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ABSTRACT
In this paper, we measure and model the distribution of multicast
group members. Multicast research has traditionally been plagued
by a lack of real data and an absence of a systematic simulation
methodology. Although temporal group properties have received
some attention, the location of group members has not been mea-
sured and modelled. However, the placement of members can have
significant impact on the design and evaluation of multicast schemes
and protocols as shown in previous studies. In our work, we iden-
tify properties of members that reflect their spatial clustering and
the correlation among them (such as participation probability, and
pairwise correlation). Then, we obtain values for these properties
by monitoring the membership of network games and large audio-
video broadcasts from IETF and NASA. Finally, we provide a com-
prehensive model that can generate realistic groups. We evaluate
our model against the measured data with excellent results. A re-
alistic group membership model can help us improve the effective-
ness of simulations and guide the design of group-communication
protocols.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols—
Applications

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Group Membership, Member Clustering, Skewed Distribution, Pair-
wise Correlation, Maximum Entropy

1. INTRODUCTION
Where should the members be located in a multicast simulation?

This is the question that lies in the heart of this work. Multicast
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research can greatly benefit from realistic models and a systematic
evaluation methodology ([7] [25] [10] [21] [8] [23] [22] [26] [30]
[14]). Despite the significant breakthroughs in modelling the traf-
fic and the topology of the Internet, there has been little progress
in multicast modelling. As a result, the design and evaluation of
multicast protocols is based on commonly accepted but often un-
proven assumptions. For example, the majority of simulation stud-
ies assumes that the users are uniformly distributed in the network.
In this paper, we challenge this assumption and study the spatial
properties of group members, such as clustering and correlation.

A realistic and systematic membership model can have signifi-
cant impact on the design and development of multicast protocols.
Spatial information can help us address the scalability issues, which
has always been a major concern in multicasting. Similarly, reli-
able multicast protocols need spatial information in order to fine-
tune their performance or even evaluate their viability. Further-
more, spatial properties of a group with common interest members
transcend the scope of IP multicast. Group communications is an
undeniable necessity independently of the specifics of the technol-
ogy that is used to support it. For example, web caching or applica-
tion level multicast protocols can and should consider the member
locality.

Only recently, properties of group membership have received
some attention, but the spatial properties have not been adequately
measured and modelled. Several studies show the importance of
the spatial distribution of members [30] [14] [21]. However, there
does not exist a generative model for such a distribution, which is
partly due to unavailability of real data. In more detail, there have
been several studies on the temporal group properties [4] [15]. In
addition, several studies examine the scaling properties of multi-
cast trees [10] [21] [8] [9] and the aggregatability of multicast state
[22] [26] [30] [14]. Philips et al. [21] conclude that the affinity
and disaffinity of members can affect the size of the multicast tree
significantly. Thaler et al. [26] and Fei et al. [14] observe that the
location of members has significant influence on the performance
of their state reduction schemes.

In this paper, we study the distribution of group members focus-
ing on their clustering and correlation. A distinguishing point of
our work is that we use extensive measurements to understand the
real distributions and develop a powerful model to generate realis-
tic distributions. Our contributions can be grouped into two main
thrusts.

I. Real data analysis. We measure and analyze the member-
ship of net games and large audio-video broadcasts from IETF and
NASA (over the MBONE). We quantify properties of the mem-
bership focusing on: a) the clustering, b) the distribution of the



participation, and c) the distribution of thepairwisecorrelation of
members or clusters in a group. We observe that the MBONE mul-
ticast and gaming groups exhibit differences, which suggests the
need for a flexible model to capture both. In our clustering analy-
sis, we use the seminal approach of network-aware clustering [16].
More specifically, we make the following observations.

1. MBONE multicast members:The group members are highly
clustered and the clusters exhibit strong pairwise correlations
in their participation.

2. Net game members:The clustering is much less pronounced
and there does not seem to be a strong correlation between
users. Interestingly, we observe a very strong daily periodic-
ity.

II. GEM: A model for generating realistic groups. We de-
velop GEneralizedMembership model (GEM) that can generate
realistic member distributions. These distributions are given as in-
put parameters to the model, enabling users to match the desired
distribution. The main innovation of the model is the capability to
match pairwise participation probabilities. To achieve this, we use
the Maximum Entropy method [31], which, in an under-defined
system, chooses the solution with maximum “randomness” or en-
tropy. As a result, GEM can simulate the following membership
behavior:

1. Uniform distribution, which is the typical but not always re-
alistic distribution.

2. Skewed participation distribution without pairwise correla-
tions.

3. Skewed participation distribution with pairwise correlations.

We validate our model with very positive results. We are able to
generate groups whose statistical behavior matches very well the
real distributions.

Modelling location of users with common interests.The analy-
sis and the framework presented here can be of interest even out-
side the multicast community. Applications with multiple recipi-
ents such as web caching and streaming multimedia are also inter-
ested in the location of users ([6] [29]). We provide our data and
our model to the community with the hope that it can be part of
a realistic and systematic evaluation methodology for this kind of
research ([1]).

The rest of this paper is organized as follows. Section 2 gives
some background on multicast group modelling. Section 3 lists
the spatial properties of group members. Section 4 quantifies the
spatial group properties using real data from the MBONE and net
games. Section 5 describes our powerful group membership model.
In Section 6, we validate the capabilities of our model. Finally, we
conclude our work in section 7.

2. BACKGROUND
In this section, we give some background on multicast group

modelling and related efforts.The properties of multicast group be-
havior can be classified into two categories: spatial and temporal
properties. Spatial properties consider the distribution of multicast
group members in the network. Temporal properties concentrate
on the distribution of inter-arrival time and life time of group mem-
bers, in other words, the group member dynamics. In the following,
we give an overview of the related work on the modelling of multi-
cast group behavior.

The majority of multicast research assumes simplifying assump-
tions on the distribution of members in the network. Protocol devel-
opers assume almost always that users are uniformly distributed in
the network (such as [27], [28], [5], [17], [13], and [10], etc.). This
is partly due to the unavailability of real data. On the other hand,
it is interesting to observe that skewed distributions have been ob-
served in multiple aspects of communication networks from traffic
behavior [18] [20] to preferences for content [11] and peer-to-peer
networks [19].

There have been some studies on the temporal group properties,
such as [4] and [15]. [4] measured and studied the member arrival
interval and membership duration for MBONE. It also showed that,
for multicast sessions on MBONE, an exponential function works
well for the member inter-arrival time of all type of sessions, while
for membership duration time, an exponential function works well
for short sessions, but a Zipf [32] distribution works well for longer
sessions. [15] conducted a follow-on study for net games. The au-
thors found that player duration time fits an exponential distribu-
tion, while inter-arrival time fits a heavy-tailed distribution for net
game sessions.

Several studies examining the scaling properties of multicast trees
([10] [21] [8] [9] [23]) and the aggregatability of multicast state
([22] [26] [30] [14]) show that the spatial properties do matter in
multicast research. In their seminal work, Chuang and Sirbu [10]
discovered that the scaling of the tree cost follows power law with
respect to the group size, assuming that group members are uni-
formly distributed throughout the network. Philips et al. gave an
explanation of the Chuang and Sirbu scaling law in [21]. They also
considered member affinity1, and concluded that, for a fixed num-
ber of members, affinity can significantly affect the size of the de-
livery tree. These two works mainly concentrate on multicast effi-
ciency (the gain of multicast vs unicast). Besides defining a metric
to measure multicast efficiency, Chalmers and Almeroth ([8] [9])
also examined the shape of the multicast trees through measure-
ments from MBONE, basically focusing on the the distribution and
frequency of the degree of in-tree nodes, the depth of receivers, and
the node class distribution. In this work, Chalmers and Almeroth
also indicate that the multicast efficiency can be affected by the
member clustering.

The distribution of the group members affects our ability to ag-
gregate the multicast state significantly. State aggregation has been
the goal of several research efforts ([22], [26], and [14]). These pa-
pers proposed different state reduction schemes, and showed that
group spatial properties, such as clustering of members, correlation
between members, affects the performance of their approaches. In
[30], Wong et al. did a comprehensive analysis of multicast state
scalability considering network topology, group density, cluster-
ing/affinity of members and inter-group correlation. They conclude
that application-driven membership has significant impact on mul-
ticast state distribution and concentration.

3. CHARACTERISTICS OF THE GROUP
MEMBERSHIP

In this section, we identify and define several properties of group
membership, which we quantify through measurements in the next
section. For simplicity, we refer to the hosts or routers in the Inter-
net as “nodes” or “network nodes”.

1. Member Clustering: Clustering captures the proximity of
the group members. We are interested in the proximity from

1Member affinity means the members are likely to cluster together,
while disaffinity means that they tend to spread out.



a networking point of view, and we use the network-aware
clustering method [16] in our measurement.

Earlier studies proposed models to capture the clustering of
group members ([26], [30]). However, these studies do not
provide measurements of the clustering in the Internet.

Note that the metrics we present below can refer to a node
or a cluster. We will use the term “cluster”, since a node is
a cluster of size1. In addition, we focus on clusters in our
analysis.

2. Group Participation Probability: Different clusters have
different probabilities in participating in multicast groups:
some clusters are more likely to be part of a group. The uni-
form distribution of participation is a special case where all
clusters have the same probability.

Multiple Group Participation: If we have many groups, we
define the participation probability of a cluster as the ratio of
groups that the cluster joins.

Time-based Participation: For a single but long-lived group,
the participation probability can be defined as the percentage
of time that a cluster is part of the group. We find this defini-
tion particularly attractive, since our data is often limited in
the number of groups. It should be noted that, in our analysis,
we use this definition.

Fei et al. [14] proposed a node-weighted model to incorpo-
rate the difference among network nodes, where each node is
assigned a weight representing the probability for that node
to be in a group.

3. Pairwise Correlation in Group Participation: This metric
captures the joint probability that two clusters are members
of a group. The intuition is that common-interest or related
users (e.g. friends) will probably share more than one groups.
More specifically, we quantify the pairwise correlation be-
tween two clusters as follows. Given two clustersCi and
Cj , we denote the participation probabilities of clusterCi

andCj aspi andpj respectively, and the joint participation
probability ofCi andCj is denoted bypi,j . The correlation
coefficient betweenCi andCj , coef(i, j), is the normalized
covariance betweenCi andCj ([24]):

coef(i, j) =
(pi,j − pi × pj)√

pi × (1− pi)×
√

pj × (1− pj)
. (1)

Multiple Group Pairwise Correlation: In the presence of
many groups, we can use the multiple group participation
probability to compute pairwise correlation.

Time-based Pairwise Correlation: In this work, we mea-
sured and analyzed single but long lived sessions (from MBONE
and net games). Thus we can use the time-based participa-
tion probability that we defined above to compute time-based
pairwise correlation.

In the literature, there has been some effort to model the pair-
wise correlation. In [26], a two-dimensional array of ran-
domly allocated correlation probabilities is used. In [30], the
authors simulated the correlation implicitly by encouraging
the members of sets of nodes to join the same group, once
one of the nodes of the set has joined.

We did not find any previous studies which use real data to verify
and quantify the spatial properties. In addition, no previous effort

has provided a comprehensive model for all of the above properties
of group membership, as we do here.

4. MEMBERSHIP FEATURES MEASURED
FROM MBONE AND NET GAMES

In this section, we measure the properties of multicast group
membership in real applications. First, we use data from NASA
and IETF broadcasts over the MBONE, which are single-source
large-scale application. Second, we measure the membership at
net games, which are multiple-source interactive application. The
MBONE is an overlay network on the Internet, and it has served as
a testbed for multicast researchers since 1992. Net games is one of
the most popular multiple-source applications. Though most of net
games are implemented using multiple unicasts, we are interested
in the membership behavior (or spatial group properties), which is
independent of the underlying implementation.

4.1 Measurement Methodology
MBONE. We use data sets provided by Chalmers and Almeroth

from University of Santa Barbara ([8] [9]). The data sets are di-
vided into two groups: real data sets and cumulative data sets,
which are summarized in Table 1 and Table 2 separately.

The real data sets include IETF43-A, IETF43-V and NASA, and
the cumulative data sets include UCSB-2000, UCSB-2001, Gatech-
2001 and UOregon-2001. For the details of measurement on MBONE,
please see references [8] and [9]. One thing deserving more de-
scription is the generation of cumulative data sets: multicast paths
are traced using a number of sources (UCSB, Georgia Tech, and
Univ. of Oregon) for a series of 22,000 IP addresses that were
known to have participated in multicast groups over a two years
period, June’97-June’99. In these data sets, although most of the
traces were collected recently and reflect the latest multicast infras-
tructure, the group members represent a relatively random sample
taken from the older MBONE. Due to the limited number of real
data sets, we use cumulative data sets to get an intuition of how the
size of groups affects the property of member clustering.

Net Games.For net games, we use the QStat tool [3] to collect
data. QStat is a program designed to poll and display the status
of game servers. Some game servers offer a querying mechanism,
which can retrieve some specific information, such as the number
of players, players’ nicknames, IP addresses, and scores, and the
time that each player has been connected, etc. To analyze cluster-
ing of members, we need members’ IP addresses (the reason will
be clarified in Section 4.2). Not all games, however, provide play-
ers’ IP addresses. Quake I is one of the fewer games that allow
this. Thus, we choose Quake I though it is a little bit old game.
Using QStat, we measured70 Quake game servers (obtained from
a master server) for five days (across a weekend), and the servers
are polled every one minute. We select the10 most popular servers
(5 of them providing IP addresses of players) for our analysis, and
the selected game servers are illustrated in Table 3.

From each data set of MBONE and net games (note that, one
data set corresponds to one multicast session or group), we sample
the group membership at regular interval (1 minute). Each sample
of group membership is composed of members with IP address or
player ID for some net games data sets (in which IP address of play-
ers are not provided). To give some intuition of the data sets, we
plot some examples chosen from real MBONE data and net games
data in Fig. 1, Fig. 2, Fig. 3, and Fig. 4. In all these figures, the
X-axis is the time, and the Y-axis represents the number of mem-
bers (receivers for MBONE or players for net games). We can see
clearly how the number of members changes with the time.



Table 1: MBONE Real Group Data Sets
Receivers

Name Description Trace Period Total Maximum Average

IETF43-A 43rd IETF Meeting Audio Dec. 7-11, 1998 107 93 58.72
IETF43-V 43rd IETF Meeting Video Dec. 7-11, 1998 129 90 48.59
NASA NASA Shuttle Launch Feb. 14-21, 1999 62 62 40.33

Table 2: MBONE cumulative Group Data Sets
Receivers

Name Description Trace Period Total Maximum Average

SYNTH-1 UC Santa Barbara Jan. 6-10, 2000 1,871 1653 805.94
SYNTH-2 Georgia Tech Jul. 12-25, 2001 1,497 1497 958.17
SYNTH-3 University of Oregon Dec. 18-19, 2001 1,019 1019 492.45
SYNTH-4 UC Santa Barbara Dec. 19-22, 2001 1,018 1018 474.35

Table 3: Netgames Group DataSets
Players

Name Game Server Meassurement Period Total Maximum Average

QS-1 quake.dircon.co.uk May 14-18, 2002 352 8 1.71
QS-2 sense-sea.oz.net May 14-18, 2002 265 11 1.89
QS-3 195.147.246.71 May 14-18, 2002 234 11 1.72
QS-4 ut2003.kos.net May 14-18, 2002 158 10 2.22
QS-5 zoologi38.zoologi.su.se May 14-18, 2002 391 11 2.34

QS-6 200.230.198.53: 26004 May 14-18, 2002 1198 10 3.31
QS-7 frodo.trinicom.com May 14-18, 2002 437 16 4.04
QS-8 bridge.widomaker.com May 14-18, 2002 417 13 3.67
QS-9 200.230.198.53: 26001 May 14-18, 2002 1298 8 3.50
QS-10 209.48.106.170 May 14-18, 2002 604 15 8.12



MBONE multicast: decelerating increase and “black-out”
phases. In Fig. 1 and Fig. 2, we see that the IETF broadcast in-
creases close to monotonically but with decreasing rate of increase.
We also notice some short periods (there is also a big period for
IETF Video) in which the number of members drop suddenly and
then rise again. One possible explanation is the network instabil-
ity: either the tree was torn down and rebuilt or the measurements
got lost. Another possible reason is that these might correspond to
breaks of the IETF meeting, such as lunch time. Fig. 3 shows the
sampled data sets for NASA broadcast. We see that NASA broad-
cast has smaller number of drop periods than IETF broadcast. One
reason to explain this is that, unlike IETF meeting, NASA shuttle
lunch is a more continuous event. The big drop period can be ex-
plained by some break of network connection or some unexpected
and uninteresting event.

Net games: membership is strongly periodic.Fig. 4 shows
very interesting behavior of net games (Quake) players: in each
day, there is a big spike in user participation. Moreover, there are
more players during the weekend (May 17th and May 18th). This
periodicity is natural given the nature of the activity: For a game
server, due to the delay constraints of gaming, most of the players
come from areas within some range (say, in several hops). Thus
the players are more likely active in some relatively fixed period of
time in a day. For example, in Fig. 4, we see that late night is a very
active period for game players in this server.
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Figure 1: The data set sampled from IETF Meeting Audio
(IETF43-A).

In the rest of this section, we examine membership properties of
the above data.

4.2 Member Clustering
To model member clustering, we employ network-aware cluster-

ing. Intuitively, two members should be in the same cluster if they
are close in terms of network routing. In the Internet, this kind of
grouping can be done based on IP addresses. We adopt the method
in [16] to identify member clusters using network prefixes, based
on information available from BGP routing snapshots (we use the
BGP dump tables obtained from [2]). This way, clustered nodes are
likely to to be under common administrative control. For details,
please see [16].

We briefly outline network-aware clustering for completeness.
We first extract the network prefixes/netmasks from BGP dump
tables and the IP addresses of members from group membership
samples, then we classify all the member IP addresses that have
the same longest-match prefix into one cluster, which is identi-
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Figure 2: The data set sampled from IETF Meeting Video
(IETF43-V).
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Figure 3: The data set sampled from NASA Shuttle Lunch
(NASA).
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Figure 4: The data set sampled from net game server 1 (QS-7).

fied by the shared prefix. For example, suppose we want to clus-
ter the IP addresses216.123.0.1, 216.123.1.5, 216.123.16.59, and
216.123.51.87. In the routing table, we find the longest-match pre-
fixes are216.123.0.0/19, 216.123.0.0/19, 216.123.0.0/19, and
216.123.48.0/21 respectively. Then we can classify the first three



IP addresses into a cluster identified by prefix/netmask216.123.0.0/19
and the last one into another cluster identified by216.123.48.0/21.
It should be to noted that other clustering methods, such as network
topology based approach, are possible. But network-aware cluster-
ing is an easy and effective way for us to do clustering considering
the data we have achieved. In later sections, we will show that our
analysis and model are not constrained by the clustering method.

For each data set, we want to see the number of group mem-
bers per cluster. Here, we refer to the number of group members
in a cluster as thesize of the cluster(or cluster size). For all the
group membership samples, we examine the Cumulative Distribu-
tion Function (CDF) of the cluster size. The results for data sets
from MBONE and net games are shown in Fig. 5. Therefore, for a
given cluster size in the X-axis, we see how many clusters have at
most that size.
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Figure 5: CDF of cluster size for data sets from MBONE and
net games. The upper set of curves are for net game data sets
(with 5 game servers providing IP addresses of players), the
middle set of curves are for MBONE real data sets (IETF43-
A, IETF43-A, and NASA), and the lower set of curves are for
MBONE cumulative data sets.

Group members form clusters with skewed size distribution.
Group members are significantly clustered. In Fig. 5, we can see
three different groups of curves: the upper group for net game data
sets (with 5 game servers providing IP addresses of players), the
middle group for MBONE real data sets (IETF43-A, IETF43-A,
and NASA), and the lower group for MBONE cumulative data sets.
In each group, the data sets have similar member clustering prop-
erty: for example, for MBONE real data sets, more than20% clus-
ters have2 or more group members; for MBONE cumulative data
sets (UCSB-2000, UCSB-2001, Gatech-2001 and UOregon-2001),
they also have similar features: more than60% clusters have2
or more group members; while for net games, the corresponding
group of CDF curves do not show significant member clustering:
about90% “clusters” have size1.

Cluster size distribution is mainly affected by the group size.
We observe that it is primarily the size of the group that affects
the range of the distribution. However, the cluster size distribu-
tion is similar qualitatively in all three groups of data sets. When
comparing the groups of curves, we can conclude that the MBONE
cumulative data sets have more significant clustering feature than
MBONE real data sets. We attribute this to the larger size of the
group. The average number of members for each cumulative data
set (from500 to 1000) is much higher than that for real data sets
(around50). The bigger the group is, the more members tend to

be in one cluster and the more significant of the member clustering
feature is. As for net games, the feature of member clustering is
even less significant: most “clusters” have only one member, which
means that Quake players are more likely scattered over the net-
work. This observation suggests that probably the gain from some
multicast or intelligent caching schemes may not provide signifi-
cant benefits in this case.

The absence of clustering in the net games can be attributed to
many factors. One observation is that the maximum number of
players (16 in Quake) is controlled by the game servers because
of management issues. Thus, the possibility for the members to
fall in one cluster becomes smaller. It would be very interesting to
examine a net game with a larger user participation, but we were
not able to get such data. Another possible explanation may be
that the game players are not necessarily from a similar area of the
network potentially. This suggests that gaming community is scat-
tered, or alternatively, that net games bring together people from
significantly different places.

The practical implications of member clustering.Understand-
ing the clustering properties can help us develop efficient protocols
to improve the scalability and the performance of applications. The
member clustering captures the proximity of the members in the
network especially with the use of network-aware clustering. For
example, in a well clustered group, we can potentially develop hi-
erarchical protocols that can exploit the spatial distribution of the
members like hierarchical multicasting.

4.3 Group Participation Probability
We find thatthe participation probability is non-uniform across

clusters or nodes.This strongly suggests that the uniform distri-
bution used so far for most research is not realistic. In the analysis
below, we study the distribution across clusters or nodes that par-
ticipate at least once in a multicast group. Clearly, there are clusters
or nodes in the network that do not appear in any group. In fact, we
expect that these clusters (or nodes) are probably large in number,
which reinforces the observation that not all clusters (or nodes) are
created equal regarding multicast participation.

Note that, given the limited number of groups, we measured the
time-based participation probability as defined in the previous sec-
tion.

We give the CDF of the participation probability of clusters or
nodes for MBONE and net games in Fig. 6 and Fig. 7 respectively.
Given a probability in the X-axis, we can see how many clusters or
nodes have at most that probability to participate in the multicast
group.

MBONE: the cluster participation probability is non-uniform.
In Fig. 6, we see that the MBONE clusters are not equal in partic-
ipating in a group. If the clusters had the same probabilityp of
participating in a group, the CDF of the participation probability
would appear as a vertical line at the exactp on the X-axis. The
current plot of the CDF shows a roughly linear increase with close
to 45 degrees slope. This suggests that we have a wide range of
participation probabilities: for any value on the X-axis, we can find
a cluster with such a participation probability.

Net Games: the node participation probability roughly fol-
lows uniform distribution. For net games, since the member clus-
tering feature is not significant at all (about90% “clusters” have
size1), we simply analyze the node participation probability which
is approximated by the frequency of nodes joining the net game
session.

Fig. 7 plots the CDF of the participation probability for net games.
We observe that the plot is qualitatively different from the MBONE
distribution. For all the Quake servers we examined, more than



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Participation probability

IETF audio IETF video NASA

Figure 6: CDF of the participation probability of clusters for
data sets from MBONE (only real data).
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Figure 7: CDF of the participation probability of nodes for data
sets from net games (including 10 data sets).

95% of nodes only have participation probability less than0.1%.
We can say the uniformly random group membership model is suf-
ficiently realistic for net games (Quake). Interestingly, this suggests
that user participation is approximately equally distributed, and we
do not find players that would always join a game server. This is
consistent with our intuition: a player joins and leaves the game
at will and the player’s behavior is not heavily affected by other
factors as in applications on MBONE, such as IETF43 and NASA,
where the delivery content does influence the behavior of members
significantly.

4.4 Pairwise Correlation in Group Participa-
tion

We study the time-based pairwise correlation of clusters or nodes.
For each group, we sample it and compute the participation proba-
bility for all clusters or nodes and the pairwise participation proba-
bility between any two clusters or nodes. Then, using Equation 1,
we calculate the matrix of correlation coefficients. For net games,
we analyze the correlation between nodes directly, since most clus-
ters are trivially nodes.

We want to study the correlation of the clusters which is a matrix.
A large matrix with probabilities as values is not easy to visualize.
To overcome this, we plot the CDF of the correlation coefficient of
clusters in Fig. 8 and Fig. 9 for both groups of data sets (MBONE

and net games). In these figures, given a correlation coefficient in
the X-axis, we know how many pairs of clusters or nodes have at
most that correlation coefficient in multicast participation.
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Figure 8: CDF of the correlation coefficient of clusters for data
sets from MBONE (real data).
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Figure 9: CDF of the correlation coefficient of nodes for data
sets from net games (including 10 data sets).

The results for pairwise correlation are consistent with those for
participation probability: significant correlation feature for MBONE
applications, while very weak correlation phenomena for net games.

MBONE: clusters exhibit strong pairwise correlation. This
further argues that the selection of users with fixed equal probabil-
ity is not realistic for this kind of groups. Fig. 8 shows that most
of the correlation coefficients between clusters are not0 (in fact,
for both IETF video and audio data sets, only1.5% of cluster pairs
have0 correlation coefficient; and for NASA data set, the percent-
age of0 correlation coefficient is8%). This means that most of the
clusters are not independent2. Moreover, about90% (for IETF data
sets) or70% (for the NASA data set) of correlation coefficients are
greater than0 (positive correlation). This can be explained by the
fact that, in an IETF meeting or a NASA shuttle launch multicast-
ing, many members have very similar interests in specific sessions
and thus many clusters tend to be coupled together.

2It is easy to verify that, for any two variables which follow 0-1
distribution, if their coefficient is 0 then they are independent, and
vise versa.



Net games: pairwise user participation exhibits weak corre-
lation. In Fig. 9, we can see that some game servers have more
significant correlation features than others. However, for all the
servers, more than55% (up to80% for some servers) of node-pairs
have correlation coefficient as0. In other words, most pairs of
nodes are independent. The explanation for the difference between
MBONE applications and net games is very similar to the argu-
ments for the participation probability distribution. The number of
players in any single game is limited. In addition, repeated users do
not seem to want to join the same server as some other particular
player joins. Again, we can say that the simple uniformly random
membership model can describe the membership of net games and
the absence of pairwise correlation.

Note that we did not analyze the correlation and participation for
the cumulative data sets, since by their nature, they do not provide
sufficient details to generate the required distributions.

4.5 Does Member Clustering Affect Skewed
Distribution and Pairwise Correlation?

In the above, we measured and analyzed the participation prob-
ability and correlation of clusters in stead of nodes for MBONE
application, and we observed skewed distribution and strong pair-
wise correlation. An interesting question would be: does member
clustering affect the observed properties? Or in other words, are
the new properties caused by our additional processing, i.e., mem-
ber clustering, or they come by the nature of the applications? In
this section, we show the analysis results of MBONE applications
without member clustering. That is, we plot the CDF curves of
participation probability and pairwise correlation of nodes (with-
out clustering). And the results are showed in Fig. 10 and Fig. 11.
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Figure 10: CDF of the participation probability of nodes for
data sets from MBONE (only real data).

We can see that Fig. 10 and Fig. 11 have very similar curves
to Fig. 6 and Fig. 8, though the values are slightly different due
to the absence of member clustering. This confirms that the the
properties of skewed distribution and strong pairwise correlation
come with the MBONE applications instead of the processing of
clustering (which does affect the values though).

5. GEM: A GROUP MEMBERSHIP MODEL
From our measurement and analysis, we conclude that real mem-

bership distribution does not follow the simple uniform random dis-
tribution. We propose a comprehensive group membership model,
calledGEM (GEneralized Membership model) to generate mem-
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Figure 11: CDF of the correlation coefficient of nodes for data
sets from MBONE (real data).

bership distributions that conform to realistic distributions. In fact,
the distribution is an input parameter for our model.

5.1 An Overview of GEM
GEM considers all the group membership properties we dis-

cussed earlier: a) member clustering, b) group participation proba-
bility, and c) pairwise correlation in group participation. GEM has
the following inputs:

• A network topology

• Clustering method (that determines how to form clusters in
the given topology)

• Target group behavior: the distribution of group participation
probability, the pairwise correlation in group participation of
clusters, and the distribution of member cluster size (i.e., the
number of member nodes in a cluster)

GEM generates multicast groups whose members follow the given
distributions and constraints. Fig. 12 is a block diagram of GEM,
illustrating how GEM works at a high level.

GEM works in the following steps:

1. Cluster creation: GEM classify nodes into many disjoint
clusters using the specified clustering algorithm. Leaving
this as an input parameter gives GEM a lot of flexibility and
the option to ignore clustering altogether as we discuss be-
low.

2. Membership distribution:GEM creates groups and chooses
their cluster members among the clusters in a randomized
fashion. The selection of clusters follows the given distribu-
tions for clusters participation and pairwise correlation. Note
that, in this paper, we also refer the clusters which are chosen
for a group as “member clusters” of the group.

3. Node selection:In each chosen cluster, GEM random selects
nodes based on member cluster size.

First, the model is not tied to a particular membership distribu-
tion. This makes the usefulness of the model extend beyond the
accuracy of a set of measurements. At the same time, our measure-
ments provide guidelines for the choice of realistic distributions. In
the tool we develop based on GEM, the measured distributions will
be provided as choices to the users ([1]).



1. Create clusters in given topology

2. Select clusters as member clusters

Acoording to input distributions

3. Choose nodes for each member cluster

Network topology

Group behavior
Clustering method

Dist. of member cluster size

Dist. of pairwise correlation

Dist. of participation prob.

Outputs

GEM

Inputs

Desired number of multicast groups 

that follow the given distributions

Figure 12: An illustration of GEM.

Cluster and node level membership.Note that as described above,
GEM operates first at the cluster level and then node level. First,
it generates groups treating a cluster as one entity. The reason for
doing this is to simulate the network-level clustering that we have
observed. After we identify the member clusters, then we assume
that inside a cluster we have a number of active participants ac-
cording to the measured distributions (that is member cluster size
distribution).

5.2 Member Distribution Generation
The core of our model is the selection of the member clusters.

The problem can be stated as follows: given a set of clusters, the
group participation probability of each cluster, and the pairwise
correlation between any two clusters, we want to generate sets of
member clusters, which follow the given distributions. In other
words, if we generate many multicast groups, the measured distri-
butions should match the targets.

5.2.1 Problem Formulation
Let us start with the following definitions. We assumeK clus-

ters: C1, C2, ..., Ci, ..., CK . Let us denote aspi the participation
probability of clusterCi, that is, how often theCi participates in a
multicast group. For any two clustersCi andCj , there is a correla-
tion coefficientcoef(i, j), where1 ≤ i, j ≤ K. Based onpi, pj ,
andcoef(i, j), we can easily compute the joint probabilitypi,j as
shown in Equation 2 (derived from Equation 1).

pi,j = coef(i, j)×
√

pi × (1− pi)× pj × (1− pj) + pi × pj .
(2)

As a result, we get a symmetric joint probability matrixPm where
Pm(i, j) = pi,j wheni 6= j andPm(i, i) = pi.

A multicast group can be represented by aK-dimensional vector
of binary valuesx = (x1, x2, ..., xi, ..., xK), wherexi = 1 if and
only if clusterCi is a member cluster of the group (elsexi = 0).

Now, we can formalize the problem as follows. If we assume
many groups3, we can model theparticipation distribution of the

3The presentation is easier when we talk about multiple groups, in
other words, the multiple group participation. If we have one group
we can talk about the time-based participation.

clustersby K random binary variables,(X1, X2, ..., Xi, ..., XK),
whereXi represents the group participation of clusterCi.

The generation of multicast groups reduces to generating vec-
tors x = (x1, x2, ..., xi, ..., xK), which follow the given distri-
butions. Namely, we want to select vectors from the distribution
(X1, X2, ..., Xi, ..., XK), which is defined by:

• P (Xi = 1) = pi,∀i, which means thatXi follows the given
participation probabilitypi

• P (Xi = 1, Xj = 1) = pi,j , which means that for any two
variablesXi andXj , they have joint distributionpi,j .

Note that the problem is in some sense under-defined. Complete
knowledge of the distribution of(X1, X2, ..., Xi, ..., XK) would
require us to know the probability of appearance for every of the
O(2K) binary vectors. In other words, we would needO(2K) val-
ues to be able to generate the desired distribution. We only have
partial information: our total input isO(K + K2). Intuitively, we
need to make some assumptions to “fill” the missing information.

Assuming Maximum Entropy. For the missing constraints, we
will assume that they have maximum entropy. Entropy is a measure
of randomness of a system, and it is the “opposite” of order. In
addition, nature tends to increase its entropy. A table with nicely
stacked papers in alphabetical order has high order (low entropy).
A wind from the window can shuffle the papers, which leads to
high entropy. It is unlikely that a subsequent wind will restack and
alphabetize the papers.

In our approach, we use entropy to replace the missing infor-
mation. Given an unconstrained choice, we will choose accord-
ing to the maximum Entropy (ME) [31]. This is a non-trivial but
solved problem in statistical analysis [31]. Let us denotep∗(x)
the Maximum Entropy distribution. Intuitively, we can see this as
a multidimensional problem with only a few constrained dimen-
sions. The ME distributionp∗(x) satisfies the constraints along the
specified dimensions, and it is as unstructured as possible in the
unconstrained dimensions. If we see entropy as lack of informa-
tion, the Maximum Entropy distribution represents all the “known
information” and nothing more than that. Our member cluster gen-
eration algorithm combines two “conflicting” forces: it maximizes
the entropy (randomness), while it tries to match given distribu-
tions. Note that it is possible to use a distribution with “any” en-
tropy. However, to compute any-entropy distribution is demanding.
Moreover, using maximum entropy is more meaningful: if we do
not know, we assume the distribution as random as possible.

5.2.2 Algorithms for member cluster generation
Our problem formulation describes the following three desired

distributions in the order of increasing constraints.

1. Uniform distribution without correlation: all clusters have
equal probability to join. This is the widely-used multicast
membership model.

2. Non-uniform distribution without correlation: participation
probability is higher for some clusters.

3. Non-uniform distribution with pairwise correlation: as above
plus some pairs of nodes appear more often together.

Note that for the first two cases, it is not necessary to use a max-
imum entropy distribution, since there are no correlations among
clusters. Straightforward algorithms can be used to generate mem-
ber clusters as shown below.

Uniform distribution without correlation. In this case,pi = p,
andpi,j = pi×pj = p2 (or coef(i, j) = 0) for anyi andj, where



1 ≤ i, j ≤ K. Among the above three cases, this is the case with
maximum entropy, because there are almost no constraints: mem-
ber clusters are chosen uniformly among all clusters, and clusters
are independent of each other. The member cluster generation al-
gorithm is straightforward in this case, and it is described in Algo-
rithm 1.

Algorithm 1 Member Cluster Generation (Case 1)

Require: For K variables, X1, X2, ..., Xi, ..., XK , P (Xi =
1) = p, andP (Xi = 1, Xj = 1) = p2 (or coef(i, j) = 0),
where1 ≤ i, j ≤ K. Notes:Xi represents the group partici-
pation of clusterCi with values of0 (not join) or1 (join)

Ensure: A K-dimension vector,(x1, x2, ..., xi, ..., xK), which
follows given distribution.

1: for i = 1 to K do
2: generate a random number between 0 and 1, let it be u
3: if u < p then
4: xi = 1 (clusterCi joins multicast group)
5: else
6: xi = 0 (clusterCi will not join multicast group)
7: end if
8: end for

Non-uniform distribution without correlation. In this case,
pi,j = pi×pj (or coef(i, j) = 0) for anyi, j, where1 ≤ i, j ≤ K,
while pi is usually unequal between different clusters. Compared
with case 1, this case needs to consider non-uniform distribution,
that is,pi for different clusters. However, all the clusters are still
independent to each other. Thus, the member cluster generation
algorithm is still straightforward. It is described in Algorithm 2.

Algorithm 2 Member cluster Generation (Case 2)

Require: For K variables, X1, X2, ..., Xi, ..., XK , P (Xi =
1) = pi, andP (Xi = 1, Xj = 1) = pi × pj (or coef(i, j) =
0), where1 ≤ i, j ≤ K. Notes:Xi represents the group par-
ticipation of clusterCi with values of0 (not join) or1 (join)

Ensure: A K-dimension vector,(x1, x2, ..., xi, ..., xK), which
follows given distribution.

1: for i = 1 to K do
2: generate a random number between 0 and 1, let it be u
3: if u < pi then
4: xi = 1 (clusterCi joins multicast group)
5: else
6: xi = 0 (clusterCi will not join multicast group)
7: end if
8: end for

Non-uniform distribution with pairwise correlation. We need
to consider pairwise correlation between any two clusters, which
means thatpi,j = pi × pj , for 1 ≤ i, j ≤ K does not hold
necessarily (i.e.coef(i, j) 6= 0). In this case, we have to cal-
culate the maximum entropy distributionp∗(x) which is subject
to the given constraints. Then, we use Gibbs Sampler ([24]) ap-
proach to sample it, i.e., to obtain instances of membership values,
(x1, x2, ..., xi, ..., xK).

Calculating the Maximum Entropy distribution. Given the
constraintsP (Xi = 1) = pi, andP (Xi = 1, Xj = 1) = pi,j ,
where1 ≤ i, j ≤ K, or in other words, given a probability matrix
Pm = [pi,j ], the maximum entropyp∗(x) is the solution to the
following problem:

p∗(x) = arg max{−
∫

p(x)logp(x)dx}, (3)

subject to ∫
xixjp(x)dx = pi,j , when i 6= j, (4)

and ∫
xip(x)dx = pi, (5)

and ∫
p(x)dx = 1. (6)

By Lagrange multipliers (an optimization technique), the solu-
tion for p∗(x) is:

p∗(x; Λ) = p∗(x1, x2, ..., xK ; Λ)

=
1

Z(Λ)
exp[−

K∑
i=1

λi,ixi −
i=K,j=K∑

i=1,j=1,i6=j

λi,jxixj ],

(7)

whereΛ = [λi,j ] is the Lagrange parameter, and

Z(Λ) =
∑

x

exp[−
K∑

i=1

λi,ixi −
i=K,j=K∑

i=1,j=1,i6=j

λi,jxixj ], (8)

is the partition function that depends onΛ, and it has the following
properties:

1

Z

∂Z

∂λi,j
= −pi,j . (9)

Unfortunately, a closed form solution forΛ is not available in
general. Thus, we seek a numerical solution by solving the follow-
ing equations iteratively.

dλi,j

dt
= pt

i,j − pi,j , (10)

wherept
i,j is the intermediate probability computed at stept, based

on the intermediate distributionpt(x; Λ). For details of the deriva-
tion of the equations, refer to [12]. In Algorithm 3, we briefly de-
scribe the iterative procedure to construct the maximum entropy
distributionp∗(x), and then use Gibbs Sampler ([24]) to obtain in-
stances of member clusters. The key method in the algorithm is
basically a known statistical technique [31]. Understanding it and
implementing it is a non-trivial task. The user of our GEM tool
does not have to thoroughly understand the intricacies of this tech-
nique.

5.2.3 Discussions
ME Values in 3 Cases. In the above three cases, the ME value

decreases from case 1 to case 3. For case 1, we do not know any-
thing except the portion of clusters to join the multicast group.
For case 2, we know a little bit more: different cluster has dif-
ferent group participation probability. While for case 3, besides the
knowledge in case 2, we even know the pairwise correlation, which
adds more constraints to the ME distribution, as leads to a smaller
ME value compared to case 2.

Input Distribution Validation . It can be shown that the tech-
nique we use in case 3 will lead provably to the correct distribution,
if such a solution exists. Note that in some cases, the given distribu-
tion may be self-contradicting. For example, cluster A and cluster
B have high positive correlation, and so do cluster B and C. How-
ever, the correlation of C and A is negative. It may not be possible
to satisfy such a constraint. Thus, GEM needs to check whether the
input distributions are valid or not. In fact, givenpi, pj , andpi,j ,



Algorithm 3 Member Cluster Generation (Case 3)

Require: For K variables, X1, X2, ..., Xi, ..., XK , P (Xi =
1) = pi, andP (Xi = 1, Xj = 1) = pi,j , where1 ≤ i, j ≤
K. Notes:Xi represents the group participation of clusterCi

with values of0 (not join) or1 (join)
Ensure: A set of K-dimension vectors,(x1, x2, ..., xi, ..., xK),

which follows given distribution.
1: initializeΛ asΛ0

2: E0 = 0 //initialize judgement term as 0
3: t = 0 //initialize step counter
4: repeat
5: t = t + 1
6: computeZt based on equation 8, then we knowpt(x; Λ).
7: use Gibbs Sampler ([24]) to samplept(x; Λ) and compute

pt
i,j .

8: λt
i,j = λ

(t−1)
i,j + (pt

i,j − pi,j) //updateΛ
9: computeEt = exp(−(

∑
i,j(p

t
i,j − pi,j)

2))

10: until |Et − Et−1| < ε //the iteration reaches steady state
11: computeZt based on equation 8, then we knowpt(x; Λ).
12: use Gibbs Sampler ([24]) to samplept(x; Λ), and output the

series of generated vectorsx.

the only constraint we need to consider is thatpi + pj ≤ 1 + pi,j

should hold (this can be easily deducted from the basic definitions
of probability and joint probability).

Bounded Size Group Generation. Sometimes, we want to con-
trol the size of the groups in our simulations. We can impose con-
straints in our approaches to stop the creation of a group once a
size is reached. However, this may affect the correlations and prob-
abilities in case 3. A suggested method is to recompute the prob-
abilities and correlations under the given condition, i.e., bounded
group size. But this will introduce more computation. Thus, a fu-
ture work direction is to investigate the possibility of an efficient
heuristic algorithm design for bounded size group generation.

6. EXPERIMENTAL VALIDATION
In this section, through experiments, we validate that GEM can

generate realistic groups with great success and the generated groups
match very well the real data.

6.1 Experiment Design
Based on our measurement results and analysis, we see that GEM

can model both MBONE applications and net games: to model net
games, Algorithm 1 can be used, since uniform distribution without
correlation approximately characterizes net games’s spatial prop-
erties; while to model MBONE applications, such as IETF and
NASA, GEM needs to employ Algorithm 3, because in these ap-
plications, the features of non-uniform distribution and correlation
are very significant. Since Algorithm 1 is pretty straightforward,
to validate GEM, in this section, we only consider MBONE appli-
cations (IETF and NASA), which will be modelled by GEM with
Algorithm 3.

Based on our measurement results of MBONE applications, we
give inputs, such as the distributions of group participation prob-
ability and pairwise correlation of clusters, and the distribution
of member cluster size, to GEM, and GEM generates multicast
groups using Algorithm 3. Note that, in our validation experiments,
we only consider possible member clusters, which has participa-
tion probability greater than0, as is the same as the methodol-
ogy in our measurement. Then, we analyze the generated multi-
cast groups similarly, and compute the distributions of group par-

ticipation probability and pairwise correlation of clusters, and the
distribution of member cluster size. And finally, we compare the
results from real measurement data and simulation data (generated
by GEM).

6.2 Results and Analysis
We give the comparison results for data set IETF43-Video as an

example. The curves for CDF of cluster size, participation proba-
bility, and correlation coefficient are shown in Fig. 13, Fig. 14, and
Fig. 15 respectively. To show the limitation of the uniform random
model, we also plot the curves for its corresponding simulation data
in Fig. 14 and Fig. 15.
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Figure 13: The comparison of cluster size distribution for
IETF43-Video between measurement and modelling data.
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Figure 14: The comparison of group participation probabil-
ity distribution of clusters for IETF43-Video between measure-
ment and modelling data (GEM and Uniform model).

From Fig. 13 and Fig. 14, we can see that, for cluster size and
participation probability, the two CDF curves for measurement and
GEM simulation data are “perfectly” matched. For the correlation
coefficient (shown in Fig. 15), the CDF curves for measurement
and GEM simulation data are “nearly” matched. The difference
is because CDF is an accumulative function, and the CDF of cor-
relation coefficient involves much more variables (the number of
variables isK2 in total) than the CDF of participation probability
(the number of variables isK). And simulation errors are prop-
agated accumulatively. In addition, to facilitate the computation
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Figure 15: The comparison of correlation coefficient distribu-
tion of clusters for IETF43-Video between measurement and
modelling data (GEM and Uniform model).

in ME method, we approximate some very small (in terms of the
absolute value) correlation coefficients as zero (which means the
corresponding constraints could be ignored). But this will add ex-
periment errors to the simulation. Another observation in Fig. 14
and Fig. 15 is that the uniform random model could not generate
realistic multicast groups, as shows the limitation of it capabilities.

For other sessions,such as IETF Audio and NASA, we get sim-
ilar results. Thus, based on our experimental results, we can con-
clude that our model can produce group members which follows
given distribution successfully.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we measured and modelled the spatial properties

of multicast members. Our contributions can be summarized as
follows:

1. We identify and quantify the spatial properties of members:
member clustering, group participation probability, and pair-
wise correlation, in net games and large audio-video broad-
casts from IETF and NASA.

2. We observe that MBONE multicast members are highly clus-
tered and the clusters exhibit skewed distribution and strong
pairwise correlations in their participation.

3. We find that net game members are not as clustered and there
does not seem to be a strong correlation between users. The
uniform random membership can roughly model net games
(Quake) However, this could be partially due to the small
scale of the games we were able to measure. Interestingly,
we observe a very strong daily periodicity.

4. We develop GEM, a powerful group membership model, that
can generate realistic member distribution. GEM combines
of two conflicting forces: it maximizes the entropy of the
distribution, while it tries to match given constraints.

5. We validate our model with great success: the generated
groups match very well the real data.

We provide our data and our model as a contribution to the com-
munity with the hope that it can be part of a realistic and systematic
multicast evaluation methodology ([1]).

Future Work. We would like to continue this work in two main
directions. First, we want to study more applications with multi-
ple recipients, and explore their spatial properties. We believe that
different applications have different spatial properties, but we hope
that we can well characterize existing applications, which will as-
sist research and development of multicast and other group com-
munication technologies. Second, we would like to integrate in our
model temporal properties of group membership.
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