
AQoSM: Scalable QoS Multicast Provisioning

in Diff-Serv Networks ?

Jun-Hong Cui a , Li Lao b , Michalis Faloutsos c , Mario Gerla b

aComputer Science & Engineering Department, University of Connecticut, Storrs
bComputer Science Department, University of California, Los Angeles
cComputer Science & Engineering, University of California, Riverside

Abstract

The deployment of IP multicast support is impeded by several factors among which
are the state scalability problem, the cumbersome management and routing, and
the difficulty of supporting QoS. In this paper, we propose an architecture, called
Aggregated QoS Multicast (AQoSM), to provide scalable and efficient QoS multi-
cast in Diff-Serv networks. The key idea of AQoSM is to separate the concept of
groups from the concept of distribution tree by “mapping” many groups to one dis-
tribution tree. In this way, multicast groups can now be routed and rerouted very
quickly by assigning different labels (e.g., tree IDs) to the packets. Therefore, we can
have load-balancing and dynamic rerouting to meet QoS requirements. In addition,
the aggregation of groups on fewer trees leads to routing state reduction and less
tree management overhead. Thus, AQoSM enables multicast to be seamlessly inte-
grated into Diff-Serv without violating the design principle of Diff-Serv of keeping
network core “QoS stateless” and without sacrificing the efficiency of multicast. Fi-
nally, efficient resource utilization and strong QoS support can be achieved through
statistical multiplexing at the level of aggregated trees. We design a detailed MPLS-
based AQoSM protocol with efficient admission control and MPLS multicast tree
management. By simulation studies, we show that our protocol achieves significant
multicast state reduction (up to 82%) and tree maintenance overhead reduction
(up to 86%) with modest (12%) bandwidth overhead. It also reduces the blocking
ratio of user requests with strong QoS requirements due to its load balancing and
statistical multiplexing capabilities.

Key words: multicast, QoS, state scalability, Diff-Serv, MPLS

? This material is based upon work supported by the National Science Foundation
under Grant No. CNS-0435515, CNS-0435230, ANIR-9985195 (CAREER award),
and IDM-0208950.

Email addresses: jcui@cse.uconn.edu (Jun-Hong Cui), llao@cs.ucla.edu (Li

Preprint submitted to Elsevier Science 14 April 2005

1 Introduction

Real-time multicast applications need mechanisms to support (if not guaran-
tee) QoS. This is especially compelling in the case of commercial applications:
customers will not pay for a service unless it is reliable and offered at a satis-
factory level of quality. From the perspective of network service providers, QoS
multicast provisioning requires three mechanisms: a) discovery of available re-
sources, b) maintenance of the available resources, and c) quick recovery from
failures. These requirements translate to the following functions: a) QoS-aware
routing, b) call admission and load-balancing, and c) fault-tolerant routing.

The current multicast architecture does not handle QoS efficiently due to the
following issues. First, multicast routing state does not scale well: routers need
to keep state per group and in some protocols per group/source. Large num-
bers of groups result in large amount of state to be maintained at routers,
which translates into large memory requirements and slow packet forward-
ing. Second, routing is cumbersome. A tree is associated with a single group.
Creating and maintaining a multicast tree per group is time and resource con-
suming, especially if we account for QoS constraints. As a result, a congested
link or a node failure leads to tearing down and rebuilding large parts of the
tree. Finally, load-balancing and rerouting a tree is not an option.

Though most research papers on QoS multicast focus on solving a theoreti-
cal QoS-constrained multicast routing problem, there have been several more
pragmatic efforts to bring QoS into the existing IP multicast architecture, such
as YAM [9], QoSMIC [18], QMRP [10], RIMQoS [22], QoS extension to CBT
[25], and PIM-SM QoS extension [5]. However, we find that the problem can
only be addressed by an architecture that will address all three QoS aspects
listed earlier, namely QoS aware routing, admission control, and fault toler-
ance. The proposed protocols address only one of the requirements, usually
the QoS aware routing. Furthermore, they all use per-flow state and continue
to be plagued from the state scalability problem. Today people are backing
away from micro-flow based QoS architecture, for example, the Integrated Ser-
vices architecture (IntServ) [8], and are moving towards the aggregated-flow
based solutions, such as Differentiated Services (Diff-Serv) [6] architecture and
the Multiprotocol Label Switching (MPLS) technology [39]. The argument be-
hind this choice is simple: the per-flow reservation and data packet handling
required by IntServ lead to scalability problems at network core routers. Incor-
porating the per-flow state requirement and traffic management of multicast in
a per-class architecture, such as a Diff-Serv or MPLS network, does not solve
the state scalability problem, since each router still needs to maintain sepa-

Lao), michalis@cs.ucr.edu (Michalis Faloutsos), gerla@cs.ucla.edu (Mario
Gerla).

2

rate states for individual multicast groups that pass through it. To improve
multicast state scalability, several mechanisms have been proposed such as
[50], [44], [12], [49], [38] [7], etc. Though promising, these efforts are typically
not concerned with QoS. Recently, there are also some works which target at
scalable QoS multicast provisioning [28] [48] [45]. However, they either do not
scale to large groups or sacrifice the efficiency of multicast.

In this paper, we propose an architecture, called Aggregated QoS Multicast
(AQoSM), to provide scalable QoS multicast that addresses the issue of QoS
and routing in a unified and comprehensive way. Our architecture intends to
be employed in a Diff-Serv-supported transit domain and its use is transpar-
ent outside the domain or to the application layer. AQoSM uses the concept
of aggregated multicast [21], in which the key innovation is the decoupling of
group and distribution tree concepts. Many groups can be multiplexed on a
single tree. More importantly, a group can be switched easily between distri-
bution trees. This simple feature leads to a proliferation of new properties and
advantages. First, the creation and management of trees become more effi-
cient. We can create trees on-demand and route a group very quickly. Second,
group rerouting becomes a viable option: it is a matter of assigning different
labels (i.e., tree IDs) to its packets at the entrance points. This opens new
possibilities for load-balancing and fault tolerance: we can now start to look
at sophisticated load-balancing and failure recovery schemes. This way, we can
adapt to changes in the QoS requirements, in the network load, and in the
group membership. From the scalability point of view, the major benefit is
that our architecture reduces the multicast state by mapping multiple groups
to one tree. Finally, the admission control can be carried out on the level of
aggregated trees instead of individual links, and thus is resource efficient due
to statistical multiplexing of multiple groups on a single tree.

As we have discussed, QoS multicast provisioning is a multifaceted problem,
involving routing, admission control, resource management and many other
issues. Our goal is to provide efficient and practical solutions for those issues.
Based on our proposed AQoSM architecture, we develop a protocol using
MPLS technique. Our analysis and simulation study will show that the de-
veloped AQoSM protocol is efficient, scalable, feasible, and implementable.
With the increasing demand for interactive, real-time applications, AQoSM
is a promising solution for scalable, real-time QoS multicast services in the
Internet.

The rest of this paper is organized as follows. Section 2 gives some back-
ground information on aggregated multicast, Diff-Serv and MPLS. Section 3
describes the architecture of AQoSM and discusses some related issues. Sec-
tion 4 presents an MPLS-based AQoSM protocol (MAQoSMP) design in de-
tails. Then we study the performance of MAQoSMP through simulations in
Section 5. Finally we review some related work in Section 6 and conclude with

3

a brief summary of our contributions in the end.

2 Background

2.1 Aggregated Multicast

Conventional IP multicast routing protocols confront a severe scalability prob-
lem when there are large numbers of multicast groups ongoing in the net-
works. This is mainly due to state explosion and control explosion issues.
First, each router needs to maintain separate states for individual groups (or
group/sources). Large numbers of groups mean large amount of state to be
maintained at routers, which translates into large memory requirement and
slow packet forwarding. Second, conventional IP multicast protocols establish
and maintain a multicast tree per-group (or group/source). Large numbers of
groups mean large numbers of trees to set up and maintain. Consequently,
the number of corresponding tree setup and maintenance control messages
will become huge and explode. In backbone networks, this “state scalability”
problem will be exacerbated, since there are potentially enormous multicast
groups crossing backbone domains. A backbone domain is typically a concen-
tration point of the global network, and its performance greatly influences the
global network’s performance.

Aggregated multicast [21] is a scheme proposed to improve multicast state
scalability within a transit domain (especially the backbone domain) by ex-
ploiting inter-group tree sharing. It is inspired by a key observation: within
a backbone domain, the number of edge routers are limited; therefore, when
there are a large number of simultaneously active multicast groups, many
groups are likely to have significant overlaps in their multicast delivery trees.
As a result, these multicast flows can be aggregated into one flow at ingress
router(s) by packet encapsulation techniques (e.g., IP encapsulation or MPLS
1), and delivered to egress routers via a single multicast tree, which we call
aggregated tree. In this way, core routers, i.e., the routers in the middle of
the network, only need to keep forwarding state per aggregated tree rather
than per group. Of course, edge routers at the boundaries of the network need
additional information for classifying the multicast packets. It also solves the
control explosion issue, since the multicast tree setup and maintenance con-
trol messages are significantly reduced. In essence, this scheme is similar to
Diff-Serv in that both of them eliminate “per-flow” state in the core routers
by coupling multiple flows into one equivalent “class”.

1 MPLS is more efficient than IP encapsulation, since it only inserts a “thin” label
between link and IP layer in packets.

4

�
���������
	�������

�
��� � ��� 	 ��� � �

�
��� � ��� 	 �

�
�

�
���������
	�������

�
����������	�������

�
����������	��

�
�

�
�
���
�
�

� ��!

�#"�!

$&%('*),+�-

.,/
.10
.,2

3�%(4,45-
3 /
3 0
3 2

$&%('*),+�-

.,/
. 0
. 2

3�%(4,45-
3 /
3 /
3 /

Fig. 1. Comparison of traditional multicast and aggregated multicast. (a) In tra-
ditional multicast, one multicast tree is needed for each group. (b) In aggregated
multicast, one aggregated tree can be shared by multiple groups.

In aggregated multicast, the critical step is group-tree matching, that is, to
match groups to appropriate trees. As shown in Fig. 1, multicast groups g0

and g1 have members A, D, and E, and g2 has members A and E. These three
groups can be aggregated onto the same multicast tree T0, which spans the leaf
routers A, D, and E. For g0 and g1, every tree leaf of T0 corresponds to a group
member, so T0 is a perfect match for g0 and g1. In contrast, group g2 does not
have member at the tree leaf D, thus T0 is a leaky match for g2. Leaky match
allows us to further reduce multicast state at the cost of bandwidth waste,
since some data are delivered to nodes that are not members of the group.

2.2 Diff-Serv and MPLS

Differentiated Service architecture (Diff-Serv) [6] is proposed for scalable ser-
vice differentiation in the Internet. In a Diff-Serv domain, packets crossing
a link and requiring the same behavior (e.g., scheduling treatment and drop
probability) constitute a Behavior Aggregate (BA). At the ingress nodes, the
packets are classified and marked with a Diff-Serv Code Point (DSCP) ac-
cording to their Behavior Aggregate. At each transit node, the DSCP is used
to determine the behavior for each packet.

Multiprotocol Label Switching (MPLS) [39] emerges as an important traffic
engineering technology for the Internet. It uses label switching technique. In
an MPLS domain, when a stream of data traverses a common path, a Label
Switched Path (LSP) can be established using MPLS signaling protocols. At
the ingress Label Switch Router (LSR), each packet is assigned a label and

5

is transmitted downstream. At each LSR along the LSP, the label is used to
forward the packet to the next hop.

Recently, there are several research proposals [20,23] targeted at MPLS sup-
port of Differentiated Services, but only for unicast. [20] specifies a solution for
supporting the Diff-Serv Behavior Aggregates over an MPLS network, which
relies on a combined use of two types of LSPs: E-LSP and L-LSP. The solu-
tion allows the MPLS network administrator to select how Diff-Serv Behavior
Aggregates (BAs) are mapped onto LSPs so that the Diff-Serv, Traffic En-
gineering and protection objectives can be best matched within the network.
[23] mainly addresses how to provide Diff-Serv Traffic Engineering solution us-
ing E-LSP, outlining methods to signal bandwidth requirements for multiple
Ordered Aggregates when setting up E-LSPs. [19] identifies the DiffServ-aware
MPLS Traffic Engineering (DS-TE) problem, that is, MPLS traffic engineer-
ing should be able to optimize resource usage at per Diff-Serv class level, and
presents the requirements for the technical solutions. [17,30] propose some so-
lutions to support DS-TE. Trimintzios et al. advocate an architectural frame-
work with integrated management and control planes for supporting end-to-
end QoS in Diff-Serv/MPLS networks [51]. [11] proposes a new policy to avoid
repeated resource preemption due to flow priority and load balancing in MPLS
and applies it in Constraint-Based Routing scheme to improve end-to-end QoS
in Diff-Serv-aware MPLS networks. Rouhana and Horlait presented an archi-
tecture called DRUM (Diffserv and RSVP/IntServ Use of MPLS), in which
an MPLS/DiffServ backbone domain delivers end-to-end service guarantees
to boundary customer domains supporting IntServ or Diff-Serv models [40].

In this paper, we will develop an MPLS-based AQoSM protocol, which focuses
on dealing with multicast traffic. We will not discuss the interaction of unicast
traffic with multicast traffic and a unicast QoS architecture is assumed to be
already in place.

3 AQoSM—The New Architecture for Scalable QoS Multicast Pro-
visioning

We design a new architecture, AQoSM (Aggregated QoS Multicast), to sup-
port scalable QoS multicast. Our architecture uses the aggregated multicast
concept. Aggregated multicast was designed as state-reduction scheme, but
here, it becomes a powerful tool to simplify traffic management and QoS pro-
visioning. AQoSM provides all the necessary functionality that is needed for
QoS support: a) QoS routing, b) call admission control, and c) reconfigura-
tion. It is targeted at QoS multicast provisioning in a single Diff-Serv domain,

6

���������
	��

��������
	��

�������
��	��

����������	��

����������	��

����
 "!$#�%&#�'
 ��

(*),+-)/.10,2304+�5�67+98;:=<>23)45�?�:�+A@$)�BC0�BED

F 5G:�H�:
I�:1.KJ

F I�?L+�MON�)4+�P�QA?�PK5�R

F 2TS9IL5�?VUE)=B>5�5W<X0/0�B

F 2TS9IL5�?VUE)=B>5Y.=<Z:KS1H�B

F .K<X:=S�H F 5W<X0/0[23)45�U4R9?W+-.

F H�:
IW?�U\?�0�B

] 04<7^�?�U_0`(*:�P=S�I�0�BED

F)_P=23?aBbB>?V:=+TUE:K+15W<X:�I

F 2TS9IL5�?VUE)=B>5�<Z:=S95�?L+�.

F .K<X:=S�H F 5W<X0/0[23)45�U4R9?W+-.

F H�:
IW?�U,JcU/:�+�5�<d:KI

Fig. 2. Illustration of a tree manager in a Diff-Serv domain.

particularly a backbone domain 2 . In this domain, data packets from multi-
ple groups are multiplexed at incoming edge routers, and de-multiplexed at
outgoing edge routers.

AQoSM maintains multicast trees with each serving multiple groups. A group
is assigned to a tree after careful consideration of: a) the destinations of the
group compared to the tree leaves, b) the QoS requirements of the group, and
c) available bandwidth on the tree. The advantage is that a group can switch
between trees fast. This way, we can reduce the set-up cost for each group,
and have groups switch trees when necessary, i.e., for QoS reasons. To clarify,
in the context of AQoSM, a (multicast) tree computed and established to
transmit multicast packets can also be referred to as an aggregated (multicast)
tree, because it is usually shared by several multicast groups. These terms are
interchangeable.

Before explaining design issues in more detail, we give a “big picture” of
AQoSM first. To manage groups and trees, AQoSM architecture incorporates
a logical entity called tree manager, which is illustrated in Fig. 2. Its respon-
sibilities include tree maintenance and group-to-tree matching. It consists of
several service modules, such as admission control, group-tree matching, rout-
ing and policy control, which will be explained in next two paragraphs. The
tree manager can be implemented in centralized or distributed ways. For sim-
plicity of presentation, we can think of it as a single node for the time being.

To provide QoS support, tree manager needs to collect up-to-date information
of: the network topology, the available resources, the group membership, and
their QoS requirements. When it discovers that there is a request for a new
multicast group (identified by the edge routers initially involved in it), it calls
the group-tree matching module. The group-tree matching module keeps the
information of active groups, established trees and the group-tree matching
table, and matches incoming multicast groups to proper trees. If no such tree
exists, the tree manager computes a new multicast tree according to member-

2 Usually, there are large numbers of groups in backbone domains, thus the scala-
bility issue is even more challenging.

7

ship and QoS requirements using the routing module.

After a new tree is computed, the admission control module needs to decide
whether adequate resource is available. If not, the incoming multicast request
is rejected. Otherwise, the corresponding tree is established in the network
3 . Once a proper multicast tree is found or established, the tree manager
distributes the corresponding group-tree matching entry to the member edge
routers (source routers and receiver routers) within the group. Source routers
take charge of encapsulating, classifying, and marking individual group pack-
ets, while receiver routers decapsulate group packets. A member router might
act as both source router and receiver router. During the whole process, the
policy control, which preserves a policy information base, may be consulted
to do a network policy administration. A big picture of AQoSM is shown in
Fig. 3, where A, D, and E are edge routers (with A as source router and D
and E as receiver routers), and B and C are core routers.

From this brief overview, we can see AQoSM involves many design issues. The
remainder of this section describes solutions for each critical issue involved in
AQoSM.

3.1 Link State Collection

The tree manager needs to obtain “link state” information from all the routers
in the domain in order to find or compute a proper tree for each multicast
group. AQoSM is open to many options. If the network is small and very stable,
the network administrators could even configure the tree manager manually.
Of course, this is not typical. Generally, networks are dynamic with frequent
changes to both their topology and traffic load. In the dynamic case, there
are two options depending on the unicast routing approach employed in the
domain. If a distance vector approach is used in unicast routing, then each
router in the domain sends its link state packets directly to the tree manager.
Routers can send updated link-state packets when there are some changes,
for example, some links or routers go down, or some routers come up. On
the other hand, if a link state approach (e.g. OSPF) is employed for unicast
routing, the tree manager will benefit from the flooding of link-state packets
from all the routers, and thus discover the network topology easily.

3 How to establish a tree depends on what encapsulation technique is used. If IP
encapsulation is employed, then a traditional IP multicast routing protocol can be
adopted, such as PIM-SM or CBT. If MPLS service is available, an appropriate
multicast Label Distributed Protocol (LDP) needs to come into place. We will show
an MPLS-based AQoSM protocol in Section 4.

8

�������

���
	��

��
	��

�

�

�������

���
	��

��
	��

�

�

�������

���
���

��
���

�

�

���! " $#&%(')%+*, (�

���! " $#&%(')%+*, (�

���! " $#&%(')%+*, (�

-/.103254)6!71892;:=<9>?.?@
A 892B6C6�<ED�<=0F2;:9<=>?.

GIHF0F2J4)6�71892;:=<9>?.

GKH30F2J4)6L71892C:9<9>?.

M 2JN

MPO N

M 0JN

Fig. 3. A big picture of Aggregated QoS Multicast: (a) Membership, QoS require-
ment, link state, and available bandwidth collection; (b) Group-tree matching entry
distribution; (c) Multicast group packets transmitting on established aggregated
multicast tree.

3.2 Group Membership Collection

To find a proper tree or establish a new tree for a multicast group, the tree
manager needs to know group membership in advance. Similar to link state
collection, there are two options for collecting group membership, depending
on the unicast routing approach in the domain.

The simplest way is for each edge router to send its group membership directly
to the tree manager, indicating what groups it wants to join. Whenever a
router’s group membership is changed, it sends the updated version to the
tree manager. If unicast routing uses a link state approach, then membership
can be piggybacked on link-state packets; that is, edge routers add records to
link-state packets to indicate which groups they want to listen to. Therefore,
after the tree manager receives the link-state packets from all the routers, it
can compute a multicast tree for a multicast group. The link state advertising
option is very similar to MOSPF [31] except that here only the tree manager
computes multicast trees.

9

3.3 Admission Control

By performing admission control plus classified services from Diff-Serv, AQoSM
is able to provide some QoS guarantees to real-time applications. These QoS
guarantees can be either deterministic or statistical. Deterministic services
provide deterministic support at the cost of low resource utilization, since they
reserve resources based on worst-case scenarios. Statistical services greatly im-
prove network resource utilization by statistically multiplexing network traf-
fics, but they only provide probabilistic performance guarantee.

As we know, there are two basic approaches of admission control: parameter-
based and measurement-based. The parameter-based approach tries to pre-
cisely characterize traffic flow with a set of parameters, such as peak rate,
average rate, and token bucket size. The admission control agent then calcu-
lates the required resources based on these parameters. It can achieve either
deterministic or statistical performance guarantee depending on the admission
control policy. On the other hand, in the measurement-based approach (which
was first proposed by [26]), the network measures the actual traffic load and
uses that for admission control. Since it is probabilistic in nature, it cannot
provide tightly guaranteed resource.

Generally, for QoS multicast, admission control can be performed at two dif-
ferent levels: link level and flow (or tree for multicast) level. In the case of
link-level admission control, the effective bandwidth for each link is calculated
(or measured), and then the residual link bandwidth can be obtained. This
method can statistically multiplex all traffics on the same link, but it incurs
a large amount of overhead since the effective bandwidth of individual links
needs to be updated frequently. For admission control at non-aggregated tree
level, the bandwidth requirement is maintained for each delivery tree. The pro-
cessing overhead is less than the previous method, but still very cumbersome
when there are a large number of multicast groups in the network. In AQoSM,
we can combine the advantages of these two methods by employing statistical
multiplexing for each aggregated tree, which delivers data for multiple groups.

AQoSM is flexible in the sense that it can be seamlessly integrated with ei-
ther measurement-based or parameter-based admission control mechanism.
For example, in the case of measurement-based approach, each router measures
its traffic load and sends this information directly to the tree manager. The
tree manager calls the admission control module, which will determine avail-
able bandwidth and then the acceptance/rejection policy through a group-tree
matching algorithm (which will be covered later in this section). On the other
hand, a parameter-based approach can also be easily employed. We will present
a protocol using parameter-based approach in Section 4.

10

3.4 Multicast QoS-aware Routing

In the tree manager, the multicast routing module is responsible for computing
multicast tree based on group user requirements. When a new group comes, if
no proper existing tree is found, the tree manager needs to compute a new tree
for the group. There might be many types of QoS requirements from the group
users, such as bandwidth, delay and delay jitter among group users, etc. For
bandwidth requirements, we will present along with the group-tree matching
algorithm in Section 3.5. For delay requirements, they can be easily converted
to bandwidth requirements. We will discuss heterogeneous QoS requirements
in Section 3.6. Then, the main issue here becomes how to compute an efficient
multicast tree which satisfies the requirement of delay jitter among group users
(if demanded).

Efficient multicast tree computation. As we know, computing a Steiner
tree (or optimal tree) for a multicast group is NP-hard. The NP-hardness
justifies the use of some approximation algorithms, such as core based tree.
Hence AQoSM adopts a PIM-SM/CBT like multicast routing approach. Each
aggregated tree is associated with a core. The corresponding cores or RPs
(Rendezvous Points) can be properly chosen to achieve load balancing. In this
way, the functionality of tree manager (such as routing, admission-control,
and group-tree matching) can be implemented in these cores in a distributed
fashion.

Multicast tree computation with bounded delay jitter. In the litera-
ture, this problem is also referred to as Delay and Delay Variation Bounded
Multicasting (DVBM) problem, with the goal of finding a tree (given a source
and a set of receivers) that satisfies the QoS requirements on the maximum
delay from the source to any of the receivers and on the maximum inter-
destination delay variance. The DVBM problem is shown to be NP-complete
[24]. And some heuristic algorithms have been proposed [24,42,43]. To lever-
age the cores, AQoSM employs a CBT-based heuristic algorithm similar to
the one in [42]. And the core nodes will serve as a good candidate pool for
“central nodes” in the algorithm.

To simplify the multicast address allocation, we borrow the idea of Simple
Multicast [37], i.e., each aggregated multicast tree is identified by a combina-
tion of the IP address of its core and a multicast D-class address. In this way,
the global address assignment problem is eliminated and the aggregated tree
address can be totally controlled by the cores.

To further improve the state scalability, the aggregated trees in AQoSM are
designed to be bi-directional. The main advantage is that, whenever a bi-
directional tree covers the members of a group, it can be used for packet

11

1MA(s), E(r)g2

2MA(s/r), D(s/r), E(s/r)g1

......

1MA(s), D(r), E(r) g0

BandReqMembersGID

Multicast Group Table

T0g2

T0g1

....

T0g0

TIDGID

....

A-B, B-C, B-E, C-DT0

Bi-directional Tree LinksTID

Group-Tree
Mapping Table

Aggregated Multicast Tree Table

s: source router
r: receiver router

Fig. 4. Group and tree information bases in the tree manager.

delivery for the group, regardless of transmission direction (which is neces-
sary for unidirectional trees, however). Consequently, more groups can share
a tree, which leads to more state reduction and less maintenance overhead.
This approach is particularly useful for interactive real-time applications such
as video conferences and distributed network games, where most members of
a group generally act as sources as well as receivers.

However, AQoSM does not exclude using unidirectional trees and other mul-
ticast routing protocols. Some QoS-aware routing protocols, such as QoSMIC
[18], QMRP [10], and RIMQoS [22], etc. can also be applied.

3.5 QoS-Aware Group-Tree Matching Algorithm

To match a group to a tree, the tree manager needs to maintain established
multicast trees, active multicast groups, and a group-tree matching table. One
possible organization of the group and tree information is shown in Fig. 4. To
simplify our discussion, we only put bandwidth as the QoS requirement of each
multicast group in the table, yet other metrics, such as delay jitter, should be
also considered (if any). The populated data of the tables in Fig. 4 can refer
to Fig. 3. In this example, three multicast groups (group g0, g1, and g2) share
one aggregated bi-directional tree T0.

Recall that a group can be perfectly or leakily matched to an aggregated tree
(as explained in Section 2). Leaky match trades off bandwidth consumption
for higher aggregation. In order to control the bandwidth waste incurred by
leaky match, we define a bandwidth overhead threshold bt: a group g can
use T as its multicast tree only if the bandwidth overhead of T does not
exceed the threshold bt (the methods for calculating bandwidth overhead will
be presented later).

12

On detection of a new multicast group g, the tree manager populates the
corresponding entries of multicast group table and executes the QoS-Aware
group-tree matching algorithm as shown in Algorithm 1.

Algorithm 1 GTMatch(g)

1: CTS(g)← null //initialize candidate tree set
2: for all T ∈MTS do
3: //MTS is the existing multicast tree set
4: if T covers g AND AC(T , g) succeeds then
5: //AC is admission control
6: compute the bandwidth overhead δA(T, g)
7: if δA(T, g) < bt then
8: CTS(g)← CTS(g) ∪ T
9: end if

10: end if
11: end for
12: if CTS(g) 6= null then
13: return a tree in CTS(g) with min. δA(T, g)
14: else
15: compute the native tree TA(g)
16: if AC(TA(g), g) succeeds then
17: MTS ←MTS ∪ TA(g)
18: return TA(g)
19: else
20: return null
21: end if
22: end if

In this algorithm, the tree manager first traverses the list of existing trees
MTS and selects a tree T as a candidate tree for group g if it satisfies the
following conditions (line 4−10): 1) T covers all the members of g; 2) admission
control of using T for g succeeds, i.e., enough bandwidth is available on the
tree and g’s service class 4 ; and 3) the bandwidth overhead δA(T, g) ≤ bt. If
more than one candidate trees are found, the one with minimum δA(T, g) is
used to cover g (line 12 − 13). Update multicast group table and group-tree
matching table.

On the other hand, if no candidate is found, the tree manager computes a
“native” tree TA(g) for g using PIM-SM/CBT like core-based multicast rout-
ing algorithm (line 15), based on the multicast group membership, bandwidth
requirement (and other requirements such as delay jitter) and available band-
width of links (as discussed in Section 3.4). Note that, the routing module
will choose a good core (or RP) node from all the candidates so that enough

4 If delay jitter is also the users’ concern, jitter check then becomes part of admission
control.

13

bandwidth is available on the links. If this kind of candidate does not exist
or not enough allocated bandwidth is available, the multicast group g will be
rejected (line 20). Otherwise, TA(g) is used to cover g and is added to MTS
(line 17− 18), and the corresponding tables are updated.

In the above group-tree matching algorithm, we have a missing piece: calculat-
ing bandwidth overhead of leaky match. Before we define bandwidth overhead,
let us introduce some notations first. A network is modelled as an undirected
graph G(V, E). Each edge (i, j) is assigned a positive cost cij = cji which
represents the cost to transport a unit of data from node i to node j (or from
j to i). Given a multicast tree T , total cost to distribute a unit of data over
that tree is

C(T) =
∑

(i,j)∈T

cij. (1)

Assume an aggregated tree T is used to cover group g, which has a “native”
tree TA(g), then the percentage bandwidth overhead of using T for g can be
defined as

δA(T, g) =
C(T)− C(TA(g))

C(TA(g))

=
C(T)

C(TA(g))
− 1,

(2)

where C(T) is the total link cost of tree T .

Change in QoS Requirements. When the tree manager detects the band-
width requirement of group g changes, it simply checks whether the aggregated
tree T (g) has enough available bandwidth to accommodate g. If yes, the only
thing needed is to update group bandwidth requirement information. If T (g)
can not accommodate g, the tree manager has to activate the above group-tree
matching algorithm and find or establish another tree for g.

Change in Group Membership. Group membership dynamics might affect
the choice of their delivery tree. However, in AQoSM, member join or leave
incurs tree switching (i.e., switching a group from its pervious delivery tree
to another tree) only when bandwidth overhead threshold is violated or some
other QoS constraints are broken. In addition, the tree switching procedure
can be done very quickly by changing group-tree matching entries (unless a
new tree needs to be established).

3.6 Discussions

Heterogeneous QoS Requirements For high-bandwidth applications such
as video-streaming, the inherent heterogeneity of current Internet has made

14

multicast a challenging problem, since there is no single rate that can fit the
demand of receivers with different bandwidth and processing capabilities. A
widely adopted solution is layered-multicast [29], in which the group members
are divided into a number of homogeneous sub-groups. Even though this ap-
proach solves user heterogeneity problem, it exacerbates the state scalability
problem, because multiple multicast trees are now needed for each multicast
group. AQoSM, on the other hand, can be seamlessly integrated with this
approach without significantly increasing the number of aggregated trees to
manage since those sub-groups from a large main group usually have very
similar tree shape in the backbone domains, and thus they can share one or
very few aggregated trees.

Fault Tolerance Recovery from failures is a very important element in any
QoS provisioning. AQoSM can provide very efficient and fast failure recovery.
By using aggregated multicast, AQoSM significantly reduces the number of
trees needed to maintain. Correspondingly, the recovery latency and cost of
the trees will be largely reduced. If a node or link fails, only a few affected
aggregated trees need to be rerouted, while all the groups sharing these trees
will be restored all at once. For added reliability and small switch-over la-
tency, a pre-planned approach can also be applied: backup trees are computed
first when aggregated trees are set up; upon failure, backup trees are simply
activated. Further studies on multicast fault tolerance could be found in [13].

3.7 Summary

To summarize, AQoSM seamlessly integrates multicast service into Diff-Serv
without violating the design principles of Diff-Serv and without sacrificing the
efficiency of multicast. In fact, it incorporates two types of traffic aggregation:
multicast flow aggregation based on the shapes of multicast trees and QoS
flow aggregation based on packet forwarding treatments. The first type of ag-
gregation significantly reduces the multicast state information in core routers,
and the second type only requires the core routers to maintain minimum QoS
state information for packet forwarding behavior. These two types of traffic
aggregation are in agreement with the “Diff-Serv mentality”, where we want
to keep the core simple and fast, and put as much intelligence as possible to
the boundaries of the network.

AQoSM provides the three elements that are essential in any QoS provision-
ing: a) discovery of resources through QoS-aware routing, b) protection of
resources through admission control, and c) recovery from failures through
rapid reconfiguration. We have presented effective solutions for each major
component of AQoSM. A key property of our architecture is its ability to
reroute a multicast group quickly: in most cases, we just need to change the

15

“label” (i.e., tree ID) information at the ingress and egress routers. This prop-
erty creates a cascade of advantages: 1) we separate the creation of a routing
tree from data distribution; 2) we can adapt to dynamic group membership;
3) we can adapt to the changing QoS requirements of the group; 4) we can
recover quickly from failures.

In conclusion, AQoSM is a promising architecture that supports QoS group
communications in a scalable and efficient way.

4 An MPLS-based AQoSM Protocol and Implementation

The AQoSM architecture is devised with a variety of options. In this sec-
tion, we present a detailed protocol, called MPLS-based AQoSM protocol
(MAQoSMP), in which we implement AQoSM using MPLS technique. Our
design goal is to achieve high state scalability and high resource utilization
while satisfying QoS requirements of multicast groups with low overhead.

4.1 Overview

In MAQoSMP, the tree manager is implemented in a distributed fashion. We
distribute the functionalities of tree manager into the core nodes within the
backbone domain 5 . The set of possible cores are advertised using the boot-
strap mechanism [16].

When an edge router receives a join message for a group g, it classifies this
multicast flow into a Diff-Serv behavior aggregate based on the QoS service
requested. To map this multicast group onto an aggregated tree, it determines
a core using a hash function (which we call group-to-core hash function). This
core is referred to as the default core c0 for the group g. Upon receipt of a
request from g relayed by the corresponding edge router, c0 will find or com-
pute a proper aggregated tree for group g by conducting group-tree matching
algorithm and admission control as described in the previous sections.

When a multicast packet arrives at the ingress router, it is assigned a DSCP
based on the behavior aggregate its multicast group belongs to, and labelled
with the corresponding aggregated tree information. It should be noted that
multicast tree aggregation and Diff-Serv flow classification are two indepen-
dent mechanisms. Multicast flows belonging to different behavior aggregates

5 We differentiate core routers and core nodes. Core nodes are “cores” of multicast
trees, while core routers are “internal” routers compared with edge routers. Core
nodes can reside in both core routers and edge routers.

16

can be mapped onto the same multicast tree, and vice versa. Thus, we can
obtain maximum gain of tree aggregation without modifying Diff-Serv model.
As the packet is transmitted inside the Diff-Serv domain, the intermediate
routers look up the next hops for the aggregated tree, duplicate the packet,
and forward it according to the per-hop behavior (PHB) specification for its
DSCP. At the egress routers, the packet is restored and delivered towards the
destinations.

In the following sections, we discuss the details of some design issues and the
protocol implementation.

4.2 Admission Control and Statistical Multiplexing

The admission control policy is crucial to ensure QoS guarantees and achieve
high resource utilization. Our protocol adopts a parameter-based approach,
because it is able to provide strongly guaranteed and differentiated services
to multiple forwarding classes by applying different admission control policies.
Furthermore, it is easier and causes less (measurement) overhead compared
to a measurement-based approach. On the other hand, however, how to cal-
culate the “real” resource required by users, especially for VBR (Variable Bit
Rate) traffic, is extremely important for a parameter-based approach since it
significantly affects the resource utilization.

In MAQoSMP, admission control is done at aggregated multicast tree level,
i.e., for each aggregated tree, effective bandwidth is computed. Since many
groups share one aggregated tree, a statistical multiplexing model can be ap-
plied according to different types of traffic (Markovian traffic [15] or self-similar
traffic [32]). In this way, we can combine the advantages of link-level admission
control and flow-level admission control by employing statistical multiplexing
for each aggregated tree: the computational overhead is reduced and the re-
source utilization is improved.

Based on statistical multiplexing models, such as [15] and [32], the service
requirement of small loss probabilities can be translated into effective band-
width. Using this method, the admission control module in each core is able
to calculate the effective bandwidth of the aggregated trees it manages, based
on the flow parameters (e.g., arrival rates) and QoS requirements (such as loss
ratio) of their groups. Then the core nodes can exchange this information peri-
odically among themselves to obtain a global picture of link bandwidth usage,
based on which the admission control module will make acceptance/rejection
decisions. In this way, tree manager can calculate and maintain aggregated
effective bandwidth for each delivery tree, rather than for each link; therefore,
our method is very flexible and efficient.

17

4.3 Tree Management Using MPLS Technique

In MAQoSMP, aggregated multicast trees are managed using MPLS tech-
nique. In other words, MAQoSMP manages MPLS aggregated multicast tree
(or MPLS tree for short). In this approach, multicast packets are assigned
MPLS-like labels at the ingress routers, then transmitted along the established
MPLS tree, and the labels are removed at the egress routers. The implication
of this approach is that the creation and management of trees becomes very
efficient. In addition, group rerouting becomes very quick and simple: it is
a matter of assigning different labels on its packets at the entrance points.
This way, we can easily adapt to changes in the QoS requirements and group
member dynamics.

To efficiently establish MPLS trees, we devise a label distribution protocol
for bi-directional trees (which are adopted by MAQoSMP to improve state
scalability). It is important to note that even though there exist solutions to
distribute labels for unidirectional multicast trees [33], no research work has
been found for label distribution of bi-directional trees in the literature. We
propose a distributed solution. It extends the existing unidirectional MPLS
tree setup schemes [33]: root-initiated or leaf-initiated. The idea is as follows:
a bi-directional tree can be decomposed into n unidirectional trees (n is the
number of the leaf routers in the bi-directional tree), each of which has a “root”
router. Thus, the tree manager can send the n unidirectional tree objects to the
corresponding “root” routers. Then each “root” router uses root-initiated uni-
directional MPLS tree setup approach. Leaf-initiated approach can be used
similarly. More details about root-initiated approach and leaf-initiated ap-
proach can be found in [33]. To tear down an existing bi-directional multicast
tree, tree manager only notifies the leaf routers of this tree, and each leaf
router sends label withdraw message to its upstream LSRs. Note that there
are alternative approaches to establish MPLS trees. For example, MPLS trees
can be established using Multipoint-to-Point LSPs [41], and multicast traffic
flows on the same tree can be routed on the corresponding LSPs. In this way,
the number of required LSPs and labels can be greatly reduced compared with
Point-to-Point LSPs. The mapping of aggregated trees to Multipoint-to-point
LSPs is worth further investigation and thus not presented here.

4.4 Considering Dynamic Cores

In the default group-tree matching algorithm, for each group g we only con-
sider the trees within its default core c0. We design a new functionality: core
switch, where a group’s core can be changed dynamically, for the following
reasons. First, core switch can achieve better aggregation and lower rejected

18

�
�������

�
���	�
�

�
�����
�

�
������

�

�

�
�������������

�
���	�
�������

�
�����
�������

�
������

�

� �
�

�
�

�

�

�
 �!#"%$'&
() �!#"%$'&+*-,/.	0

�
�������

�
���	�
�

�
�����
�

�
������

�

� �
�

� �
�1���
�������

�
�����
���2���

�
�����
���2���

�
����
�

�
3

3

3

�
 �!�"%$-&
() �!�"%$-&+*',/.40
56 �7�8�9:94*�;�<=$>7�.	?

��

3

�@�������

A#BDC A�E:C

A#FDC A�G�C

H�IKJ6JML
N'O
P�Q
H	PSR

TUIKV�WYX�L
Z P

H[I\J�J]L
N'O�P^Q�H_PSR

T`IKVaW6X�L
Z P�b Z_c

H�I'J6J]L
NKO P Q
H P R

T`I'V�W6X�L
Z P

H�IKJYJ]L
N'O P Q�H P R
N'O P Q�H c R

TUIKVaW6XdL
Z P
Z c

�
�

�

�
 �e_9�,%f�9
() �e_9�,%f�94*',/.	0

g�h gji

Fig. 5. (a) Initial state: group g0 uses tree (c0, T0); (b) Member join: group g1 starts
with members A, D, and E, and groups g0 and g1 share the tree (c0, T0); (c) Member
leave: group g1 terminates; (d) Tree switch: based on (b), a new member F joins
group g1, and g1 switches from (c0, T0) to (c0, T1).

join requests: if there are no existing trees (including “native” tree) to cover
a group g in the default core, an existing (or new) tree in another core can be
used for the data delivery of group g. In this way, more groups will share a
single delivery tree and fewer groups may be rejected. Second, from the per-
spective of the global network, the backbone domain is likely to be unevenly
loaded. The construction of one poorly unbalanced group may result in the
rejection of several future groups. Therefore, it is important to balance the
link loads in the backbone domain. Here, core switch allows the tree manager
to select a core c′ with most balanced candidate tree. As a result, link loads are
more balanced and potentially fewer groups may be rejected. Of course, these
benefits come at the cost of additional communication between cores. We will
describe the implementation of core switch mechanism in Section 4.5.5.

4.5 Protocol Details

In MAQoSMP, we define the following control messages: JOIN, JOIN-ACK,
LEAVE, LEAVE-ACK, TREE-SWITCH, CORE-SWITCH-REQ, CORE-SWITCH-
ACK, and CORE-CHANGE. These control messages are mainly transport
level messages between edge routers and cores.

19

4.5.1 Cores and Edge Routers

The responsibilities of cores include QoS-aware multicast routing, group to tree
matching, admission control, and MPLS tree management. At the edge of the
network domain, source edge routers perform traffic conditioning, marking,
and labelling for incoming packets and the receiver routers, upon receiving
packets, drop MPLS labels and further deliver packets to other domains or
customer networks.

4.5.2 Member Join

When an edge router r receives a request to join a group g from outside
domains, it first uses the group-to-core hash function to get g’s default core
c0, and then sends a message JOIN (g) to c0. c0 triggers its tree manager
module to find or establish an appropriate aggregated tree (e.g. (c′, T), since
an aggregated tree is identified by a combination of the core’s IP address and a
class D address). It should be noted that this join message might activate tree
switch or core switch if the existing tree could not cover group g (the details
will be discussed in the following subsections). Then the corresponding group-
tree matching entry is sent back to r through a message JOIN-ACK (g, (c′, T)).
r adds this entry to its group-tree matching table for the purpose of assigning
MPLS labels to incoming packets, and employs the distributed bi-directional
MPLS tree setup procedure if this tree has not been constructed.

4.5.3 Member Leave

Similarly, when an edge router r wants to leave a group g, it sends a LEAVE (g)
message to its core c′. On receiving of the LEAVE message, c′ manipulates
the group-tree matching algorithm, which might also cause tree switch or core
switch. As the tree manager finds that all members in a group leave, it first
sends LEAVE-ACK (g, (c′, T)) message to notify the leaf routers of the tree,
and then updates its own tables. If the tree is now obsolete, that is, when
all groups mapped onto a MPLS tree terminate, the leaf routers remove label
forwarding entries and propagate label withdraw messages to upstream routers
to destroy the aggregated tree.

4.5.4 Tree Switch

In MAQoSMP, membership dynamics are efficiently supported though tree
matching, tree switching and core switching. Tree switch procedure (in the
same core) is triggered when the membership of a group g is changed and its
original aggregated tree (c0, T) is not able to cover the group with reason-
able overhead or satisfy QoS requirement. In this case, c0 finds or establishes

20

an appropriate tree for g, say, (c0, T
′), and then it utilizes a multicast mes-

sage TREE-SWITCH (g, (c0, T
′)) to notify all the members of group g to join

(c0, T
′) and leave (c0, T). The member routers may trigger MPLS tree estab-

lishment or release if needed.

Examples of member join, member leave, and tree switch are illustrated in
Fig. 5.

4.5.5 Core Switch

As explained earlier, core switch mechanism helps to improve tree aggregation
and balance the link loads in the backbone domain. For example, when mem-
bership has been changed for a group g and the original tree in the default core
c0 is no longer appropriate, the default core c0 queries other cores by sending
out a multicast message CORE-SWITCH-REQ(g,member list, QoS requirements)
though a pre-defined bi-directional multicast tree, which connects all cores.
Upon receiving the CORE-SWITCH-REQ message, each core activates its
tree manager module to check if there is a good tree to cover group g. If
there is, a unicast message CORE-SWITCH (g, (c′, T ′), bandwidth overhead)
is sent back to c0. From the received messages, c0 chooses the one with small-
est bandwidth overhead, say, (c′′, T ′′) as the delivery tree for g. Similar to tree
switch, this will trigger a unicast message CORE-SWITCH-ACK (g, (c′′, T ′′))
back to the new core c′′ and a TREE-SWITCH (g, (c′′, T ′′)) message through
the multicast tree (c0, T) to notify all the group members of g to switch to
the new tree. At the same time, c0 needs to record the new core c′′ for fur-
ther requests for group g. For instance, when a new member joins group g,
it sends a JOIN message to the default core c0 and c0 needs to forward this
request to c′′. Finally, c0 will send a message CORE-CHANGE (g, c′′) back to
the new member (if core switch has been caused by a member join). When
the load balancing option is turned on, the most balanced multicast tree can
be selected in a similar fashion. Fig. 6 illustrates the core switch procedure
through an example of member leave.

4.6 Discussions

In summary, MAQoSMP provides scalable and efficient QoS multicast sup-
port in MPLS/Diff-Serv networks. It is worth pointing out that this benefit is
achieved at the cost of additional overhead in comparison with traditional mul-
ticast schemes, e.g., computation overhead for executing group tree matching
algorithm and bandwidth overhead due to leaky match between groups and
trees. When members join/leave a group, tree manager tries to map this group
to an appropriate tree. A simple and straightforward approach requires scan-

21

�
���������
	��

���������
	��

�
����������	��

�
�������

�
����	��

�
��� � �

�
���������
	��

���������
	��

�
����������	��

�
��� � �

�
��� 	 �

�
�

�

�������� "!
�
#$��%�&
'(�*),+.-0/21�%�34)5'(��6
798�%�&
'(�*),+�-:/;1�%*34)< =%�>
?.8�1�'����*),+�-:/21�%�3

@�ACB

@,D�B

E"F EHG

E G

� I

J

K

�

L�M5N$NCO
P<Q�R�S�L�R2T

UVM5W�XZY�O
[R

L�M<N$N.O
P<Q.\�S�L�\]T

U^M<W�X$Y.O
[\

L�M<N$N.O
P<Q \ S�L \ T

U^M<W�X$Y.O
[R S [\

Fig. 6. (a) Before core switch: group g0 uses tree (c0, T0) while group g1 uses tree
(c1, T1); (b) Core switch procedure: when member F leaves group g0, g0 switches
from core c0 to c1 and shares the tree (c1, T1) with group g1.

ning all existing trees once, and thus the computation complexity is mainly
determined by the number of multicast trees 6 . Additionally, some bandwidth
is wasted when groups are mapped onto trees in a “leaky” fashion. By using a
bandwidth waste threshold bt, we are able to control the amount of bandwidth
overhead. Note that when bt is increased, fewer trees will be established, and
thus the computation overhead is reduced; on the other hand, more band-
width will be wasted. Therefore, there is a trade-off of computation overhead
vs. bandwidth overhead when bt is varied. We will evaluate the overhead in
the following section.

6 There are some obvious approaches to improve the algorithm performance. For
example, existing multicast trees can be maintained in a sorted list according to
their cost. Depending on the cost of the native tree of a group C(TA(g)) and the
bandwidth overhead threshold bt, only a fraction of trees with cost within the range
[C(TA(g)), (bt + 1)× C(TA(g))] needs to be scanned.

22

5 Performance Evaluation

In this section, we conduct simulations in NS-2 [2] and evaluate the perfor-
mance of MAQoSMP, especially on the aspects of scalability, overhead, load
balancing and statistical multiplexing.

5.1 Performance Metrics

In our simulations, we use the following metrics to quantify the performance
of MAQoSMP.

Number of MPLS Trees is the average number of MPLS trees maintained in
the tree manager. This metric is an indirect measurement for the multicast tree
maintenance overhead and the computation overhead for group tree matching.
The more multicast trees, the more memory required and the more processing
and computation overhead involved in the tree manager.

Number of Label Forwarding Entries is the average number of label
forwarding entries installed in all the routers (including the core routers and
edge routers). This metric reflects the memory requirement and forwarding
processing overhead in the routers. The fewer label forwarding entries, the
less memory required and the faster labels forwarded.

Request Rejection Ratio is defined as

RRratio(t) =
NR(t)

NA(t)
. (3)

where NA(t) denotes the number of group requests arriving in time period t
after steady state is reached and NR(t) denotes the number of group requests
which are rejected.

Tree Setup Ratio is defined as

TSratio(t) =
NA(t)−NM(t)−NR(t)

NA(t)
. (4)

where NA(t) and NR(t) are defined as above. NM(t) denotes the number of
group requests which can be matched to some existing trees. TSratio(t) gives a
measurement of tree setup overhead: the higher TSratio(t) is, the higher MPLS
tree setup rate.

Real Bandwidth Waste Ratio is the percentage of bandwidth wasted due
to leaky match between groups and trees. It quantifies the bandwidth overhead

23

of MAQoSMP.

Delay and Loss Ratio measure average end-to-end performance of the mul-
ticast trees. Delay is the amount of time to deliver a packet from a source to
a receiver, which includes propagation, transmission and queueing delay. Loss
ratio is defined as the percentage of data packets lost due to buffer overflow.
Low delay and small loss ratio are especially desirable for real-time applica-
tions such as video conferencing and network games.

5.2 Simulation Environments

The network used for the simulation results presented here is abstracted from
a real network topology, Abilene backbone [1], which has 12 core routers. Since
there are no edge routers in the backbone, we attach an additional node as an
edge router to each core router.

In our simulation, we use our group model developed in [14], GEM (GEn-
eralized Membership Model), to generate group members. GEM is a realistic
model constructed from multicast traffic measurements on MBONE and net
games, and it aims to re-generate multicast traffic consistent with the real
traffic. It defines a metric called Group Participation Probability, which char-
acterizes the probability that each router participates in multicast groups: for
two nodes i and j with participation probability pi and pj, let Ni be the num-
ber of groups that have i as a member and Nj be the number of groups that
have j as a member, then it is easy to prove that, on average, Ni

Nj
= pi

pj
.

Following this model, we assign participation probability to each router in the
target network. Core routers will not be members for any multicast group and
are assigned probability 0. Any other edge router is assigned a probability of
0.2 or 0.8 according to the real-time traffic of its corresponding core router.
For a router, more traffic means more participation in the network commu-
nication, thus there is higher probability for it to join a multicast group. As
to bandwidth capacity, we take the real values for outgoing links of all core
routers, while for links from edge routers to core routers, we assume they have
infinite capacity which will not affect the admission control.

In our simulation experiments, multicast session requests arrive as a Poisson
process with arrival rate λ. Sessions’ life time has an exponential distribution
with average µ. At steady state, the average number of sessions is N̄ = λ×µ.
We define three types of multicast groups: low bandwidth (10K), medium
bandwidth (100K), and high bandwidth (1M). Of all the incoming groups,
50% are low, 30% are medium, and 20% are high 7 . These groups belong to

7 These bandwidth requirements are typical for several common applications on

24

Table 1
A High Level Comparison of Simulated MAQoSMP and Native QoS-aware PIM-
SM/CBT MPLS Multicast (Native PIM-SM/CBT)

Name Multicast Routing MPLS Tree Group-Tree Matching QoS-aware

MAQoSMP PIM-SM/CBT like Yes Yes Yes

PIM-SM/CBT PIM-SM/CBT like Yes No Yes

three Diff-Serv classes, i.e., 10% are EF (Expedited Forwarding), 40% are AF
(Assured Forwarding), and 50% are BE (Best Effort). Accordingly, a certain
amount of bandwidth is reserved for each traffic class on all links, and sep-
arate queues are used to isolate flows of different classes. Performance data
is collected every 10 simulation seconds as “snapshots” after steady state is
reached (e.g. at T = 10µ). The results shown below are the average values of
multiple “snapshots”. Note that we have varied simulation parameters (e.g.,
uniform vs. non-uniform percentage of groups with different bandwidth re-
quirements and Per Hop Behaviors) in simulations, and the results show very
similar trend.

5.3 Results and Analysis

We design experiments to compare MAQoSMP vs. native QoS-aware PIM-
SM/CBT MPLS multicast (native PIM-SM/CBT for shorthand), where an
MPLS tree is simply constructed using PIM-SM/CBT protocol for each mul-
ticast group. A high level comparison of simulated MAQoSMP and native
PIM-SM/CBT is shown in Table I. In our experiments, MAQoSMP employs
bi-directional trees, and each member of a group can be a source and a re-
ceiver. Once a multicast session starts up, its core node (or RP) is randomly
chosen from the 12 core routers in the network. For MAQoSMP, the algorithm
specified in Section 3.5 is used to match a group to a tree. The correspond-
ing routing algorithm is PIM-SM/CBT like routing algorithm which is also
used for native PIM-SM/CBT. In MAQoSMP, if the tree computed based on
the original core can not accommodate the group, a new RP will be selected
among the other RP candidates until a good tree is found or the group is
rejected because of no enough bandwidth available. In native PIM-SM/CBT,
if the original core cannot find an appropriate tree with sufficient bandwidth
for the group, the group is simply rejected.

the Internet, e.g., text message applications (10K), voice/audio or low-quality video
applications (100K), and high-quality video applications (1M). Similar settings for
the percentage of bandwidth requirements have been used in previous works such
as [38].

25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1500 2000 2500 3000 3500

N
um

be
r

of
 m

ul
tic

as
t t

re
es

Average number of group requests

Native PIM-SM/CBT
MAQoSMP, bt = 0
MAQoSMP, bt = 0.4
MAQoSMP, bt = 0.8

Fig. 7. Number of MPLS Trees vs. number of group requests.

 0

 20000

 40000

 60000

 80000

 100000

 1500 2000 2500 3000 3500

N
um

be
r

of
 la

be
l f

or
w

ar
di

ng
 e

nt
rie

s

Average number of group requests

Native PIM-SM/CBT
MAQoSMP, bt = 0
MAQoSMP, bt = 0.4
MAQoSMP, bt = 0.8

Fig. 8. Number of Label Forwarding Entries vs. number of group requests.

5.3.1 Multicast State Scalability

In our experiments, we vary the bandwidth overhead threshold bt, an upper
bound on the real bandwidth waste, from 0 to 0.8 for MAQoSMP. Fig. 7 shows
the results for Number of MPLS Trees vs. the average number of group
requests. We can see that MAQoSMP “scales” with the number of concurrent
groups: for native PIM-SM/CBT, the number of MPLS trees grows almost
linearly with the number of groups; for MAQoSMP, as the number of groups
becomes bigger, the number of trees also increases, but the increase is much
less pronounced than that of native PIM-SM/CBT, even for perfect match
(bt = 0). When there are 3500 group requests, the number of trees is only
505 instead of 3046 for bt = 0.8, indicating that much less tree maintenance
overhead and computation overhead are involved in the tree manager. Also
the “increase” decreases as there are more groups, which means that as groups
are pumped into the network, more groups can share a single MPLS tree.

Fig. 8 plots the change of Number of Label Forwarding Entries with the
number of group requests. It has a similar trend as the metric Number of
MPLS Trees. The number of label forwarding entries is reduced from 97676
to 17378 (above 80% reduction) for bt = 0.8 when 3500 groups come. Thus,
we can conclude that, in MAQoSMP, the label maintenance and forwarding
process overhead are significantly reduced.

In Fig. 9, we demonstrate the effect of the number of active groups on Tree

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 2000 2500 3000 3500

T
re

e
se

tu
p

ra
tio

Average number of group requests

Native PIM-SM/CBT
MAQoSMP, bt = 0
MAQoSMP, bt = 0.4
MAQoSMP, bt = 0.8

Fig. 9. Tree Setup Ratio vs. number of group requests.

 0

 0.05

 0.1

 0.15

 0.2

 1500 2000 2500 3000 3500

A
ve

ra
ge

 b
an

dw
id

th
 w

as
te

Average number of group requests

MAQoSMP, bt = 0.2
MAQoSMP, bt = 0.4
MAQoSMP, bt = 0.6
MAQoSMP, bt = 0.8

Fig. 10. Real bandwidth waste vs. number of group requests.

Setup Ratio. From the figure, we can see that the tree setup ratio decreases
with the number of groups, which is consistent with the previous analysis:
more groups share a single MPLS tree when the number of groups is bigger,
and thus fewer trees need to be set up. Comparing MAQoSMP and native
PIM-SM/CBT, tree setup ratio is much smaller in MAQoSMP, which means
the tree setup overhead is dramatically reduced.

From Fig. 7, Fig. 8, and Fig. 9, a general observation is that, when bandwidth
overhead threshold is increased, that is, more bandwidth is wasted, Number
of MPLS Trees, Number of Label Forwarding Entries, and Tree Setup Ratio
decrease, which translates into less tree and label management overhead and
group-tree matching computation overhead. Therefore, there is a trade-off
between management overhead reduction and bandwidth waste. The balance
depends on the network administration policy.

Recall that bandwidth waste threshold is an upper bound on the real band-
width waste, we want to ask a question: is this metric a loose or tight upper
bound? Fig. 10 provides the answer for our simulation scenario. When bt = 0.4
and 0.8, the corresponding Real Bandwidth Waste Ratios are approximately
0.085 and 0.12, respectively. This means that the performance improvement
shown in the previous figures is achieved with very limited bandwidth waste.
Furthermore, this result indicates that the bandwidth waste threshold needs
to be determined empirically in order to control real bandwidth waste.

27

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio
Average number of group requests

Native PIM-SM/CBT
MAQoSMP, bt = 0
MAQoSMP, bt = 0.4
MAQoSMP, bt = 0.8

Fig. 11. Request Rejection Ratio vs. number of group requests.

Fig. 11 depicts how the aggregation affects Request Rejection Ratio. The
figure shows that the request rejection ratio is influenced by the aggrega-
tion under leaky match cases. Intuitively, leaky match causes some bandwidth
waste, thus it should have some effects on admission control: the more band-
width waste, the bigger request rejection ratio. This trend is clearly reflected
in the figure.

To further illustrate how MAQoSMP affects groups with different bandwidth
requirements and QoS classes, we plot the request rejection ratio for each
type of groups in Fig. 12 and 13 respectively. Fig. 12 shows rejection ratio
for low, medium and high bandwidth groups. From Fig. 12(a) and (b), it is
clear that MAQoSMP achieves similar rejection ratio as PIM-SM/CBT for
different types of bandwidth requests when bt = 0. In addition, as shown in
Fig. 12(c), as bt increases, the relative percentage of rejected requests among
the three types of groups are fairly static, despite the fact that the overall
rejection ratio is higher due to leaky match. We make similar observations
for groups belonging to different PHB classes from Fig. 13: the percentage
of rejected requests among BE, AF and EF groups is approximately equal
to the percentage of join requests from these groups, irrespective of how bt

varies. Therefore, we conclude that, in comparison with traditional multicast
protocols, MAQoSMP does not favor or disfavor any particular type of groups
with certain bandwidth requirements and QoS classes.

5.3.2 Load Balancing (LB)

In MAQoSMP, core switch mechanism enables a group to find a tree with
good performance, such as higher state aggregation and more balanced load.
In this subsection, we evaluate the benefits of load balancing in MAQoSMP.
We use the Coefficient of Variation (which is equal to the standard deviation
divided by the mean) of link loads caused by a multicast tree to measure the
load balancing property of this tree: lower Coefficient of Variation means the
tree is more balanced.

To illustrate the benefit of load balancing, we compare the performance of

28

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio
Average number of group requests

All traffic
Low bandwidth

Medium bandwidth
High bandwidth

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio

Average number of group requests

All traffic
Low bandwidth

Medium bandwidth
High bandwidth

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio

Average number of group requests

All traffic
Low bandwidth

Medium bandwidth
High bandwidth

(c)

Fig. 12. Request rejection ratio. (a) PIM-SM/CBT; (b) MAQoSMP with bt = 0; (c)
MAQoSMP with bt = 0.4.

native PIM-SM/CBT, MAQoSMP without load balancing, and MAQoSMP
with load balancing. The results are plotted in Fig. 14 and Fig. 15, which
show the Correlation of Variation of link loads and rejection ratio, respectively.
Obviously, as shown in Fig. 14, the link loads are more evenly distributed when
load balancing option is turned on. Correspondingly, load balancing allows
more groups to be admitted, especially for high bandwidth waste threshold
(Fig. 15). For example, when bt = 0.4, approximately 1 − 3% more groups
can be accommodated with load balancing feature, albeit at the cost of higher
control overhead.

29

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500
R

eq
ue

st
 r

ej
ec

tio
n

ra
tio

Average number of group requests

All classes
BE class
AF class
EF class

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio

Average number of group requests

All classes
BE class
AF class
EF class

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio

Average number of group requests

All classes
BE class
AF class
EF class

(c)

Fig. 13. Request rejection ratio. (a) PIM-SM/CBT; (b) MAQoSMP with bt = 0; (c)
MAQoSMP with bt = 0.4.

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 1500 2000 2500 3000 3500

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
of

 li
nk

 lo
ad

s

Average number of group requests

Native PIM-SM/CBT
MAQoSMP w/o LB, bt=0
MAQoSMP w/o LB, bt=0.4
MAQoSMP with LB, bt=0
MAQoSMP with LB, bt=0.4

Fig. 14. Coefficient of Variation of link loads vs. number of group requests.

30

 0

 0.05

 0.1

 0.15

 0.2

 1500 2000 2500 3000 3500

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio
Average number of group requests

Native PIM-SM/CBT
MAQoSMP w/o LB, bt=0
MAQoSMP w/o LB, bt=0.4
MAQoSMP with LB, bt=0
MAQoSMP with LB, bt=0.4

Fig. 15. Request Rejection Ratio vs. number of groups group requests.

5.3.3 Statistical Multiplexing (SM)

Besides multicast state scalability and load balancing, another important fea-
ture of MAQoSMP is to use statistical multiplexing technique to reduce the
amount of bandwidth to be reserved for multicast groups while still satis-
fying certain QoS requirements, such as packet loss ratio. When statistical
multiplexing is used, the tree manager computes the effective bandwidth for
the incoming group, and decides whether to accept it based on residual link
capacities. Otherwise, the tree manager will simply use the peak rate of the
group for admission control.

We compare the performance of MAQoSMP with and without statistical mul-
tiplexing with respect to three metrics: loss ratio, delay, and request rejection
ratio. In this series of simulation experiments, the average number of groups
in steady state is 100 groups, and the buffer size for each group is increased
from 1 to 10000 packets. The loss ratio is fixed to 0.001%. Each source has
two states “on” and “off”, which are modelled by a two-state Markov Chain.
When the source is in “on” state, it transmits at a constant peak rate, whereas
in “off” state, it pauses data transmission. The duration of on/off state is ex-
ponentially distributed. In our simulations, the mean burst period lasts for 0.1
sec, and the mean idle period is 0.9 sec.

As shown in Fig. 16, statistical multiplexing saves bandwidth reserved for each
group and reduces group request rejection ratio significantly. For example,
32% more groups can be admitted with buffer size of 10000 packets per group
when statistical multiplexing is used. We also observe that with statistical
multiplexing, more groups can be admitted as buffer size increases. The reason
for this observation is simple: large buffers can accommodate more bursty flows
since overflow is less likely to occur, and thus the effective bandwidth of the
same group decreases. On the other hand, because peak rate is always used
in admission control when the traffic is not multiplexed, buffer size does not
affect the rejection ratio.

Even though statistical multiplexing can accept more groups, one of our con-
cerns is that it may degrade the QoS performance of the multicast groups.

31

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000 10000

R
eq

ue
st

 r
ej

ec
tio

n
ra

tio
Buffer size (in pkts) for each flow

MAQoSMP with SM
MAQoSMP w/o SM

Fig. 16. Request Rejection Ratio vs. buffer size for each group.

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 1 10 100 1000 10000

A
ve

ra
ge

 d
at

a
pa

ck
et

 d
el

ay
 (

se
c)

Buffer size (in pkts) for each flow

MAQoSMP with SM
MAQoSMP w/o SM

Fig. 17. Average data packet delay vs. buffer size for each group.

Fortunately, experiment results reveal that the loss ratio remains at 0 for all
cases in our simulation scenarios. We also plot the average data packet de-
lay vs. buffer size in Fig. 17. It is evident that when buffer is smaller than
100 packets for each group, the packet delays of MAQoSMP with and with-
out statistical multiplexing are comparable. With larger buffers, multiplexed
traffic tends to have longer queueing delays, since in this case, more groups
are admitted and the traffic intensity increases in the network. However, the
increase in packet delays is limited: in the worst case when buffer size is as
large as 10000 packets per group, the delay grows from 0.538 to 0.605 second.
From another point of view, this statistical multiplexing feature provides a
trade-off between higher request acceptance and degraded QoS performance,
which gives the network administrator additional flexibility to engineer the pa-
rameters to maximize ISP’s benefits while satisfying users’ QoS requirements.

Through our simulation studies, we can see that MAQoSMP achieves scala-
bility by: (1) tree maintenance and management overhead reduction; (2) la-
bel maintenance and forwarding process overhead reduction. MAQoSMP also
achieves load balancing by using core switch mechanism and higher resource
utilization with statistical multiplexing technique.

32

6 Related Work

In this section, we provide a brief overview on related work. We first present
some representative QoS multicast protocols for the Internet, and then review
multicast schemes with QoS support in MPLS or Diff-Serv domains.

6.1 QoS Multicast Support

There is a large body of works on QoS multicasting in the Internet. In this
section, we briefly review some representative protocols. Interested readers
are referred to two comprehensive surveys [47,52] and references therein for
details.

YAM (Yet Another Multicast protocol) [9] and QoSMIC (Quality of Service
sensitive Multicast Internet protoCol) [18] rely on flooding techniques to find
multiple paths, from which a best path in terms of QoS is selected. YAM builds
shared trees through a spanning join mechanism: a receiver searches on-tree
nodes through expanding ring search and finds the best path as a multicast
tree branch. To restrict the flooding scope of YAM, QoSMIC adopts a two-
phase searching scheme. The first phase is local search, which is similar to the
spanning join in YAM. When no on-tree node is found in the local search, the
second phase, tree search, is invoked. The new member contacts a designated
manager router, which causes a set of on-tree routers to propose themselves
as candidates. After receiving bid messages from these candidate routers, the
new router chooses the best path to graft onto the multicast tree.

YAM and QoSMIC incurs high communication overhead by using flooding
techniques. To alleviate this problem, a QoS-aware Multicast Routing Protocol
(QMRP) is proposed in [10]. It starts with a single-path mode, attempting to
use the default unicast path between the new receiver and the nearest on-tree
router as the tree branch. If this path does not satisfy the QoS requirements,
the protocol switches to a multi-path mode, in which multiple tree branches
are searched and the best one is chosen.

RIMQoS (Receiver-Initiated QoS multicast protocol) [22] targets at building
source-rooted multicast trees with multiple QoS constraints. It assumes an
underlying QoS unicast routing protocol is available. In this protocol, a node
joins the tree via a low-cost path computed by the unicast routing protocol
and may later switch to a higher-cost path that meets the QoS requirements.

There are also some other multicast protocols supporting QoS, such as QMBF
(QoS-aware Multicast Protocol using Bounded Flooding) [27] and QoSM2P
(Quality of Service Multipath Multicast Protocol) [3]. In spite of the large

33

number of existing studies on QoS multicasting in the Internet, most work
focuses on how to establish multicast trees to improve QoS metrics or to
satisfy given QoS constraints, without touching the multicast state scalability
problem.

6.2 Multicast in MPLS/Diff-Serv Domains

To enable QoS multicasting and traffic engineering in the Internet, some pro-
posals about supporting multicast in MPLS networks have been proposed
[33,34], but their focus is to construct a multicast traffic engineering tree by
building multicast trees immediately on L2 or mapping L3 trees onto L2.
Edge Router Multicasting (ERM) [53] converts a multicast flow into multiple
unicast flows by limiting branching nodes of multicast trees to only the edge
routers. It simplifies the multicast LSP setup and avoids L3 forwarding, while
trading off tree cost and end-to-end delay.

Diff-Serv has been proposed as a promising architecture for providing scalable
QoS support. As explained earlier, there are some conflicts between multicast
and Diff-Serv, such as the requirements of stateful core vs. stateless core. To
tackle these problems, many research efforts have been devoted to alleviating
multicast state scalability.

Z. Li et al. presented QoS-aware Multicasting in Diff-Serv domain (QMD)
[28] to reduce the multicast state. In this scheme, the edge routers are re-
quired to process control requests and maintain control state, and a limited
number of core routers maintain multicast state. The multicast trees are con-
structed such that the number of stateful core routers is minimized and the
QoS requirements are met. In QUASIMODO [4], only a fraction of routers
are multicast-capable and multicast packets are tunnelled between multicast
routers. Obviously, this approach sacrifices the bandwidth efficiency of native
multicast.

To improve the scalability of Diff-Serv-aware multicasting in a further step,
some approaches are proposed to completely eliminate multicast state in core
routers. Similar to Xcast [7], DiffServ Multicast (DSMcast) [48] proposes to
encapsulate multicast tree information in packet header. It improves the scal-
ability in terms of number of groups while suffering from the same bandwidth
and processing overhead as Xcast. This model is further extended to provide
heterogeneous QoS to multicast groups by including DS fields in packet header
to allow the DSCP to dynamically adapt to the needs of downstream receivers
as the packets traverse the network [46]. Edge-Based Multicasting (EBM) [45]
offers an alternative approach to keep core routers stateless. In this protocol,
an entity called Multicast Broker (MB) constructs multicast trees by cluster-

34

ing egress routers with similar QoS requirements and then linking the clusters.
Multicast packets are tunnelled from edge to edge and are only replicated at
edge routers.

It is important to note that the above-mentioned schemes attempt to reduce
or even eliminate multicast state inside core routers for individual multicast
groups, whereas our work strives for improving multicast state scalability by
exploiting inter-group state aggregation. Therefore, our approach is orthogonal
to the existing schemes, and can be combined with some of them (e.g., QMD).

In addition to these schemes, some other work targets at different problems of
multicasting in Diff-Serv domains. For instance, DiffServ-Aware Multicasting
(DAM) [54] aims to solve the Neglected Reserved Sub-tree (NRS) problem and
to accommodate heterogeneous QoS requirements. Call Admission Multicast
Protocol (CAMP) proposed in [36,35] performs measurement-based admission
control for dynamic groups with bandwidth guarantees.

7 Conclusions

In this paper, we propose and develop a multicast architecture to support QoS
in a scalable way. The main innovation is that we separate the logical entity of
a group from that of a distribution tree. Many groups can be multiplexed on a
single tree by appropriate labelling of the packets in an MPLS fashion. Also, a
group can use different distribution trees during its lifetime. This logical sepa-
ration has two main advantages: a) it facilitates the management of trees and
of QoS provision, and b) it enables fast re-routing of groups. As a result, our
architecture can provide load balancing, adaptability to changing conditions,
and fault-tolerance. In addition, our architecture reduces the multicast state
at core routers.

An alternative way to look at our architecture is through the trade-offs it
enables.

• A level of indirection (group to tree mapping) versus more flexibility (fast
group rerouting).
• Requirement of additional functions and information versus ability to pro-

vide scalable and efficient QoS support.
• Wasted bandwidth (used by packets travelling towards non-receivers) versus

reduction of routing state at core routers.
• High resource utilization (achieved by statistical multiplexing) versus lim-

ited QoS performance degradation.

It is important to note that having these trade-offs we can operate at the ap-

35

propriate point in the possible spectrum. Thus the administrator of a domain
can customize the architecture to the operational needs.

We conduct simulations to quantify the claims of the architecture. We compare
our scheme with a native QoS-aware PIM-SM/CBT protocol. The results can
be summarized in the following points:

• The number of Label Forwarding entries is reduced significantly with our
approach by a factor of up to five.
• The overhead of setting up a tree is better amortized as the number of

groups increases.
• Our protocol can achieve high resource utilization by accommodating more

users than traditional multicast. The advantage comes from the ability to
statistically multiplex different multicast flows on the same aggregated tree
and explore many trees for a given group for the purpose of resource dis-
covery and load balancing.

Future Work. We would like to study the effect of various scenario parame-
ters on the performance of the architecture. We want to consider parameters
such as the topology, the distribution of sources and receivers, and the locality
of preference. We also want to investigate the design issues of incorporating
measurement-based admission control approaches in our AQoSM architecture.

References

[1] Abilene network topology. http://www.ucaid.edu/abilene/.

[2] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[3] P. Baccichet, E. Pagani, and G. P. Rossi. Quality of service multipath multicast
protocol. In Proceedings of Networked Group Communication (NGC), Oct.
2002.

[4] G. Bianchi, N. Blefari-Melazzi, G. Bonafede, and E. Tintinelli. QUASIMODO:
Quality of service-aware multicasting over DiffServ and overlay networks. IEEE
Network, 17(1):38–45, Jan. 2003.

[5] S. Biswas, R. Izmailov, and B. Rajagopalan. A QoS-aware routing framework
for PIM-SM based IP-multicast. Internet draft: draft-biswas-pim-sm-qos-00.txt,
June 1999.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for Differentiated Services. IETF RFC 2475, Dec. 1998.

[7] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens. Explicit
multicast (Xcast) basic specification. Internet draft: draft-ooms-xcast-basic-
spec-01.txt, Mar. 2001.

36

[8] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
architecture: an overview. IETF RFC 1633, 1994.

[9] K. Carlberg and J. Crowcroft. Building shared trees using a one-to-many joining
mechanism. ACM Computer Communication Review, pages 5–11, Jan. 1997.

[10] S. Chen, K. Nahrstedt, and Y. Shavitt. A qos-aware multicast routing protocol.
Proceedings of IEEE INFOCOM, Mar. 2000.

[11] J.-F. Chiu, Z.-P. Huang, C.-W. Lo, W.-S. Hwang, and C.-K. Shieh. Supporting
end-to-end QoS in DiffServ/MPLS networks. In Proceedings of International
Conference on Telecommunications, pages 261–266, Feb. 2003.

[12] L. H. M. Costa, S. Fdida, and O. C. M. Duarte. Hop-by-hop multicast routing
protocol. Proceddings of SIGCOMM’01, Aug. 2001.

[13] J.-H. Cui, M. Faloutsos, and M. Gerla. An architecture for scalable, efficient
and fast fault-tolerant multicast provisioning. IEEE Network special issue on
Protecction, Restoration, and Disaster Recovery, 18(2):26–34, Mar. 2004.

[14] J.-H. Cui, M. Faloutsos, D. Maggiorini, M. Gerla, and K. Boussetta. Measuring
and modelling the group membership in the Internet. In Proceedings of the
ACMSIGCOMM/USENIX Internet Measurement Conference (IMC 2003), Oct.
2003.

[15] A. I. Elwalid and D. Mitra. Effective bandwidth of general Markovian traffic
sources and admission control of high speed networks. IEEE/ACM Transactions
on Networking, 1(3):329–343, June 1993.

[16] D. Estrin, M. Handley, A. Helmy, P. Huang, and D. Thaler. A dynamic
bootstrap mechanism for rendezvous-based multicast routing. Proceddings of
IEEE INFOCOM’99, 1999.

[17] F. L. F. et al. Protocol extensions for support of Differentiated-Service-aware
MPLS traffic engineering. Internet draft: draft-ietf-tewg-diff-te-proto-07.txt,
Mar. 2004.

[18] M. Faloutsos, A. Banerjea, and R. Pankaj. QoSMIC: Quality of Service
sensitive Multicast Internet protoCol. ACM SIGCOMM’98, Vancouver, British
Columbia, Sept. 1998.

[19] F. L. Faucheur and W. Lai. Requirements for support of Differentiated Services-
aware MPLS traffic engineering. IETF RFC 3564, July 2003.

[20] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan,
P. Cheval, and J. Heinanen. Multi-Protocol Label Switching (MPLS) support
of Differentiated Services. IETF RFC 3270, May 2002.

[21] A. Fei, J.-H. Cui, M. Gerla, and M. Faloutsos. Aggregated Multicast: an
approach to reduce multicast state. Proceedings of Sixth Global Internet
Symposium(GI2001), Nov. 2001.

37

[22] A. Fei and M. Gerla. Receiver-initiated multicasting with multiple QoS
constraints. Proceedings of IEEE INFOCOM, Mar. 2000.

[23] S. Ganti, N. Seddigh, and B. Nandy. MPLS support of Differentiated Services
using E-LSP. Internet draft: draft-ietf-mpls-diff-ext-00.txt, Apr. 2001.

[24] R. N. George and B. Ilia. Multicast routing with end-to-end delay and delay
variation constraints. IEEE Journal on Selection Areas in Communications,
15(3):346–356, Apr. 1997.

[25] J. Hou, H.-Y. Tyan, B. Wang, and Y.-M. Chen. QoS extension to CBT. Internet
draft: draft-hou-cbt-qos-00.txt, Feb. 1999.

[26] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based admission
control algorithm for integrated services packet networks. Proceedings of ACM
SIGCOMM’95, Sept. 1995.

[27] Z. Li and P. Mohapatra. Qos-aware multicast protocol using bounded flooding
(QMBF) technique. In Proceedings of IEEE International Conference on
Communications (ICC), Apr. 2002.

[28] Z. Li and P. Mohapatra. QoS-aware multicasting in DiffServ domains. In
Proceedings of IEEE Global Internet Symposium, Nov. 2002.

[29] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast.
In In Proceedings of ACM SIGCOMM’96, pages 117–130, 1996.

[30] M. Moh, B. Wei, and J. H. Zhu. Supporting differentiated services with per-
class traffic engineering in MPLS. In Proceedings of International Conference
on Computer Communications and Networks, pages 354–360, Oct. 2001.

[31] J. Moy. Multicast routing extensions to OSPF. IETF RFC 1584, Mar. 1994.

[32] I. Norros. A storage model with self-similar input. Queueing Systems,
16(2):387–396, 1994.

[33] D. Ooms, R. Hoebeke, P. Cheval, and L. Wu. MPLS multicast traffic
engineering. Internet draft: draft-ooms-mpls-multicast-te-00.txt, 2001.

[34] D. Ooms, B. Sales, W. Livens, A. Acharya, F. Griffoul, and F. Ansari. Overview
of IP multicast in a multi-protocol label switching (MPLS) environment. IETF
RFC 3353, 2004.

[35] E. Pagani and G. P. Rossi. Measurement-based admission control for dynamic
multicast groups in Diff-Serv networks. In Proceedings of NETWORKING, May
2002.

[36] E. Pagani, G. P. Rossi, and D. Maggiorini. A multicast transport service with
bandwidth guarantees for Diff-Serv networks. In Proceedings of International
Workshop on QoS in MultiService IP Networks (QoS-IP), Jan. 2001.

[37] R. Perlman, C.-Y. Lee, A. Ballardie, J. Crowcroft, Z. Wang, T. Maufer, C. Diot,
J. Thoo, and M. Green. Simple Multicast: A design for simple, low-overhead
multicast. Internet draft: draft-perlman-simple-multicast-03.txt, Oct. 1999.

38

[38] P. I. Radoslavov, D. Estrin, and R. Govindan. Exploiting the bandwidth-
memory tradeoff in multicast state aggregation. Technical report, USC Dept.
of CS 99-697 (Second Revision), July 1999.

[39] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
architecture. IETF RFC 3031, 2001.

[40] N. Rouhana and E. Horlait. Differentiated Services and Integrated Services
use of MPLS. In Proceedings of IEEE Symposium on Computers and
Communications (ISCC), pages 194–199, July 2000.

[41] H. Saito, Y. Miyao, and M. Yoshida. Traffic engineering using multiple
multipoint-to-point LSPs. In Proceedings of IEEE INFOCOM, pages 894–901,
Mar. 2000.

[42] K. Sanjiv and R. Srivatsan. Improved multicast routing with delay
and delay variation constraint. Global Telecommunications Conference
(GLOBECOM’00), 1:476–480, 2000.

[43] P.-R. Sheu and S.-T. Chen. A fast and efficient heuristic algorithm for the
delay and delay variation bound multicast tree problem. In Proceedings of the
15th International Conference on Information Networking (ICOIN’01), pages
611–618, Feb. 2001.

[44] I. Stoica, T. Ng, and H. Zhang. REUNITE: A recursive unicast approach to
multicast. In Proceedings of IEEE INFOCOM’00, Tel Aviv, Israel, Mar. 2000.

[45] A. Striegel, A. Bouabdallah, H. Bettahar, and G. Manimaran. EBM: a new
approach for scalable DiffServ multicasting. In Proceedings of International
Workshop on Networked Group Communication (NGC), Sept. 2003.

[46] A. Striegel and G. Manimaran. Dynamic DSCPs for heterogeneous QoS in
DiffServ multicasting. In Proceedings of IEEE GLOBECOM, Nov. 2002.

[47] A. Striegel and G. Manimaran. A survey of QoS multicasting issues. IEEE
Communications Magazine, 40(6):82–87, June 2002.

[48] A. Striegel and G. Manimaran. DSMCast: a scalable approach for DiffServ
multicasting. Computer Networks, 44(6):713–735, Apr. 2004.

[49] D. Thaler and M. Handley. On the aggregatability of multicast forwarding
state. Proceedings of IEEE INFOCOM, Mar. 2000.

[50] J. Tian and G. Neufeld. Forwarding state reduction for sparse mode multicast
communications. Proceedings of IEEE INFOCOM, Mar. 1998.

[51] P. Trimintzios, I. Andrikopoulos, G. Pavlou, P. Flegkas, D. Griffin,
P. Georgatsos, D. Goderis, Y. TJoens, L. Georgiadis, C. Jacquenet, and
R. Egan. A management and control architecture for providing IP Differentiated
Services in MPLS-based networks. IEEE Communications Magazine, 39(5):80–
88, May 2001.

39

[52] B. Wang and J. C. Hou. Multicast routing and its QoS extension: Problems,
algorithms, and protocols. IEEE Network, 14(1):22–36, Jan. 2000.

[53] B. Yang and P. Mohapatra. Edge router multicasting with MPLS traffic
engineering. In Proceedings of IEEE International Conference on Networks
(ICON), Aug. 2002.

[54] B. Yang and P. Mohapatra. Multicasting in differentiated service domains. In
Proceedings of IEEE GLOBECOM, Nov. 2002.

40

