGW, and in NDN FIB of “/DOM MF”
points to the interface towards the gateway.
Content version: We allow several versions under the same
name (prefix), similar to NDN. Therefore, each response

ORS1
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GW1

GW2

Client

Domain 1

Domain 2

Domain 3

ContentID1

….

[Content]

Search(Keyword1) =

Domain3/ContentID1

….

Fig. 2: Protocol exchange to obtain the name and retrieve the content.

should have a version element. It is equivalent to the “Last-
modified” field in HTTP header, and the version component
in NDN names.
Exclude for static content request: Consumers can get
content from caches. In order to get the latest version of
a content, the consumer can specify “exclude the versions
earlier than the one I already have”. This prevents redundant
downloads of the same content. It is equivalent to the “If-
modified-since” field in HTTP and the exclude field in NDN
Interest.
Input for dynamic data request: To allow a consumer to
pass parameters to a dynamic data provider, we include the
element“input”. It can take the POST body of HTTP (and can
include header fields like Cookie, browser type, etc.). In NDN,
since the Interest usually does not contain a body, we encode
the input field into the name in the Interest. We can also use the
solution described in [21] to provide efficient large parameter
(e.g., file) uploading.
Demultiplexing key is used to identify a corresponding re-
quest when the data comes back onto a gateway. For static
data, we use < DstDomain,ContentName,Exclude >
tuple as it can uniquely identify a content response. We treat
two requests with the same demultiplexing key as the same
request. They can be aggregated at the gateway, similar to
PIT in NDN. For dynamic data, we need a unique ID for
each request. It can be consumer < IP : port > in HTTP,
consumer < GUID,ReqID > in MF, and a cryptographic
hash of the request in NDN.

B. Interoperability Architectural Components

The network environment we consider can have a number
of interconnected domains (IP, NDN and MF) and gateways
that connect these domains. Clients, publishers/repositories
can reside in any one of the domains. A gateway could have
multiple “adapters”, each for an interface to a domain of a
particular ICN architecture the gateway is connected to.
Naming: We envisage an architecture that supports increas-
ingly complex and flexible structures for identifying and
naming information and objects, allowing for multiple naming
schemas, including hierarchies as well as graph structures (that
have more complex linkages between entities, allowing loops).
Object Resolution Servers: When a client seeks a content in
another domain, it requires the content ID (i.e., name, URL

5



or GUID) for it in the other domain. To obtain that foreign
content ID in a format understandable by the client as well
as the remote server/repository we propose the use of one or
more application-layer search-engine like entities called Object
Resolution Servers (ORS) [7]. The primary role of the ORS
is to provide the name of an object or content that a client is
searching for based on keywords. ORSs may reside in one or
more of the domains we consider in our environment. Each
content ID is sent back to the client together with an identifier
of the domain type that the content belongs to.

A schematic of a protocol exchange to obtain the name from
the ORS and retrieve the content is shown in Fig. 2.
Service Interface:The interoperability framework supports a
number of functions at the service interface, across multiple
domains: query/response for both static and dynamic contents,
and publish/ subscribe. We assume IP and MF domains have
multicast mechanisms on top of which a pub/sub service can
be deployed. For NDN, we assume the network is equipped
with a pub/sub framework like COPSS [13]. COPSS utilizes
an additional Subscription Table (ST) for subscribers on a
“downstream” interface. In MF multicast [27], the group
topology is maintained inside the GNRS and multicast GUIDs
need to be mapped to actual node GUIDs along the path .
Interoperation Gateways: To be able to go across domains
(inter-domain routing), we use gateways to interface between
each pair of domains. A gateway that connects two distinct
domains understands both protocols. As some of the necessary
information required for interoperability may be part of the
application payload in one domain, rather than just the network
layer header, a gateway can processing data appropriately all
the way up to the application layer header. This makes these
gateways a mixture of application-layer proxies and network-
layer routers/forwarders. Also, gateways retain state in order
to match a response with its associated request.
Routing: For simplicity, we assume single logical gateway
between each pair of domains. Gateways connecting the same
two domains may exchange state to achieve a single logical
gateway. Reverse Path Forwarding (RPF) is a key policy in
NDN and our interoperability framework reflects that. When
there are multiple gateways between an NDN domain and
another domain, the response needs to be sent to NDN domain
to the same gateway as the one that received the Interest (i.e.,
entry and exit gateways for NDN must be the same). MF and
IP do not have such a constraint.

C. Protocol Exchange in Interoperation

We now describe the protocols for interoperability for
three services, namely, dynamic content retrieval (DCR), static
content retrieval (SCR) and publish/subscribe (Pub/Sub) across
multiple domains.

1) Dynamic Content Retrieval:
The response of a dynamic content might depend not only

on the input from the consumer, but also on the current state
of the server (e.g., time or a random number on the server).
Therefore, the retrieved response cannot be from a cache as
the current server-generated response is desired. This requires
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Keywords=icn&Domain=NDN

DATA: /IP/ORS/GW.ID/ReqID/=00

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://Con.GUID </mf>

Src: ORS.IP, ORS.Port, Dst: GW.IP, GW.Port

HTTP 200 OK

Last-modified: 2017-05-08…

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://Con.GUID </mf>

(C.ID, ReqID) ↔ GW.Port

ORS

Src: GW.IP, GW.Port, Dst: ORS.IP, ORS.Port

POST /ORS

Host: IP

Keywords=icn&Domain=NDN

(b) NDN-to-IP

Fig. 3: Dynamic content retrieval (object resolution) between IP and
NDN.

the requests to be distinguishable (globally unique), to have
the correct response-to-request mapping on the servers and
gateways, including those made by the same client. In TCP/IP,
client IP and port numbers provide this demux capability. For
NDN and MF, we introduce the use of unique Request ID
(ReqID) generated by the consumer or the gateway. ReqID can
be a component of the DCR Interest name in NDN and part
of the request payload in MF. To ensure the global uniqueness
of ReqID in NDN and MF, we can either use cryptographic
hash or combine it with a unique client ID (e.g., GUID in
MF). The gateways need to maintain a state for each request
to subsequently associate the response. In our architecture, we
maintain a mapping between the demultiplexing entity of the
incoming request (from the consumer) and the demultiplexing
entity of the outgoing request (from the gateway). E.g., in
Fig. 3a, the mapping on an IP-to-NDN gateway is a 3 tuple of
< ClientIP,ClientPort, ReqID >. When the Data comes
back from NDN, the gateway can find the corresponding
request based on ReqID in the ContentName.

Fig. 3a shows an example of dynamic (ORS) content
retrieval where the consumer C is in IP and the server ORS
is in NDN. The two domains are connected via gateway GW .
C forms an HTTP POST request including the destination
domain and ORS name in the URL. His own IP and port are
placed in the IP and TCP headers respectively. The GW’s IP
will be placed into the IP header via a DNS lookup for domain
name “NDN”. The name of ORS is an opaque name that the
client does not have to understand. C places keywords and
his own domain type inside payload of the POST request. It
is important that all HTTP requests carry the “Host” field so
the destination domain name (in this case NDN) does not get
lost when traversing multiple domains. In all of the figures
in this section, only the relevant parts of packet headers are
shown. Information carried in payloads is italicized, and in
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blue.
Once GW receives the request, it processes the packet and

generates an Interest using its own ID, a new request ID (as
version), ORS as a prefix and sends it with the request input
towards the ORS. The input can be encoded into the Content-
Name or placed in the packet payload [21]. GW also retains
state for the outstanding request < clientIP, Port,GW −
generatedReqID >, shown as a box below in the Fig.

After receiving the new request from GW , ORS would look
into its index and find candidate names based on the keywords.
For illustration, we consider the general case that for the
keyword, there is a matching content ID in each of the three
domains, and the example response has a name returned for
each domain. Note that based on different consumer domain
(parameter in the input “Domain=IP/NDN”), ORS would form
different name formats that are understandable by the clients
(difference in response between Fig. 3a and 3b). Generally,
a response can contain arbitrary number of candidate names;
and possibly include descriptive snippets.

Upon receiving the response, GW locates the ReqID in the
name and perform a lookup in the state table. It can find the
IP and port of C and send the response in the form of HTTP
response. Fig. 3b shows the reverse scenario, i.e., an NDN
client querying an IP-resident ORS. Here, the gateway’s job
is to convert an Interest packet to an HTTP request format
and keep the corresponding essential information as state for
the request (very much like flipping the left and right side in
Fig. 3a).

Dynamic content request (and object resolution) in ND-
N/MF (Fig. 4) and IP/MF (Fig. 5) domains follow a similar
pattern as IP/NDN except that on the MF side, we have GUIDs
as source and destination. For a cross-domain request, MF uses
GUIDDstDomain as dstGUID and it will be mapped to NAGW
according to GNRS. Since there is no default transport layer
in MF for demultiplexing, we need the reqID carried in the
response for detail).

Our interoperability framework also supports going across
any number of domains, as seen in Fig. 6 which is the case
of an IP client wishing to query an NDN-resident ORS while
there is an intervening MF domain in the path. Gateways GW1
and GW2 store the required state, which is limited to the
request and response between the two domains they interface
with; i.e., in figure 6, GW2 is relaying a request from GW1 to
ORS and only retains state associated with the request on the
MF and NDN sides. The client domain (IP) and ORS domain
(NDN) are kept unchanged in the packet over the entire path.

2) Static Content Retrieval:
Once the client has acquired the content ID from the ORS,

content retrieval service can be initiated to request for a piece
of content. Here, we focus on static content, i.e., content that
can be cached and retrieved from router content stores or
CDNs. In this case, there is no need for a globally unique
ReqID since the response can be uniquely matched by the
content name and the exclude. Therefore, the gateway keeps
state based on the content name and exclude.

Client (C) Gateway (GW)NDN MF

(C.ID, ReqID) ↔ ReqID’

ORS

INTEREST. /MF/ORS/GW.ID/ReqID

Keywords=icn&Domain=NDN

DATA: /MF/ORS/GW.ID/ReqID/=00

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://MF/Con.GUID </mf>

Src: ORS.GUID, Dst: GW.GUID

HTTP 200 OK

Last-modified: 2017-05-08…
ReqID’

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://MF/Con.GUID </mf>

Src: GW.GUID, Dst: ORS.GUID

POST /ORS

Host: MF

Keywords=icn&Domain=NDN&ReqID’

(a) NDN-to-MF
Client (C) Gateway (GW)MF NDN

(C.GUID, ReqID) ↔ ReqID’

ORS

INTEREST: /ORS/GW.ID/ReqID’

Keywords=icn&Domain=MF

DATA: /ORS/GW.ID/ReqID’/=00
<ip> IPdom.GUID, http://IP/Con.URL </ip>
<ndn> NDNdomGUID, http://NDN/Con.Name </ndn>
<mf> http://Con.GUID </mf>

Src: GW.GUID, Dst: C.GUID

HTTP 200 OK

Last-modified: 2017-05-08…
ReqID
<ip> IPdom.GUID, http://IP/Con.URL </ip>
<ndn> NDNdomGUID, http://NDN/Con.Name </ndn>
<mf> http://Con.GUID </mf>

Src: C.GUID, Dst: NDNdom.GUID

POST /ORS

Host: NDN

Keywords=icn&Domain=MF&ReqID

(b) MF-to-NDN

Fig. 4: Dynamic content retrieval (object resolution) between NDN and
MF.

Client (C) Gateway (GW)IP MF

(C.IP, C.Port) ↔ ReqID

ORS

Src: GW.IP, GW.Port, Dst: C.IP, C.Port

HTTP 200 OK

Last-modified: 2017-05-08…

<ip> http://Con.URL </ip>

<ndn> http://NDN/Con.Name </ndn>

<mf> http://MF/Con.GUID </mf>

Src: C.IP, C.Port, Dst: GW.IP, GW.Port

POST /ORS

Host: MF

Keywords=icn&Domain=IP

Src: ORS.GUID, Dst: GW.GUID

HTTP 200 OK

Last-modified: 2017-05-08…

ReqID

<ip> http://Con.URL </ip>

<ndn> http://NDN/Con.Name </ndn>

<mf> http://MF/Con.GUID </mf>

Src: GW.GUID, Dst: ORS.GUID

POST /ORS

Host: MF

Keywords=icn&Domain=IP&ReqID

(a) IP-to-MF
Client (C) Gateway (GW)MF IP

(C.GUID, ReqID) ↔ GW.Port

ORS

Src: ORS.IP, ORS.Port, Dst: GW.IP, GW.Port

HTTP 200 OK

Last-modified: 2017-05-08…
<ip> IPdom.GUID, http://IP/Con.URL </ip>
<ndn> NDNdomGUID, http://NDN/Con.Name </ndn>
<mf> http://Con.GUID </mf>

Src: GW.IP, GW.Port, Dst: ORS.IP, ORS.Port

POST /ORS

Host: IP

Keywords=icn&Domain=MF

Src: GW.GUID, Dst: C.GUID

HTTP 200 OK

Last-modified: 2017-05-08…
ReqID
<ip> IPdom.GUID, http://IP/Con.URL </ip>
<ndn> NDNdomGUID, http://NDN/Con.Name </ndn>

<mf> http://Con.GUID </mf>

Src: C.GUID, Dst: IPdom.GUID

POST /ORS

Host: IP

Keywords=icn&Domain=MF&ReqID

(b) MF-to-IP

Fig. 5: Dynamic content retrieval (object resolution) between IP and MF.

Fig. 7a shows NDN-to-MF static content retrieval scenarios.
Here, an MF-residing content named “Con.GUID” is treated
as just another NDN hierarchical name in the form of “/MF/-
Con.GUID” in the interest/data packets. Conversely, an NDN-
residing content named “Con.Name is” used inside an MF
HTTP GET request packet as part of the URL. Note that the
gateway is performing the translation between NDN exclude
field and the “If-modified-since” field in HTTP. On receiving
the request, the repository can respond with “200 OK” when
there is a new version, or otherwise “304 Not Modified”
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Client (C) GW1IP NDN ORSGW2MF

(C.IP, C.Port) ↔ ReqID (GW1.GUID, ReqID) ↔ ReqID’

Src: GW1.IP, GW1.Port, Dst: C.IP, C.Port

HTTP 200 OK

Last-modified: 2017-05-08…

<ip> http://Con.URL </ip>

<ndn> http://NDN/Con.Name </ndn>

<mf> http://MF/Con.GUID </mf>

Src: C.IP, C.Port, Dst: GW1.IP, GW1.Port

POST /ORS

Host: NDN

Keywords=icn&Domain=IP

Src: GW2.GUID, Dst: GW2.GUID

HTTP 200 OK

Last-modified: 2017-05-08…

ReqID

<ip> http://Con.URL </ip>

<ndn> http://NDN/Con.Name </ndn>

<mf> http://MF/Con.GUID </mf>

Src: GW1.GUID, Dst: NDNdom.GUID

POST /ORS

Host: NDN

Keywords=icn&Domain=IP&ReqID

INTEREST: /ORS/GW.ID/ReqID’

Keywords=icn&Domain=IP

DATA: /ORS/GW.ID/ReqID’/=00

<ip> http://Con.URL </ip>

<ndn> http://NDN/Con.Name </ndn>

<mf> http://MF/Con.GUID </mf>

Fig. 6: Dynamic content retrieval across 3 domains.
Client (C) Gateway (GW)NDN MF

INTEREST: /MF/Con.GUID

Ex (B,=FD0590EB370000,=FE000000000000,B)

DATA: /MF/Con.GUID/==FD059…/=00

DATA

Src: Con.GUID, Dst: GW.GUID

HTTP 200 OK

Last-modified: 2017-05-08 23:59:00

ID: ReqID

DATA

Con.Name+Ex∙∙∙ ↔ Con.GUID

Src: GW.GUID, Dst: Con.GUID

GET /ReqID

If-modified-since: 2017-05-08 20:00:00

Repository (R)

(a) NDN-to-MF
Client (C) Gateway (GW)MF NDN

(C.GUID, ReqID) ↔ Con.Name+EX…

Repository (R)

Src: GW.GUID, Dst: C.GUID

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

ID: ReqID

DATA

Src: C.GUID, Dst: NDNdom.GUID

GET /Con.Name/ReqID

Host: NDN

If-modified-since: 2017-05-08 20:00:00

INTEREST: /Con.Name

Ex (B,=FD0590EB370000,=FE000000000000,B)

DATA: /Con.Name/==FD059…/=00

DATA

(b) MF-to-NDN

Fig. 7: Static content retrieval between NDN and MF.

without a response body. NDN repository can simply discard
the request and the consumer will wait until a timeout (just
as the normal NDN file get logic). Fig. 7b shows the reverse
scenario, i.e. one where a MF-residing client requests static
content from an NDN repository. Other scenarios, namely
IP/NDN and IP/MF also follow similar patterns and are
displayed in Fig. 8 and 9 respectively.

Fig. 10 shows a scenario for three domains which is a case
of IP/MF/NDN. We have gateways that are only aware of
the two domains they are interfacing with, so as long as the
state identifies each request/response mapping without conflict,
it can be used to return the response data in the form the
requesting client can use.

When the content traverses through the NDN and IP do-
mains, they can be cached in content stores or CDNs identified
by their unique name (no matter if the domain can understand
the opaque name) and version. However, when MF is not the
target domain, content traveling through MF will not be cached
at routers (but it can still be cached at application-level CDNs).
This is due to the fact that we use the content ID as opaque
strings within the HTTP header, and the destination GUID is
a node GUID. Thus, the non-existence of a content GUID for
a non-MF residing content precludes MF routers from caching
that content. One way to overcome this would be to register a
new content GUID for every new content entering MF, but this

Client (C) Gateway (GW)IP NDN

(C.IP, C.Port) ↔ Con.Name+EX…

Repository (R)

Src: GW.IP, GW.Port, Dst: C.IP, C.Port

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

DATA

Src: C.IP, C.Port, Dst: GW.IP, GW.Port

GET /Con.Name

Host: NDN

If-modified-since: 2017-05-08 20:00:00

INTEREST: /Con.Name

Ex (B,=FD0590EB370000,=FE000000000000,B)

DATA: /Con.Name/==FD059…/=00

DATA

(a) IP-to-NDN
Client (C) Gateway (GW)NDN IP

Con.Name+Ex…↔ GW.Port

Repository (R)

INTEREST: /IP/Con.URL

Ex (B,=FD0590EB370000,=FE000000000000,B)

DATA: /IP/Con.URL/==FD059…/=00

DATA

Src: R.IP, R.Port, Dst: GW.IP, GW.Port

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

DATA

Src: GW.IP, GW.Port, Dst: R.IP, R.Port

GET /Con.URL

If-modified-since: 2017-05-08 20:00:00

(b) NDN-to-IP

Fig. 8: Static content retrieval between IP and NDN.

Client (C) Gateway (GW)IP MF

(C.IP, C.Port) ↔ Con.GUID

Repository (R)

Src: GW.IP, GW.Port, Dst: C.IP, C.Port

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

DATA

Src: C.IP, C.Port, Dst: GW.IP, GW.Port

GET /Con.GUID

Host: MF

If-modified-since: 2017-05-08 20:00:00

Src: Con.GUID, Dst: GW.GUID

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

ID: ReqID

DATA

Src: GW.GUID, Dst: Con.GUID

GET /ReqID

Host: MF

If-modified-since: 2017-05-08 20:00:00

(a) IP-to-MF
Client (C) Gateway (GW)MF IP

(C.GUID, ReqID) ↔ GW.Port

Repository (R)

Src: R.IP, R.Port, Dst: GW.IP, GW.Port

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

DATA

Src: GW.GUID, Dst: C.GUID

HTTP 200 OK
Last-modified: 2017-05-08 23:59:00

ID: ReqID

DATA

Src: C.GUID, Dst: IPdom.GUID

GET /Con.URL/ReqID

Host: IP

If-modified-since: 2017-05-08 20:00:00

Src: GW.IP, GW.Port, Dst: R.IP, R.Port

GET /Con.URL

Host: IP

If-modified-since: 2017-05-08 20:00:00

(b) MF-to-IP

Fig. 9: Static content retrieval between IP and MF.

may be expensive in terms of number of lookups. We allow
different MF domains to have different choices based on the
policy of the ISP.

3) Publish/Subscribe:
A Publish/Subscribe service enables clients to subscribe to

a content name/prefix. We assume every domain supports a
form of group communication. IP multicast, MF multicast,
and COPSS in NDN, enable “pushing” published information
to subscribers.

Pub/sub service with a publisher on the NDN side is
of interest; subscriptions can be for a hierarchy of objects,
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Client (C) GW1IP NDNGW2MF

(C.IP, C.Port) ↔ NDN/Con.Name+Ex.. (GW1.GUID, ReqID) ↔ Con.Name+Ex…

Repository (R)

Src: GW1.IP, GW1.Port, Dst: C.IP, C.Port

HTTP 200 OK

Last-modified: 2017-05-08 23:59:00

DATA

Src: C.IP, C.Port, Dst: GW1.IP, GW1.Port

GET /Con.Name

Host: NDN

If-modified-since: 2017-05-08 20:00:00

Src: GW2.GUID, Dst: GW1.GUID

HTTP 200 OK

Last-modified: 2017-05-08 23:59:00

ID: ReqID

DATA

Src: GW1.GUID, Dst: NDNdom.GUID

GET /ReqID

Host: NDN

If-modified-since: 2017-05-08 20:00:00

INTEREST: /Con.Name

Ex (B,=FD0590EB370000,=FE000000000000,B)

DATA: /Con.Name/==FD059…/=00

DATA

Fig. 10: Static content retrieval across 3 domains.

Subscriber (S) GW
IP NDN

Publisher (P)
Rendezvous Point (RP)

“224.0.0.1”

Rendezvous Node (RN)

“/sports”

“224.0.0.1” ↔ “/sports” Subscription Table

/sports Face 0

Face 0

Src: C.IP, C.Port, Dst: GW.IP, GW.Port

CONNECT http://subscribe/NDN/sports

Src: GW.IP, GW.Port, Dst: C.IP, C.Port

HTTP 200 OK

CD: “/sports” IP address: “224.0.0.1

Join 224.0.0.1

RPF Established

SUBSCRIBE. /sports

(a) Subscribe

GW
IP NDN

Publisher (P)
Rendezvous Point (RP)

“224.0.0.1”

Rendezvous Node (RN)

“/sports”

“224.0.0.1” ↔ “/sports” Subscription Table

/sports Face 0

MULTICAST.

Name: /sports/football/1

DATA

MULTICAST.

Name: /sports/football/1

DATA

Face 0

MULTICAST. Dst: 224.0.0.1

CD: /sports/

DATA

MULTICAST. Dst: 224.0.0.1

CD: /sports/

DATA

Subscriber (S)

(b) Publish

Fig. 11: Pub/sub between IP and NDN.

leveraging aggregation. To illustrate the protocol exchange, we
use a scenario with a subscriber S in IP and a publisher P in
NDN (Fig. 11). S subscribes to “/sports” and wishes to receive
everything below it in a topic based hierarchy (e.g., including
content “/sports/football/1”). Here, the gateway GW looks like
a publisher to S via an IP multicast group and a subscriber of
“/sports” on the NDN side. GW maintains a mapping between
subscribed name and the IP multicast address.

In Fig. 11a, S sends a subscription request to GW for
an NDN prefix “/sports”. Assuming the NDN side supports
COPSS, GW subscribes to “/sports” and the interface as-
sociated with it will be added to the subscription table at
the rendezvous node (RN) associated with “/sports” (and
downstream of that RN). GW assigns an IP multicast group
address, (e.g., “224.0.0.1” in Fig. 11), to “/sports”, retains the
mapping and then sends this IP address back to the interested
subscriber S. S joins the associated multicast group via a
rendezvous point (assuming PIM-SM).

Fig. 11b shows what happens when a new publication under
“/sports”, viz., content named “/sports/football/1” is generated
by P. RN forwards this to its subscriber GW. Using the prefix-
to-IP address map, GW sends the new content to the multicast
group 224.0.0.1, reaching S via the RP in the IP domain.

If a new subscriber T in the IP side subscribes to a
different prefix “/sports/football”, it will be assigned a new
IP multicast group. However, this time since everything under
“/sports/football” is also under “/sports”, GW does not need
to subscribe again on NDN side.

Now if a publication under “/sports/basketball/” arrives from
the NDN side, GW needs to receive and send it to multicast
groups associated with the name prefix. As for which multicast
groups to send it to, ”longest prefix match” in the prefix map
applies. Thus, it is possible that the publication data needs
to be sent by GW to multiple multicast groups. The Pub/Sub
service in our framework also supports multiple domains. In
addition to IP, MF multicast is very similar except for the only
technical difference of using a multicast GUID instead of an
IP multicast address.

D. Security
Security is a major concern, when accessing online content.

HTTPS over SSL/TLS is fast becoming the default over the
Internet, to secure the channel. However, ICN secures objects
by self-certification rather than securing the communication
channel. Because of this conceptual difference in security, it
is challenging to integrate security across different domains.
While we are unable to describe the details of the secu-
rity mechanisms due to space limitations, we outline three
major possible patterns for secure interoperation, and justify
the preferred pattern we adopt. We consider requirements
of authentication, provenance, integrity and confidentiality.
We assume Client (C) and Provider (P) are in two separate
domains connected by Gateway (GW).
Pattern 1 (GW fully trusted): In this pattern (Fig. 12a),
public key/certificate exchange/signature generation and verifi-
cation are all done within a domain; e.g., an IP client considers
a message authentic if it is signed by GW after an SSL/TLS
session setup. For encryption, symmetric session keys are
exchanged within each domain, the GW being one end. This
pattern requires no architectural change and no additional
knowledge that spans more than one domain (e.g., about cipher
algorithms). Messages crossing domains require the GW to re-
sign and performs a decrypt-then-encrypt of the message. If
both domains are secure, an un-signed and/or un-encrypted
message will not be carried on any channel, so there will be
no chance for a network eavesdropper to forge/intercept the
information. The provider and the consumer are not mandated
to use the same kind of security mechanism. However, a major
challenge remains: GW sees unencrypted content fully.
Pattern 2 (GW untrusted): In this pattern (Fig. 12b), C
reveals nothing to GW, even what content is requested. It
is equivalent to establishing and delivering encrypted traffic
within a tunnel, in this case spanning different domains. Thus,
none of the domain-provided security mechanisms will be
used. The problem here is that it requires common application-
layer protocols to help client/provider pairs to understand,
establish and agree upon key exchange, encryption and ver-
ification and the supported algorithms, a major burden and
requiring changes to end-system capabilities. This will also
not use any of the rich content-based security mechanisms in
each ICN domain, depending only on channel-based security.
Pattern 3 (GW minimally trusted): In this pattern (Fig. 12c)
C trusts GW’s signature and validation similar to pattern 1.
However, for encryption, if secret keys are shared and agreed
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C SGW

���� Signature ��� Signature

Encryption with ������ Encryption with ������

(a) Pattern 1

GWC S

��� Signature

Encryption with �����

(b) Pattern 2

GWC

���� Signature

S

��� Signature

Encryption with �����

(c) Pattern 3
Fig. 12: Possible security patterns for interoperation (pattern 3 preferred and adopted).

Consumer GW1 GW2 Provider

IP/HTTPS MF NDN

CONNECT, GET
https://NDN/<NAME>

Tunnel establish
DomainGUID

GET <reqID>/<NAME>
Interest: <NAME>

Data: <NAME>
E(Pay,Key), SigKey1, Key1Loc

Interest: <Key1>

Data: <Key1>
Key1, SigKey2, Key2Loc

R
ec

ur
si

ve
 v

al
id

at
io

n
ba

se
d 

on
 s

ec
ur

it
y 

sc
he

m
a

…GW1GUID
reqID, E(Pay,Key), SigGW2ConsumerIP:port

E(Pay,Key), SigGW1

Fig. 13: Protocol exchange for security pattern 3.

by both ends (C and P), GW will not see or decrypt the
content. This pattern does not require complete trust of GW,
but requires a mechanism for sharing keys between C and P
(e.g., via an out-of-band or another in-band method).

We select pattern 3 for our interoperability framework, as
it provides the appropriate trade-off between security and the
cost of architectural change as well as end-user complexity.The
reason for that is that it allows for domain-specific solutions
for data integrity, provenance and authentication (signature)
and relies on an agreement between consumer and provider for
confidentiality (encryption). Thus, by fully leveraging domain-
specific security mechanisms for authentication-related re-
quirements and not revealing any sensitive information to a
third-party, pattern 3 gets the best of both worlds.

We describe our security mechanism, i.e., pattern 3, in more
detail, with an example, in Fig. 13. A client in the IP domain
retrieves content from an NDN repository, going through an
intervening MF domain. The initial connection between the
client and GW1 is via HTTP CONNECT using the URL as-
sociated with the content name; thus, GW1 sees the requested
content name but nothing else, including subsequent data in
the message payload. On the path of the content response,
GW2 (Fig. 13) validates the NDN signature (by retrieving key
chains, trust schema according to Certificate Authorities and
cipher algorithms), re-signs it and hands to GW1. GW1 does
something similar. Thus, only pair-wise trust within a domain
is required, without the need for any entity to know about al-
gorithms, schemas, certificates, etc., used in a foreign domain.

E. Gateway Implementation

We implement the gateway that interconnects different
domains of ICN as well as IP as shown in Fig. 14. The
gateway translates requests for information received from one
domain to a request meaningful in the adjacent domain and a
similar translation of response headers in the reverse direction.
We implement the interface to each distinct domain as a
“pluggable adapter” on the gateway in each direction. We
choose to translate the incoming request or the headers of
the response to an internal canonical form. This enables the
node to be a “universal gateway”, that is able to interface
to any of the ICN domains or IP with the corresponding
adapter. This canonical form for query/response is internal

C.IP:port→GW.IP:port

POST <NAME> HTTP/1.1
Host: <DstDomain>

<INPUT>

C.GUID→TargetGUID

POST <reqID>/<NAME>

<INPUT>
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Fig. 14: Implementation: translating dynamic requests on the gateway.

to the gateway and does not appear on the links. We have
our gateway implementation open sourced on Github [28].
Additional domains can be supported with a corresponding
adapter on the interface to that domain.

Incoming request processing involves recognizing whether
the request is for static or dynamic content. When converting
a request or subscription to the canonical form, the adapter
determines if it is for dynamic content (POST) or static
content (GET) for IP and MF. For NDN, a request with
a specific version is seen as a request for dynamic content
while a request with just a prefix (and exclude) is for static
content. It also determines the destination domain based on the
“Host” field in case of HTTP, the destination GUID in MF,
and the domain prefix in NDN. If the values of these fields
cannot be parsed as a domain prefix (e.g., google.com in the
originating HTTP request), the destination domain is the same
as the incoming domain (e.g., in an IP-NDN-IP scenario).
The opaque string (from the originating domain’s perspective)
that is the name on the destination domain will be extracted
from the request (marked as the field“< NAME >” in
Fig.14. For dynamic requests, the incoming request processing
recognizes the body of the POST in MF and HTTP, and
the penultimate component of NDN name, as the request
input.The demultiplexing entity (“< Demux >”) depends
on the different cases. For static content requests, we use
the tuple < domainname, contentname, exclude >. For
dynamic content requests, we use client < IP, port > (socket)
for HTTP case, client < GUID, reqID > in MF case and
< reqID > in NDN case.

The incoming request processing results in an internal
canonical request (orange boxes in the middle column). The
gateway can respond to requests for static content from the
local cache, aggregate requests for the same static content
(with same exclude) or consume them. The remaining requests
(in canonical form) are sent to the “switching fabric”, where
inter-domain routing is determined and forwarded to the proper
outgoing request processor.

The outgoing request processing forms a domain-specific
outgoing request.One exception is that when the outgoing
domain is the destination domain, a native request is formed
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(no domain prefix in NDN; content GUID is used directly as
destination GUID in MF, and native HTTP request is formed
based on the “< NAME >”).

In the current implementation, we encode the request body
(name and input) as part of the Interest name in NDN. This
implementation can be optimized using the solution in [16]
when the body of the request is large (e.g., client uploading
an image). To enable such an optimization, we only need
to modify the NDN adapter, and leave the other adapters
unaltered.

When the response (e.g. NDN Data packet) returns, the
gateway matches it based on the demultiplexing key and
forward the content to all the pending requests on this key
(similar to matching a PIT entry in NDN). This enables native
multicast, similar to NDN. We use the “Last-modified” field
in HTTP and MF and the version field in NDN Data name
as the version of the response. The gateway sends the version
using the domain-specific format.

IV. FORMAL ANALYSIS

A formal analysis of interoperability addressing design
choices and requirements is used to demonstrate correctness
of our proposed framework. Using the formal model together
with an automated verification tool, we generate all possible
network configurations to understand the system and make
sure of its logical consistency. We prove the essential prop-
erties of our interoperability framework protocol exchange,
i.e., check that a client is able to remotely search for a
keyword and receive the content ID as a result (dynamic
content retrieval); it can query for a content ID and retrieve
the content (static content retrieval); subscribe to a content
descriptor and receive all possible future relevant publications
(pub/sub). We investigate additional properties such as con-
forming to NDN reverse path forwarding policy, absence of
conflict (mismatch) between request and response by correctly
distinguishing dynamic data, and receiving all publications of
a subscribed category at different levels in the topic hierarchy
with NDN/COPSS publish/subscribe.

We employ a model finding method with three main steps:
1) describing the model, through formalizing the mechanism
in a model to represent all essential entities, and the relation-
ships and interactions between them; 2) specifying required
properties; through formalizing the major requirements of
the framework so that it would capture what is expected
of the model and 3) verifying the properties against the
model, through automatically looking up each property among
all generated instances of the model. The model description
focuses on what each piece of the protocol delivers, i.e., what
information is carried in packets and stored at the gateway.

We use the modeling language Alloy [8] as our descrip-
tion/specification language and the Alloy Analyzer as our
automated verification tool. Alloy has been used for various
applications, including in [29] to model interoperation between
networks such as PSTN and SIP, and prove connectivity
properties. Alloy is a language based on first-order logic and
relations. Its solver tool, The Alloy Analyzer, translates the
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Fig. 15: General formal model for interoperability framework.

high-level Alloy first-order logic expressions into conjunctive
normal form (CNF) statements, applies satisfiability (SAT)
algorithms to those CNFs, and checks if any predicate can
be sometimes true, i.e., an instance exists, and if an assertion
is always true, i.e., no counterexamples exist. Properties are
specified as assertions, i.e., invariants of the system, and their
verification is successful only if no counterexample for them
is found among all possible instances of the model.

Since here we are mainly interested in representing how
different interoperability components are related, i.e., “which
domain a piece of content resides in”, “what client ID and
demux values are associated with a request”, “what names
are understandable to a client/provider”, etc., a mathematical
relation-based language such as Alloy is a good choice to
represent n-ary relations. In this section, we present formal
models for each of the three services, i.e., object resolution
(OR) as an example of DCR, SCR and Pub/Sub.

A. Connectivity and Availability

The model supports any number of domains, clients, servers
and gateways. A high-level schematic example model of a sup-
ported 2-domain configuration is shown in Fig. 15, with one
client, one object resolution server, repository and publisher,
and one gateway connecting each pair of domains. The client
in this scenario wishes to look up a (set of) keyword(s), request
to retrieve content or subscribe to a prefix. The query packet
containing the query gets routed across domains through
routes, and delivered to the remote target. The response (con-
tent ID/content) gets routed back to the client through reverse
routes. Objects of type “route” (and “reverse route”) couple the
notion of “a series of links” and “packets carried over them”.
Fig. 15 is only a part of the model, and each box denotes an
object of a primitive (atom) type in our Alloy model. Each
arrow denotes a relationship between entities. We also add a
number of additional constraints (Alloy facts) such as node ID
uniqueness, absence of routes with same initiator and acceptor
nodes, and make sure for every NDN reverse route there is a
(forward) route where the two are interest/data pairs for the
same name (reflect NDN RPF policy). Any counterexample
found in a scenario implies that client cannot generate a
request native to its domain; server/publisher receives a request
he cannot understand; gateway does not know what to do with
a returned response; etc..
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1) Dynamic Content Retrieval (Object Resolution as exam-
ple): In this subsection, we present the formal model for
the object resolution service. The model supports multiple
domains, clients, servers and gateways. An example model of
a supported configuration is shown in Fig. 15, with one client,
one OR server, two domains and one gateway connecting each
pair of domains. The client in this scenario wishes to look up
a keyword (or a set of keywords), the query packet containing
the keyword gets routed across domain (through routes) and
delivered to the remote ORS, the ORS generates a content ID
(or set of content IDs), and the response packet containing
the content ID associated with that keyword gets routed back
(through reversed routes) to the client.

The model consists of nodes, which can be of types client,
gateway or ORS (object resolution server). Each node belongs
to (is attached to) one or more domains, which can be of types
IP domain, NDN domain or MF domain. Also, each node has
one or more Node IDs (IP address, NDN client ID or Node
GUID) and a set of demux values (ports, NDN request IDs
or MF request IDs). A client wants to search for a set of
keywords. The gateways keep states as a three-tuple relation
made up of the < nodeID, demux > of the requesting side
and < demux > of the serving side. Each ORS contains a
mapping between keywords and content IDs. This map can
be a static table or an algorithm ORS has to run in order to
generate the content ID associated with a searched term. The
formal model, being a description of what the system does,
does not capture how content IDs are generated by the ORS.

abstract sig Node{domains: set Domain, id: set
NodeID, demux: set Demux}

sig Client extends Node{want: set
Keyword}{#domains=1 && #id=1 && #demux>=1}

sig GW extends Node{state: (NodeID set -> set
Demux) set -> set Demux}

{#domains=2 && (no disj d1,d2: Domain | (d1 in
IPdomain && d2 in IPdomain) || (d1 in
NDNdomain && d2 in NDNdomain) || (d1 in
MFdomain && d2 in MFdomain)) && #id=2 &&
#demux>=2}

sig ORS extends Node{map: Keyword one -> one
ContentID}

{#domains=1 && #id=1 && #demux>=1}
abstract sig NodeID{}
sig IPaddress extends NodeID{}
sig NDNclientID extends NodeID{}
sig NodeGUID extends NodeID{}
abstract sig Domain{}
sig IPdomain extends Domain{}
sig NDNdomain extends Domain{}
sig MFdomain extends Domain{}
abstract sig Demux{}
sig Port extends Demux{}
sig NDNreqID extends Demux{}
sig MFreqID extends Demux{}
sig Keyword{}
sig ContentID{}

In the above description lines, the keyword sig denotes
definition of objects, extends is used to define a subtype of an
object that would inherit all the original attributes and abstract
means the object type will only be generated in the form of its
extended types. Additional constraints (facts) can be added

to the model as separate statements or right after definition of
each object. In the above piece of code, we are limiting the
number of domains (and node IDs) associated with a client (or
ORS) to one and for gateways to two. Also, each node has
at least one demux values to use. The rest of the constraints
for gateway make sure a gateway is connecting two distinct
(disjoint) domains to each other. We also defined constraints
(not shown here) on how the type of node ID and demux
should be associated with a node’s domain.

To model communication between nodes, we define an
object type called Route, which couples together two notions
of a series of links and packets carried over them. Each route is
a directed edge of the network graph starting from an initiator
node going to an acceptor node, both attached to the same
domain. A route contains the keyword, client domain, ORS
domain and demux value (which is generated by the initiator
node). Constraints dictate that initiator and acceptor of a route
need to be distinct to avoid loops. It should be noted that client
and initiator are not necessarily the same for a route. Specific
types of routes, i.e. IP routes, NDN routes and MF routes, can
contain additional attributes and constraints specific to their
domains.

abstract sig Route{initiator, acceptor: Node,
demux: Demux, domain: one Domain, keyword:
Keyword, clientdomain: Domain, orsdomain:
Domain}

{initiator!=acceptor && domain in
initiator.domains && domain in
acceptor.domains && demux in initiator.demux}

sig IProute extends Route{srcIP, dstIP: IPaddress,
dstPort: Port}

{domain in IPdomain && srcIP in initiator.id &&
dstIP in acceptor.id && dstPort in
acceptor.demux && demux in Port}

sig NDNroute extends Route{clientID: NDNclientID}
{domain in NDNdomain && clientID in initiator.id

&& demux in NDNreqID}
sig MFroute extends Route{srcGUID, dstGUID:

NodeGUID}
{domain in MFdomain && srcGUID in initiator.id &&

dstGUID in acceptor.id && demux in MFreqID}

As the data carried in query packets differs from that in
response packets, namely keyword as opposed to content ID,
routes need to reflect both types of data. As adding the feature
of toggling between keyword and content ID in route will
make the model exponentially larger, we define a new object
for reverse routes called RouteR and copy the rest of Route
to RouteR.

abstract sig RouteR{initiator, acceptor: Node,
demux: Demux, domain: one Domain,
contentID:ContentID}

{initiator!=acceptor && domain in
initiator.domains && domain in
acceptor.domains && demux in acceptor.demux}

As with Route, IProuteR, NDNrouteR and MFrouteR
can be similarly extended from RouteR. The constraints for
both sets of objects are the same. An additional constraint on
reverse routes explicitly says that in case of NDN domains,
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for each reverse route inside NDN there should be one (query)
route corresponding with it. This is to ensure that our model
respects the reverse path forwarding policy of NDN. There is
no such policy for IP and MF domains.

fact NDNReversePath{
all rr:NDNrouteR|

some r:NDNroute, o:ORS|(r.keyword ->
rr.contentID) in o.map =>
rr.initiator=r.acceptor &&
rr.acceptor=r.initiator &&
rr.domain=r.domain &&
rr.contentID=o.map[r.keyword] &&
r.demux=rr.demux && r.clientID=rr.clientID

}

We define a special object called connections with only
one instance, that captures the relationship between routes in
the network. The relation connected keeps ordered pairs of
routes where the acceptor of the first route is the same as the
initiator of the second route. connectedR does the same thing
for reverse routes.

one sig Connections{connected: Route -> Route,
connectedR: RouteR -> RouteR}

The following constraint says that two routes are in con-
nections’s connected relation if and only if they are actually
connected and carrying the same data (belong to the same
session). There is a similar constraint for reverse routes,
with the difference that for reverse routes, there is one extra
condition: the gateway that connects the two routes must be
keeping the state associated with the session, i.e. the three
tuples explained earlier.

fact connected{
all r1,r2:Route , c:Connections |

(r1->r2) in c.connected iff r1.acceptor =
r2.initiator && r1.keyword=r2.keyword &&
r1.clientdomain=r2.clientdomain &&
r1.orsdomain=r2.orsdomain

all r1,r2:RouteR , c:Connections |
(r1->r2) in c.connectedR iff r1.acceptor =

r2.initiator && r1.contentID=r2.contentID
&& (some gw:GW| r1.acceptor=gw &&
r2.initiator=gw => some n:NodeID,
d1,d2:Demux| (n->d1->d2) in gw.state && n
in r2.acceptor.id && d1 in
r2.acceptor.demux && d2 in
r1.acceptor.demux && d1=r2.demux &&
d2=r1.demux)

}

The above fact only models direct connections between
routes. However, there can be routes that are connected in-
directly, i.e. through multiple domains in non-adjacent way.
To make sure the model captures this, we define the following
constraint:

fact pathexists{
all co:Connections, disj n1,n2:Node, k:Keyword,

cd:Domain, od: Domain|
(some c:Client, o:ORS| cd in c.domains && od in

o.domains => (some r1,r2:Route | (r1->r2)

in ˆ(co.connected) && r1.initiator=n1 &&
r2.acceptor=n2 && r1.keyword=k &&
r2.keyword=k && r1.clientdomain=cd &&
r2.clientdomain=cd && r1.orsdomain=od &&
r2.orsdomain=od))

all co:Connections, disj n1,n2:Node,
conid:ContentID, cd:Domain, od:Domain| (some
c:Client, o:ORS| cd in c.domains && od in
o.domains => (some r1,r2:RouteR | (r1->r2) in
ˆ(co.connectedR) && r1.initiator=n1 &&
r2.acceptor=n2 && r1.contentID=conid &&
r2.contentID=conid))

}

The above constraint says that there should be a path (of any
length) between any two nodes of the network; i.e., no node
is unreachable. To model that, we use the transitive closure of
the connected (and connectedR) relation. If the ordered direct
connections are represented by C = {(r1, r2), (r2, r3)}, then
its transitive closure C+ = {(r1, r2), (r2, r3), (r1, r3)} will
represent existing paths, of length one or more.

There are a number of more constraints on the model to
make sure we only deal with interesting instances. These
constraints include having at least one gateway for every
domain, each client wanting at least one keyword and no two
nodes having the same node ID.

After the description is done, we need to specify what we
expect from the model. In particular, we need to formalize the
essential requirements in form of properties. Before verifying
the properties, we run empty predicates to make sure the
model generates all interesting instances. In the rest of this
subsection, we provide definitions of each property, determine
the bound within which each should be checked and provide
the outcome of each verification.

Property 1.1. DCR Reachability: Ability to get dynamic
content identified by a user specified string. For every client
that wants to get dynamic content (e.g. search for a keyword)
and has a direct route to a gateway, there is a server reachable
from the gateway to provide the dynamic content (ID) for that
query. This assertion, is an invariant that needs to be true in
all instances.

pred reach[c:Client, k:Keyword,o:ORS,gw:GW]{
all co: Connections| k in c.want => (some

r:Route, cid:ContentID| r.initiator=c &&
r.acceptor=gw && r.keyword=k && r.demux in
c.demux => some r1,r2:Route | (r1->r2) in
ˆ(co.connected) && r1.initiator=gw &&
r2.acceptor=o && r1.demux in gw.demux &&
r1.keyword=k && r2.keyword=k && (k->cid) in
o.map && r1.clientdomain in c.domains &&
r2.clientdomain in c.domains && r1.orsdomain
in o.domains && r2.orsdomain in o.domains)

}

This property defines a predicate reach, which is the for-
malization of the logical statement described in the definition
of property 1.1. We run this predicate to see if the predicate is
true in “some” instances, i.e., in instances where it is known to
be true (we do this sanity check for all subsequent properties,
but do not state it each time).
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run reach for 1 Client, 2 GW, 1 ORS, 6 NodeID, 3
Domain, 6 Port, 3 NDNreqID, 3 MFreqID, 1
Keyword, 1 ContentID, 12 Route, 1 Connections,
12 RouteR

To check this assertion, we have to define the checking
bound, i.e. the maximum number of distinct objects of each
type. This bound gives us a large enough instance space. For
this property, we pick the maximum number of three domains,
two gateways, one client, one ORS and one keyword. We pick
those values since they are large enough to check all possible
“interesting” instances and yet not too large that would lead
to problem size explosion and computation limitation while
running the automated verifier. For example, with 4 nodes, a
maximum of 12 query routes are possible. After running the
predicate within the bound and verifying the formalization, we
then define the assertion associated with this predicate.

assert reach{
all c:Client, k:Keyword| some o:ORS, gw:GW|

reach[c,k,o,gw]
}

It should be checked that the predicate reach holds for all
clients and keywords and for at least one ORS and gateway.

check reach for 1 Client, 2 GW, 1 ORS, 6 NodeID, 3
Domain, 6 Port, 3 NDNreqID, 3 MFreqID, 1
Keyword, 1 ContentID, 12 Route, 1 Connections,
12 RouteR

We check the assertion within that bound. Checking this
assertion within a reasonable bound, i.e., the maximum num-
ber of each object type that will generate all interesting
configurations, Alloy Analyzer looks for a counterexample
among all possible instances, and if none is found, the property
is preserved. Our model passed this property verification
successfully.

Property 1.2. DCR Returnability: Ability to get the
dynamic content back from server. For every client reaching
a server, there is a path back to client to carry associated
dynamic content.

pred return[c:Client, k:Keyword, o:ORS, gw:GW]{
all co:Connections| some gw1:GW |

reach[c,k,o,gw1] => (some r,r1,r2:RouteR|
(r1->r2) in ˆ(co.connectedR) &&
r1.initiator=o && r2.acceptor=gw && r2.demux
in gw.demux && r1.contentID=o.map[k] &&
r2.contentID=o.map[k] && r.initiator=gw &&
r.acceptor=c && r.demux in c.demux &&
r.contentID=o.map[k])

}
assert return{

all c:Client, k:Keyword, o:ORS| some gw:GW|
return[c,k,o,gw]

}

We check this property within the same bound as property
1.1, i.e., a reasonable value for maximum number for each
object so that we check all interesting instances, and observe
that it passes the verification successfully.

Property 1.3. No conflict between two distinct requests

from the same client. For every client that searches for two
distinct requests, two distinct responses should return, and
be correctly associated with each request. This (and next)
property is important to meet the requirements for dynamic
data and for the associated sessions to be unique.

pred noconflict1[c:Client, disj k1,k2:Keyword]{
some o1,o2:ORS, gw1,gw2:GW | return[c,k1,o1,gw1]

&& return[c,k2,o2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux| (n1->d1->d2) in gw1.state
&& (n2->d3->d4) in gw2.state && n1 in c.id &&
d1 in c.demux && d2 in gw1.demux && n2 in
c.id && d3 in c.demux && d4 in gw2.demux &&
!(n1=n2 && d1=d3 && d2=d4) && (some disj
r1,r2:RouteR| r1.initiator=gw1 &&
r1.acceptor=c && r1.contentID=o1.map[k1] &&
r1.demux=d1 && r2.initiator=gw2 &&
r2.acceptor=c && r2.contentID=o2.map[k2] &&
r2.demux=d3)

}
assert noconflict1{

all c:Client, disj k1,k2:Keyword |
noconflict1[c,k1,k2]

}

Since we need to have at least two keywords for this
property, we increase the number of keyword elements in
the bound from 1 to 2. We still check the assertion for one
client and one ORS, and We observer that the verification
passes successfully. One interesting thing about this property
is that it shows the importance of the use of request IDs
(both for NDN and MF) in our framework as they demultiplex
distinct requests made by the same client. If we remove the
request IDs from query packets, this property will be violated
and counterexamples will arise. In particular, gateway will
not know how to match two ORS request for keywords k1
and k2 from client c, if the state information at it looks like
<c,gw demux1> and <c, gw demux2>, instead of one that
also contains a field for client demux values associated with
each requests.

Property 1.4. No conflict between two identical requests
from two distinct clients. For every dynamic content re-
quested (e.g. keyword searched) by two distinct clients, two
distinct appropriately associated responses should come back.

pred noconflict2[c1,c2:Client, k:Keyword]{
some o1,o2:ORS, gw1,gw2:GW | return[c1,k,o1,gw1]

&& return[c2,k,o2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux| (n1->d1->d2) in gw1.state
&& (n2->d3->d4) in gw2.state && n1 in c1.id
&& d1 in c1.demux && d2 in gw1.demux && n2 in
c2.id && d3 in c2.demux && d4 in gw2.demux &&
!(n1=n2 && d1=d3 && d2=d4) && (some disj
r1,r2:RouteR| r1.initiator=gw1 &&
r1.acceptor=c1 && r1.contentID=o1.map[k] &&
r1.demux=d1 && r2.initiator=gw2 &&
r2.acceptor=c2 && r2.contentID=o2.map[k] &&
r2.demux=d3)

}
assert noconflict2{

all c1,c2:Client, k:Keyword| noconflict2[c1,c2,k]
}

We change the upper bound in property 1.4 to one with
two (distinct or same) clients and one keyword. It holds as
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observed. This property shows the importance of the addition
of NDN client IDs (IP and MF nodes have IP addresses and
Node GUIDs respectively). Removing the client ID from NDN
Interests, violates this property. In particular, gateway will not
know how to match two ORS request for keyword k from
clients c1 and c2, if the state information at it looks like
<demux c1,gw demux1> and <demux c2, gw demux2>,
instead of one that also contains a field for who each demux
value belongs to.

Property 1.5. Same exit and entry gateway for NDN
clients. For every NDN client, the first gateway on the request
path is the same as the last gateway on the return path. This
ensures the NDN reverse path forwarding policy.

pred NDNgw[c:Client, k:Keyword, o:ORS, gw1,gw2: GW]{
reach[c,k,o,gw1] && return[c,k,o,gw2] && (some

n:NDNdomain | n in c.domains) => gw1=gw2
}
assert NDNgw{

all c:Client, k:Keyword, o:ORS | some gw1,gw2:GW
| NDNgw[c,k,o,gw1,gw2]

}

We check the above property within the same bound as the
one for property 1.1 and observe that our model preserves this
policy.

2) Static Content Retrieval: The scenario for content re-
trieval service is very similar to the one for OR, except for the
fact that the request packets carry content IDs and the response
packets carry the data associated with that content ID. Most of
the entities here are similar to those in the OR scenario. Client
nodes in CR model issue requests using content IDs rather
than keywords, gateway nodes keep state, and we have a new
type of object called repository (Repos) that keep contents
associated with content IDs.

sig Repos extends Node{map: ContentID one -> one
Content}

{#domains=1 && #id=1 && (some ipd:IPdomain| ipd
in domains => (all cid:ContentID, c:Content|
(cid->c) in map => cid in URL)) && (some
ndnd:IPdomain| ndnd in domains => (all
cid:ContentID, c:Content| (cid->c) in map =>
cid in Name)) && (some mfd:IPdomain| mfd in
domains => (all cid:ContentID, c:Content|
(cid->c) in map => cid in ContentGUID))

}

The additional constraints determine the type of content
IDs each repository can have based on what its domain is. In
the CR service, as opposed to the OR model, we distinguish
between various extended types of content ID objects.

abstract sig ContentID{}
sig URL extends ContentID{}
sig Name extends ContentID{}
sig ContentGUID extends ContentID{}

We also have a new object type Content, which represents
the piece of data the client wishes to retrieve.

sig Content{}

As packet fields carried in OR and CR models differ, route
and reverse route objects in this model contain content ID
and content respectively. MF routes need not necessarily carry
destination GUIDs in this model. If the repository is in MF
domain, only the route inside the destination MF domain needs
to carry repository node GUID, supposing the GNRS-based
binding happens in the final domain.

sig MFroute extends Route{srcGUID: NodeGUID,
dstGUID: lone NodeGUID}

The rest of the major parts of the model, including object
definitions and constraints, are similar to the OR model. At
this point, we go over the two essential properties required in
CR scenarios and attempt verifying them.

Property 2.1. SCR Reachability: Ability to reach repos-
itory containing the content. For every client that wants to
retrieve content associated with a content ID and has a direct
route to a gateway, there is a repository, reachable from that
gateway, with the content associated with that content ID.

Property 2.2. SCR Returnability: Ability to get the
content back from the repository. For every client that
reaches a repository with a request, there is a path back to
the client to carry the associated content.

We specify these two properties similar to the analogous
ones in the OR section and check them within the same bound.
Both verifications were successful. Thus, the model preserves
both properties.

B. Publish/Subscribe

Subscribers subscribe to a prefix. The term prefix is used
generically: it can be interpreted as a class of objects based
on a topic-based hierarchy or just one particular object. In
addition to routes, we have the notion of groups and prefixes,
for which gateways maintain state. We have an object type,
publisher (an ’active repository’) that publishes content asso-
ciated with a content ID. Content IDs have a new attribute,
the prefix, which based on domain-specific interpretation can
be exactly the same as the content ID or the prefix in the
hierarchy the content ID is an immediate successor (child) of.

Prefix Structure. For the case of NDN, we need to model
the hierarchy of existing prefixes in form of a tree. Figure
16 shows a small prefix tree example with 5 prefixes. The
root prefix P1 is ”/” and the rest of the prefixes can be
something like this: P2 = ”/sports”, P3 = ”/news”,
P4 = ”/sports/football” and P5 = ”/sports/basketball”.
It should be noted that the tree in the figure only displays
prefix nodes and not content name nodes. If we want to show
a content name such as ”/sports/football/1.mp4”, it would
be an additional leaf node of the tree, as a direct child of its
closest prefix, which is P4 in this case.

To represent the structure of hierarchical prefixes, we use
binary relations to model immediate parent-child relationship
between prefixes, and its transitive closure to model the
ancestor-descendant relationships. For example, in the tree in
Figure 16, if P = {(P1, P2), (P1, P3), (P2, P4), (P2, P5)}
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Fig. 16: Prefix tree example.

represents the immediate relationships of names, its transitive
closure

P+ = {(P1, P2), (P1, P3), (P2, P4), (P2, P5), (P1, P4), (P1, P5)}

represents all ancestral relationships.
The following code shows how this can be modeled in

Alloy:

sig Prefix{parent: lone Prefix, domains: some
Domain}

one sig PTree {map: Prefix set -> set Prefix}

The following constraints on the prefix tree collectively
enforce the non-existence of loops, existence of exactly one
root prefix and the root prefix being the ancestor of all other
prefixes.

fact PrefixRules{
all p:Prefix| p.parent!= p
all p1,p2:Prefix, pt:PTree| p1 in p2.parent <=>

(p1->p2) in pt.map
one p:Prefix| #p.parent=0
all pt:PTree| no p:Prefix| (p->p) in ˆ(pt.map)
all disj p1,p2: Prefix, pt:PTree | #p1.parent=0

=> (p1->p2) in ˆ(pt.map) }

We also define a new object type called “group”, represent-
ing a set of subscribers and a source provider associated with
a prefix and based on the domain. It can be an IP multicast
group, MF multicast group (with multicast GUID) or COPSS
with subscription tables.

In the pub/sub model, there is no need for a formal distinc-
tion between forward and reverse routes. However, we add a
relation, “chain” (and “reverse chains”), to the special atom
“connection” to model connections between adjacent groups
(on either side of a gateway) that serve the same prefix, i.e., an
agent can join to receive relevant data being pushed. Groups
G1 and G2 form a chain if and only if the publisher of G1
can be a subscriber of G2, and is then able to relay data
received from G2 to his subscribers in G1. Chain and reverse
chain relations represent chains for subscriptions and retrieving
publications.

We add constraints on how paths exist between any two
nodes and also chains exist between any two groups. With a
few minor additional constraints, we specify and check the
essential properties.

Property 3.1. Ability to subscribe to any prefix. For every
client that wants to retrieve future publications under/associ-
ated with an existing prefix and has a direct route to a gateway,
there is some publisher that will publish content under that
prefix and is accessible through a chain of subscription groups.

pred sub[c:Client, p:Prefix]{
all co:Connection | p in c.want => ((some

pub:Publisher, cid:ContentID, con:Content|
(cid->con) in pub.map && cid.prefix=p =>
(some r1,r2:Route| r1.initiator=c &&
r2.acceptor=pub && (r1->r2) in
ˆ(co.connected) && some g1,g2:Group|
g1.domain=c.domain && g2.domain=pub.domain &&
g1.prefix=p && g2.prefix=p && (g1->g2) in
ˆ(co.chain))))

}
assert sub{

all c:Client, p:Prefix| sub[c,p]
}

We check this property within a reasonable bound (we need
it to be at least 3 prefixes) where the upper bound on the
number of prefixes is 3. It gives us interesting combinations,
such as one e.g., “P1 is parent of P2 and P2 is parent of P3”
and “P1 is parent of both P2 and P3”.

Property 3.2. Ability to receive any content published
directly associated with the subscribed prefix. For every
client that has subscribed to a prefix and can reach the
associated publisher, there is a path back to the client to carry
any content with a content ID belonging to that prefix.

pred rcv[pub:Publisher, con:Content, cid:ContentID]{
all co:Connection| (cid->con) in pub.map =>

((some c:Client, p:Prefix| p in c.want &&
cid.prefix=p => (some r1,r2:Route|
r1.initiator=pub && r2.acceptor=c && (r1>r2)
in ˆ(co.connected) && some g1,g2:Group|
g1.domain=pub.domain && g2.domain=c.domain &&
g1.prefix=p && g2.prefix=p && (g1->g2) in
ˆ(co.chainR))))

}
assert rcv{

all pub:Publisher, con:Content, cid:ContentID |
rcv[pub,con,cid]

}

Property 3.3. Ability to receive all content published
that is associated with prefixes under the subscribed prefix.
This property only applies when the publisher is in the NDN
domain. It says that for every client that has subscribed to a
prefix and has reached the associated publisher, there is a path
back to the client to carry any content with content ID either
directly belonging to that prefix or under it downstream on the
prefix tree. The following code segment is the specification of
this property:

pred rcvall[pub:Publisher, con:Content,
cid:ContentID]{

all co:Connection, pt:PTree| (cid->con) in
pub.map and pub.domains in NDNdomain =>
((some c:Client, p:Prefix| (p in c.want or
(all p1:Prefix| (p1->p) in ˆ(pt.map) && p1 in
c.want)) && cid.prefix=p => (some
r1,r2:Route| r1.initiator=pub &&
r2.acceptor=c && (r1>r2) in ˆ(co.connected)
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&& some g1,g2:Group| g1.domain=pub.domain &&
g2.domain=c.domain && g1.prefix=p &&
g2.prefix=p && (g1->g2) in ˆ(co.chainR))) }

assert rcvall{ all pub:Publisher, con:Content,
cid:ContentID| rcvall[pub, con, cid] }

The above assertion rcvall depends on how relationships
among groups and also between content IDs and prefixes are
represented by Connection and PTree atoms. If we had
an NDN domain with a namespace that does not capture
relationships between prefixes, i.e., not leveraging the hierar-
chical structure of names, then rcvall would be equivalent of
receiving a single content element (Property 3.2.). We check
that this property also holds. Properties 3.1-3 collectively
model and verify the hierarchical subscription/publication we
expect from this service.

The formal model is a means to verify and show correctness
of our interoperability framework and raise the confidence on
its essential requirements.

C. Failure and Mobility

In addition to the basic invariants, there are other important
aspects of formal analysis of networks that warrant a more
quantitative analysis; among them are failure and mobility
analysis. Failures and mobility of nodes can occur in a
network, causing disruption and lack of content availability.
To better compare how different network architectural compo-
nents, e.g., routing, impact the number of success and violation
scenarios, we perform model counting [30].

While Alloy Analyzer (v4.20) [31] allows for a limited,
graphical iteration over instances, it does not enable an explicit
counting of instances in an efficient manner. To perform model
counting, we wrote an application [32] that counts all SAT
solutions, using the SAT4J solver [33] (SAT4J can be replaced
by any off-the-shelf SAT solver). We feed the Alloy model
and properties, in Kodkod format [34], to our application.
Predicates and assertions are used for counting instances that
satisfy or violate (counterexamples) respectively. Through this
counting, we can also look into the details (relations and
values) within each instance, and gain insight such as possible
cause of violations (in case of counterexamples) and calculate
the probability of occurrence of each instance in real-world
scenarios.

1) Failure: Our interoperability framework depends on
gateways that retain state information. What would happen
to a response packet if that state is lost at the gateway for
any reason? For reliability, we consider state sharing between
redundant gateways that have the same domains on either side.
Fig. ?? depicts an example for this. Consider the gateway
that received the request and created the state as the primary
gateway for the request (GW1 in the Fig.), and the replicas
that have the shared state as the secondary gateways (GW2
and GW3). Formally, we add an extra condition to our
reachability and returnability properties such that, for two
routes to connect, the gateway attaching them must be up
and running at the time the packet is received. Additionally,
for returnability, the state information must be present at

the gateway. If any gateway goes down, the corresponding
potential path going through it (p1–3) back for the content
cannot be leveraged. If the gateway is neighboring an NDN
domain (e.g., in Domainn or Domainn−1), then the gateway
has be the primary only, for correct operation with the NDN
reverse-path-forwarding (RPF) policy [2]. For other domain
types, a secondary gateway that is active and has the shared
state information is adequate to forward the response data
back. We model the conditions representing this in Alloy as
shown in Listing 1.

Listing 1: Failure scenario constraints.
all r1,r2: Route, c:Connections| --forward routes

(request) condition
(r1->r2) in c.connected iff r1.acceptor =

r2.initiator && r1.initiator.status1 in Up
&& r2.initiator.status1 in Up

all r1,r2: RevRoute, c:Connections| --reverse
routes (response) condition

(r1->r2) in c.connectedR iff r1.acceptor =
r2.initiator && r1.initiator.status1 in Up
&& r2.initiator.status1 in Up &&

((r1.domain in NDNdomain or r2.domain in
NDNdomain) => r1.acceptor.type in Primary) --
NDNdomain enforces RPF policy

Gateways can go down due to various reasons such as
completely failing or just losing state information due to a
software failure. Our method can be used to reason about
various scenarios and measure failure probability given an
input configuration space, i.e., a set of Alloy facts that set
constraints on some objects or variables while relaxing others.
As Table I shows, a simple model finding analysis does
not provide a helpful comparison between different such
constraints: it will say that both cases lead to counterexamples
are raised (e.g., for the case that all gateways go down). To
gain a better assessment of which constraint does better, we
resort to model counting (Table II). Using model counting,
we can count (satisfying) instances (I) and counterexamples
(C), and calculate (even if approximately) the probability of
reliability (R = I/(I +C)). This reliability indicates to what
degree interoperability is impacted in presence of failure, given
certain conditions (i.e., choice of domain policies, etc.).

2) Mobility: To model and analyze mobility (Fig. 18),
we add the notion of “time” to our model. In particular,
we associate timeout values to state entries at gateways
and birthT ime and deathT ime to routes (and similarly for
reverse routes). We assume gateways are stationary, but a
consumer and/or producer can move, causing the “death” of
their route (route1) to/from their closest gateway. A new route
to the gateway is “born” (route2) after some time, assuming
the existence of a domain-specific method to handle mobility.
Temporal conditions must be incorporated into reachability/re-
turnability properties. The most interesting case is when a mo-
bility event occurs while the packet is in-flight. At high-level,
the sum total latency formulated as firstDeliveryAttempt+
recovery + secondDeliveryAttempt, must be below a cer-
tain expiration threshold (at every gateway and consumer).
firstDeliveryAttempt is the incomplete partial delivery la-
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TABLE I: Model finding.

Domain n
constraints

Return-
ability

Const. 1 x
Const. 2 x

TABLE II: Model counting.

Domainn
constraints

Returnability
I C R

Const. 1 x1 y1 x1/(x1+y1)
Const. 2 x2 y2 x2/(x2+y2)

Route1

RecoverA

B

BRoute2

Requester 
(Client or GW)

Server 
(Producer)

Fig. 18: Mobility scenario example: Route 2 established after B moves
and changes its point of attachment.

tency via route1 and secondDeliveryAttempt is the delivery
via route2 (continuation in MF, and complete retransmission
in IP and NDN). The recovery delay is the time it takes for
the packet to be transmitted back on the new path again; it
includes re-registration (MF and IP), FIB re-population (IP and
NDN in case of provider mobility) and/or PIT re-population
(for NDN in the case of consumer mobility) delays. Using
this formal method, we check properties in the presence of
mobility, find appropriate values for a timeout threshold on
gateways and investigate the effect of domain-specific mobility
handling methods on interoperability. Listing 2 generally spec-
ifies how the reachability property (to deliver a named request)
depends on the condition of mobility (stationary or mobile)
and the domain policy on handling mobility (early bind-
ing or late binding). Returnability is similarly specified (for
content). Predicates stationary, mobileEarlyBinding, and
mobileLateBinding specify timing conditions for successful
delivery assuming their corresponding conditions (details of
the three properties are omitted here due to space but are in
[32]). As shown in Fig. 18, we only consider intra-domain
mobility here, i.e., the mobile node changes its location and
point of attachment, but stays within its domain.

Listing 2: Reachability in presence of mobility.
pred reach[c:Client, p:Producer, cid:ContentID]{ --

a client and content producer
(stationary[c,p,cid] && p.mobility in Stationary)

-- producer stationary
or (mobileLateBinding[c,p,cid] && p.mobility in

Mobility && Domain.binding in LateBinding) --
producer mobile, domain does late binding

or (mobileEarlyBinding[c,p,cid] && p.mobility in
Mobility && Domain.binding in EarlyBinding)}
-- producer mobile, domain does early binding

D. Formal Analysis Results

We implemented the ICI framework discussed in our model,
with gateways for interoperation among IP, NDN, and MF in a
software testbed (implementation details in [28]). This section
provides the description and results of our analysis of the ICI
framework.

To check for correctness, we performed verification (sup-
ported by Alloy Analyzer’s model finding engine) of our
ICI framework model, against the information-centric services
properties. In order to reach convincing proofs (as advised in
[35]), we pick the scopes for verification in Alloy that are
large enough to contain all necessary cases, and small enough
so that we do not encounter model explosion. The scopes,
i.e., upper bounds on the number of key objects, are provided
in Table III. For most properties, we consider 1 Client, 1
Server, 1 Content, and 1 ContentID. That is, different
<client, request> pairs are considered independent of each
other. However, for Properties 2.3.a/b, such a dependency
matters, and we want to show lack of conflicts. For Property
2.3.a, we set 1 Client and 2 Contents (to generate scenarios
where one client makes two separate request for two different
contents), and for Property 2.3.b, we set 2 Clients and 1
Content (to look for conflicts between request for one content
but by two clients). We use 3 Domains for most properties,
as it contains all cases with 1, 2, or 3 domains of any type,
i.e., IP, NDN, or MF. Also, with upper bound n on the total
number of Nodes, i.e., sum of Clients, Servers, and GW s,
we specify the upper bound on the number of Routes (as
well as RevRoutes) to be n(n − 1), enabling the existence
of any possible (uni-directional) route. For pub/sub services
(i.e., Properties 3.1–3), we set 3 Prefixes, ContentIDs,
and Contents, to capture inter-relationship of content IDs
in a large enough namespace. Additionally, with the upper
bound on Domains and ContentIDs both set at 3, we set
the upper bound on total number of Groups (and GroupIDs)
to be 3×3=9, so as to contain cases with one group per
content ID per domain. The blank cells in Table III indicate
either “N/A” or “no particular upper bound set”, in which
case Alloy picks a default value. Within this scope, our
verification passes successfully for each property, showing that
the stated properties are invariants of our ICI framework. In
other words, the framework design ensures that any sequence
of interconnected IP, NDN, and MF domains are information-
centrically interoperable.

We use our proposed model counting approach to analyze
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scenarios with the failure of one or multiple gateways. The
most important factor affecting returnability in scenarios with
the possibility of failure, is domain-specific routing policies,
in particular, whether or not it allows for a secondary (backup)
gateway to relay the returning response content. Different
domains have different policies; MF and IP decouple the
forward (request) and return (response) paths, and they can be
through different gateways, while NDN strictly requires the
two paths to be the same, due to RPF policy. To investigate
the impact of that policy, we considered a scenario of two
domains, with two gateways between them (one primary and
one secondary), sharing state. Both gateways are Up (working)
when the request is forwarded, and either may go Down
(failing) when the response is one its way back. Table IV
shows different scenarios for reachability and returnability,
with different domain constraints (with different routing poli-
cies). In particular, the two domain constraints we consider are
the following: 1) no constraint on what any of the domains
are; and 2) one domain is definitely NDN. The table shows the
values of I (instances), C (counterexample), and R (reliability)
for each scenario. Our results for R in Table IV prove that
having an NDN domain on one side dramatically reduces
the returnability reliability ratio, since basic NDN forwarding
strictly forbids data coming back on a different path than the
original path taken by the request.

When a content producer (server) moves while a content
request is in-flight (Fig. 18), the domain’s handling of mobility
recovery determines the reachability probability. NDN and IP
use early binding with retransmissions, while MF supports
late binding with rerouting. We compare the impact of these
mechanisms and techniques using our model counting method,
with results shown in Table V. Our modeled scenario consists
of two nodes in a domain, one requester (client or gateway)
and one server (producer) with a route established among
them. The ‘Stationary’ columns in the table show reachability
results in the stationary server case. With ‘Mobile’, the route
dies due to a server mobility event (at time t=10), leading
to the birth of the second route. We set the re-registration
and re-population delays to 1 each. Also, a retransmission is
initiated 1 time unit after the mobility event. Different binding
techniques for mobility, i.e., late and early binding, are also
shown in Table V. We compare cases with different ranges for

Delivery Latency (DL), which is time approximately needed
for a packet to travel from requester to server. For a delivery
latency range of [0, 20], we see a higher R for stationary
vs. mobility cases. The reason is that when the server does
not move, the original route stays active, thus providing a
higher chance for requests to reach the server. Comparing the
two binding techniques, late binding leads to higher chance
of reachability compared to early binding, as it allows for
packets to be re-routed on the newly-born route, rather than
retransmitting from the original requester. These results serve
as proof that under similar scenarios, late binding outperforms
early binding in ICI. Also, changing the delivery latency
ranges, we can find out at what points, reachability is an
invariant (if ever) under mobility conditions. As the table
shows, with ranges within [0, 18], [0, 15], and [0, 10] (rows
in Table V labeled in first column accordingly), reachability
becomes an invariant in cases of Stationary, Late Binding,
and Early Binding, respectively; as zero counterexamples are
raised. With a small enough delivery latency ranges, namely
[0, 10], reachability becomes an invariant, no matter the mo-
bility conditions. Our approach can be used to find such points
of invariance, comparing different techniques, and prove them.

V. EVALUATION

A. Forwarding Efficiency
In order to evaluate the performance of our interoperabil-

ity framework, primarily the gateway implementation perfor-
mance, we set up a testbed consisting of a number of virtual
machines. We use a representative installation of NDN, MF
and IP: client and server as well as routers for each domain.
For NDN, we used the CCNx v0.8.0, which contains all
the components of NDN that is essential to our framework,
including our COPSS implementation.

Our testbed consists of five VMs: C→R1→GW→R2→P
where client C and router R1 are in domain D1 and provider P
and router R2 are in domain D2. Gateway GW , an implemen-
tation of our interoperability framework, is in between the two
domains and perform the request/response translation. With
distinct domains D1 and D2, we test all six possible scenarios.
We tested functionality with a client being able to ask for a
content residing in a remote domain of a different architecture
and get the content back via the gateway. Table VI are the mea-
surements for each scenario the five-node testbed. The content
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TABLE IV: Failure analysis results.

Cases Reachability Returnability
I C R I C R

No domain 290 0 1.00 56 210 0.21
constraints
One NDN 176 0 1.00 8 168 0.04
domain

TABLE V: Mobility analysis results.

Cases Stationary Mobile
LateBinding EarlyBinding

DL range I C R I C R I C R
[0,20] 100 8 0.92 72 24 0.75 92 64 0.58
[0,18] 96 0 1.00 72 8 0.90 92 48 0.65
[0,15] 84 0 1.00 64 0 1.00 92 24 0.79
[0,10] 64 0 1.00 44 0 1.00 84 0 1.00

Scenarios Overall Provider GW Processing
(value in ms) Resp. Service Req. Resp.

NDN-MF 367.50 8.25 2.50 1.75
MF-NDN 363.25 0.10 12.25 2.00

IP-MF 72.75 10.50 11.50 5.00
MF-IP 64.50 5.50 9.75 5.75

NDN-IP 356.50 2.50 10.25 9.50
IP-NDN 350.75 0.18 6.00 5.25

TABLE VI: Forwarding efficiency (static content).
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Fig. 19: Scalability: memory consumption vs. # of requests.
TABLE VII: Interoperability: dynamic content retrieval latency.

Scenario Provider Service
Time (ms)

Gateway Processing Delay (ms)
Request Processing Response Processing

IP-MF 20 3 9
NDN-MF 29 1 11
IP-NDN 26 4 26
NDN-IP 34 17 5
MF-IP 13 16 13

MF-NDN 27 15 4

requested is 1000 bytes, and we focus on the primary compo-
nent of concern: the average gateway processing latency.

Table VI, shows the average overall response time, provider
service and gateway processing times (averaged over several
runs, discarding outliers). The processing time at the gateway,
including reformatting and maintaining state between the two
domains, while not negligible, is reasonable for an initial
software implementation. It contributes between 5-16 ms of
processing delay, compared to the total response time of 60-
360 ms in this small-scale topology. Especially in the ICN
cases, the gateway contributes a relatively small portion of the
overall response time.

To compare it with the response time when the client and the
provider are on a single domain (replacing gateway GW with
a native router R0). We believe that the cost of interoperability
is reasonable enough to encourage interoperation as a means
of accessing content residing in other domains rather than
replicating it in each domain. We only report results for access
to static content; experiments for dynamic content access are
shown in Table VII where the dynamic content providers
generate a small-size response upon each dynamic content
request from a remote client. We observe the absolute (av-
erage) value for gateway processing time delays, independent
of the topology and total response time experienced by the
end consumer, is still small enough to justify the use of
interoperability gateways to access content form a foreign
domain.
B. Scalability

We then use the ORBIT test bed [36] to evaluate the scal-
ability of the proposed solution. ORBIT has a grid with 400
nodes and allows customized network topology using SDN.
We run each router (forwarding engine), provider, consumer
and gateway on separate physical nodes. Each machine has

4GB memory and runs Ubuntu 14.04. In our topology, we
included 50 consumers (in one domain), 1 provider (in another
domain) and 1 gateway. The consumers are connected to the
gateway via a pre-configured access network.

We measure the amount of state stored in the gateway
(memory consumption) vs. different number of requests from
the consumers. The implementation is in Java, which has
automated memory management. We call garbage collection
very frequently during run-time to get a better estimate of
memory consumption. This makes our gateway slightly slower
compared to the regular use. We evaluate the requests to
static and dynamic content separately and only the IP→NDN
scenario is reported here.
Evaluation on dynamic content: Here, 50 clients send 328
dynamic content requests simultaneously. Our server stalls the
response to each request for 3 seconds to try and have more
requests accumulated on the gateway (3 sec. is picked since
request timeout time in NDN is around 4 sec.). Fig. 19a shows
the instantaneous memory consumption (and moving average
over 20 values) vs. # of incoming and outgoing requests.

Since the consumers are requesting dynamic content, we
don’t see any aggregation at the gateway – each request
from the client yields an outgoing request to the provider.
Therefore, the incoming and outgoing request values are very
close to each other in the Fig. We observed that the memory
consumption grows linearly with the number of incoming
requests since we keep the states for each request.
Evaluation on static content: Now the clients make 328
requests over 100 static content items simultaneously. The
popularity of the content follows a Zipf distribution (α=0.81).
The server still waits 3 seconds before sending the response
to allow request accumulation. Fig. 19b shows the results.

Since we keep the state on the gateway, we can aggregate
multiple requests for the same content (name). Therefore, the
amount of requests to the provider is smaller than the amount
of requests from the consumers. The memory consumption
also grows sub-linearly towards the incoming requests. The
memory consumption is lower here compared to the value for
dynamic content with the same amount of requests.
Summary: We ran the same experiments in other domain
combinations (NDN→IP, MF→NDN, etc.) and see similar
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results. While the exact memory consumption value might
be specific to the implementation, the relationship gives us
some hints. We acknowledge that keeping per-session state
puts more burden on the gateways (amount of state grows
with the number of flows), but it is analogous (and no worse
than) maintaining PIT state at NDN routers. Yet, thanks to
the information-centric design, we allow aggregation at the
gateways, with the potential for the architecture to scale better.

VI. CONCLUSION

We presented a framework for interoperability across NDN,
MF and IP network domains, ensuring that the individual
architectures (clients, routers, naming schema) do not change
to accommodate interoperability. It is achieved by having an
appropriate translating gateway at the intersection between
domains. We describe the protocol and verify key properties
in supporting the different communication patterns across
domains. The performance of our approach is reasonable,
albeit our first attempt at the gateway implementation has room
for improved performance. We have identified a number of
opportunities for optimization. We believe this approach is a
means for building bridges between islands of different ICN
networking architectures, such as NDN, MF and with IP.
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