
Profiling the End Host

Thomas Karagiannis1, Konstantina Papagiannaki2,
Nina Taft2, and Michalis Faloutsos3

1 Microsoft Research
2 Intel Research
3 UC Riverside

Abstract. Profiling is emerging as a useful tool for a variety of diagno-
sis and security applications. Existing profiles are often narrowly focused
in terms of the data they capture or the application they target. In this
paper, we seek to design general end-host profiles capable of capturing
and representing a broad range of user activity and behavior. We first
present a novel methodology to profiling that uses a graph-based struc-
ture to represent and distill flow level information at the transport layer.
Second, we develop mechanisms to: (a) summarize the information, and
(b) adaptively evolve it over time. We conduct an initial study of our pro-
files on real user data, and observe that our method generates a compact,
robust and intuitive description of user behavior.

1 Introduction

Profiling a behavior refers to the act of observing measured data and extracting
information which is representative of the behavior or usage patterns. Profiling is
useful in developing a model of the behavior and in deriving guidelines of what is
normal and abnormal within that context. Examples of successful uses of profiles
include profiling of traffic patterns on server links to uncover DoS and flash
crowd events [4], web-server profiling [11], power usage profiles for efficient power
management [10], profiling end-to-end paths to detect performance problems [8],
profiling of traffic patterns on aggregated gateway and router links to facilitate
accurate application classification [5], etc.

While there has been research on profiling web server traffic [4,11], and gate-
way and backbone links (i.e., highly aggregated traffic) [5,12], end-host profiling
has received little attention. One work in this area is [7] in which the authors
build end-host profiles with the goal of defending against worm attacks. Their
profile describes the community of hosts an end-system normally interacts with.

We believe that observing the host behavior at the transport layer can reveal
a wealth of information, such as: behaviors on who tries to talk to the host,
who the host communicates with, the mix of applications used, the dispersion
(or randomness) of the destinations contacted for a particular application, the
pattern of port usage, the evolving mix of protocol usage, and so on. A number
of security applications have identified particular features, derivable from packet
header fields, as useful for detecting specific attacks. For example, many IDS

S. Uhlig, K. Papagiannaki, and O. Bonaventure (Eds.): PAM 2007, LNCS 4427, pp. 186–196, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Profiling the End Host 187

systems will declare a machine compromised if the number of simultaneous TCP
connections exceeds a predefined threshold [2,1]. Yet other systems look for a
change in the dispersion on destination IP addresses to find anomalies [6].

All aforementioned work tends to define profiles within the bounds of their
intended use. In this work, we are trying to formalize the concept of profiling
transport layer information and identify desirable properties. We believe that a
profiling mechanism, focused on end-hosts, should meet the following goals.

– Goal 1: It should be able to identify dominant and persistent behaviors of
the end-system, capturing repeatable behaviors over time.

– Goal 2: It should be a compact enough representation, avoiding excess detail
that may correspond to ephemeral behavior. This is important in a network-
ing setting due to the use of ephemeral ports by certain applications.

– Goal 3: It should be stable over short-time scales avoiding transient variabil-
ity in the host behavior.

– Goal 4: It should evolve by adding new behaviors and removing stale ones.
– Goal 5: It should be able to capture historical information to illustrate typical

ranges of values for features.

Our main contribution is a novel approach to profile end-host systems based on
their transport-layer behavior. First, we propose the use of a graph-based struc-
ture which we call a graphlet, to capture the interactions among the transport-
layer protocols, the destination IP addresses and the port numbers. Note that
graphlets have two key properties: (a) they are extensible, since through an-
notations of the nodes or links one could achieve a lossless representation of
all flow information through a single graph, and (b) they provide intuitive and
interpretable information. The notion of graphlets was introduced in [5] for ap-
plication classification. Building on [5], we extend this original idea in a number
of nontrivial ways. Second, we design a two step method that is based on an un-
supervised online learning process. In the first step, we build and continuously
update activity graphlets that capture all the current flow activity. The second
step contains mechanisms to (a) compress the large activity graphlets to retain
only essential information, and (b) to evolve this latter summary in a way that
reflects changes over time. The output of this process is called a profile graphlet.

Using enterprise network traces, we find that user activity is successfully cap-
tured in our profiles. In particular, our profiles capture roughly 70-90% of all
user activity, yet are about 80-90% smaller in size relative to the uncompressed
activity graphlets. This result demonstrates that our profiles are efficient and
compact while still remaining highly descriptive. Our initial findings indicate
that profiles can vary greatly across users and this motivates the use of end-host
profiles for security, diagnosis and classification applications. One of our inter-
esting findings is that over short time scales (e.g., 15 minutes) the profiles evolve
slowly typically experiencing small changes, yet over longer periods of time (e.g.,
a month), the majority of the profile content may change. This indicates that
most parts of the profile are apt to change, and further underscores the need for
adaptivity.

188 T. Karagiannis et al.

2 Data Description

We collected packet header traces within a secure enterprise network environ-
ment. Using the CoMo monitoring tool [9], we capture all traffic on the access
link of our office building. Two traces were collected; one spans the entire month
of October 2005, and the other a two week period in November 2005. We monitor
the traffic of roughly 200 distinct internal IP addresses, that collectively repre-
sent user laptops and desktops, as well as network infrastructure equipment (e.g.,
NFS or DNS servers).

3 Methodology

3.1 Capturing Host Activity Via Graphs

A fundamental element of our profiling methodology is the special purpose
graph, called graphlet . The concept of graphlets was first introduced by the
BLINC methodology [5] to capture the distinct transport layer footprint of
different applications, termed as “application graphlets”. Application graphlets
were further used for the classification of the traffic observed at a traffic ag-
gregation point into applications. Our use of graphlets in this work is signifi-
cantly different from the original BLINC work. We extend the definition of a
graphlet, introduce graphlet annotations and manipulate the graphlet in differ-
ent ways (in terms of learning, updating, compacting, etc). First, the intended
goal and use of graphlets in our work is substantially different compared to
BLINC. BLINC’s goal was to identify application footprints in traffic streams
in a supervised manner according to the pre-defined application graphlets. On
the contrary, we study graphlets with the goal to profile hosts in an unsu-
pervised way, i.e., we learn (and update) an unknown user behavior on-line.
Second, as described below, we extend the graphlet definition to include addi-
tional elements. Third, we introduce ideas for summarizing and creating compact
graphlets.

A graphlet is a graph arranged in six columns corresponding to: (srcIP, proto-
col, dstIP, srcport, dstport, dstIP). Fig. 1(top left) presents an example graphlet
that was derived from one of our LAB hosts and plotted using the graphviz
tool [3]. The BLINC graphlets consisted only of the first 5 columns; the addi-
tional sixth column here is critical to our methodology.

Each graphlet node1 presents a distinct entity (e.g. port number 80) from the
set of possible entities of the corresponding column. The lines connecting nodes
imply that there exists at least one flow whose packets contain the specific nodes.
This way, each flow creates a directed graphlet path starting from the host IP
address on the left and traversing the appropriate entities in each column. Note
that we define a flow by the 5-tuple of the packet header, and the flow can consist
of one or more packets. Similarly, a graphlet path can correspond to a multitude

1 The term node indicates the components of a graphlet, while the term host indicates
a communicating device.

Profiling the End Host 189

Activity graphlet Profile graphlet

Significant-Node Set
Node 6 10.212.4.255 _80

In-Degree - 2 2

Out-Degree 4 2 2

proto dstIP sPort dPort dstIP proto dstIP sPort dPort dstIP

Fig. 1. Example of a host activity and profile graphlets and the significant node set

of flows with the same 5-tuple definition. The destination IP appears twice at
the third and sixth column in the graphlet. This redundancy is critical, since it
allows us to observe all pairwise interactions between the most information-heavy
fields of the 5-tuple: destination IP address (dstIP), the source port (srcport)
and destination port (dstport).

If many flows traverse a node, the node will most likely have a high degree. By
construction, all edges in a graphlet are between nodes of adjacent columns. If
we traverse a graphlet from left to right by following a path, we define a direction
in visiting the nodes. This way, we can define the in-degree (out-degree) of
a node as the number of edges on the left (right) side of the node. The in- and
out-degree of a dstIP, srcport, or dstport node abstracts its interaction with the
other two types of nodes. For example, the out-degree of a node representing
port 80, captures the dispersion of addresses visited using web applications.

Because we are building profiles for a single host, there is only one source IP
address and hence this field is not included in what we are terming the “heavy
information fields” of the 5-tuple. We point out that a graphlet is a directed
graph. When the host is the source, the directed edges flow from left to right in
our depictions. If the directed edges flow from right to left, then our host is the
recipient of incoming flows. Note that although conceptually each profile consists
of two directed graphs, in practice a single data structure can be designed to
capture all the needed information.

For example, Fig. 1 presents an “activity” graphlet which resulted by observ-
ing all the incoming and outgoing flows of a host during a specific time window.
The “profile” graphlet refers to our distilled and compact version of the activity
graphlet. (Activity and profile graphlets, along with significant node sets are
discussed in Sec. 3.3).

190 T. Karagiannis et al.

0 10 20 30 40 50
10

0

10
1

10
2

10
3

Average out-degree of the TCP node

#
 E

n
d

 h
o

s
ts

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Average out-degree of the "port 80" node

#
 E

n
d

 h
o

s
ts

Fig. 2. Histograms of the average out-degree of two different nodes (TCP and “port
80” node) in the client graphlets computed every 15 minutes. Significant variations in
the number of out-degrees across clients point towards client personalized profiles.

3.2 The Advantages of graphlet Profiling

We believe that graphlets are an interesting approach to end-host profiling for a
number of reasons. First, one could imagine keeping per host flow records in order
to compute statistics regarding its behavior. A database of flow records is an
enormous amount of information. Instead, our graphlet achieves a representation
of important information in a compact form limiting the redundancy. Second,
such flow records are not interpretable without further processing. However, the
paths, nodes and node properties in graphlets are easy to interpret.

We can further expand graphlets to annotate nodes with temporal informa-
tion. For example, we can create time series information for each node (e.g., the
time series of the out-degree). This is equivalent to annotating the nodes in the
graph and tracking the evolution of the weights. Similarly, we can attach weights
to links in the graph in order to track more typical features, such as the number
of packets or bytes for all flows transiting that path. Existing security solutions
use threshold based-techniques on metrics like the number of TCP connections
per destination port per time interval. Recent solutions examine the dispersion
of the 3 key fields [6]. All such techniques can be captured within the framework
of weight-annotated graphlets. The power of this profiling mechanism is that it
goes beyond these methods, since it also incorporates the graph relationships,
all in a single structure. We illustrate this here with three examples:

• The out-degree of the TCP node (or any protocol node) reveals the typical
number of TCP destination IPs per client. By observing how the out-degree
of the TCP node in the graphlet evolves over time, we learn about the typi-
cal range for the number of simultaneous destinations contacted through TCP
within a window of time (the time scale of the graphlet). For example, Fig. 2
(left) presents a histogram of the average out-degree of the TCP node for all our
client graphlets every 15 minutes. We observe a wide range of behavior.
• For applications with well-known port numbers, graphlets can reveal what is
the typical number of destination IPs contacted for each given application. For

Profiling the End Host 191

Method: Construct Profile
1. Upon arrival of each packet, update

activity graphlet if flow information
not already included.

2. Every t minutes
a). identify new significant activity,
according to summarization policy
as candidate to join profile graphlet.
b). Add new significant activity into
profile, if approved by delayed-accept
policy, using Algorithm 1.
c). Remove stale parts of profile
according to aging policy.

Fig. 3. Summary of Method

Algorithm 1: Populate Profile Graphlet
with Significant Nodes
Repeat until all significant nodes
processed

1. Rank all nodes in activity
graphlet according to their maximum
in-degree or out-degree:
max{indegree, outdegree}
2. Remove the highest degree node
and all its edges. Insert into
profile graphlet.

Fig. 4. Algorithm: inserting signifi-
cant nodes into profile

example, examining the out-degree of the graphlet node for destination “port
80” reveals the number of destinations typically contacted by an HTTP appli-
cation. Similarly Fig. 2 (right) presents a histogram of the average out-degree
of the “port-80” node for all our client graphlets computed every 15 minutes.
Again we see considerable variability across hosts.
• Scanning behavior can be easily seen from graphlets. For example, port scan-
ning would appear as an excessively large number of destination ports associated
with a single destination address. Similarly if a host initiates an address-space
scan for a specific port (worm-like behavior) this would appear as an excessively
large number of destination IPs associated with a single destination port.

3.3 Building Profiles

All the information obtained from monitoring a host’s communication traffic
could lead to an enormous graphlet (called the activity graphlet). Recall that,
as per our goals described in the introduction, our aim is to capture “typical”
or “persistent” behaviors in a compact way that avoids transient noise. We now
describe our methods for converting the activity graphlet into a profile graphlet
via policies for compression (i.e., summarization) and adaptivity.

Our method is depicted in Fig. 3. The policies used in this method were de-
signed as follows. The intuition behind our summarization policy comes from
observations on our trace data that activity graphlets do vary dramatically from
one host to another, and a summary metric such as number of nodes in the
graphlet is very volatile. Looking at activity graphlets across many hosts, time
intervals and traces, we did find one common characteristic; namely that they
feature a small number of high degree nodes (“knots” in the graphlet). These
nodes result from flows that share at least one graphlet node (e.g., distinct web
flows that share port 80). At the same time, our activity graphlets featured a
number of paths comprising only one-degree nodes (ignoring protocol nodes).

192 T. Karagiannis et al.

See for example the middle two paths in Fig. 1(top left). Typically, those corre-
sponded to ephemeral flows2.

Building on this insight, we define the set of significant nodes in an activity
graphlet to be those nodes with an in-degree or out-degree larger than 1. The only
nodes we retain in our graphlet profiles are the significant nodes. We populate our
graphlet profiles using the procedure outlined in Fig. 4. Fig. 1 gives an example
of an activity graphlet and the resulting profile graphlet that it generates. We
use the term significant set to refer to the group of significant nodes of a
graphlet. The profile graphlet consists of the union of all the flows that are
affiliated with the significant nodes. As such, the profile graphlet is a subset of
the initial activity graphlet. Thus, we could say that our profiling consists of two
components: (a) the significant set, and the (b) profile graphlet.

In order to evolve, our profiles need to: 1) remove information when it be-
comes stale, and 2) add new content when it becomes relevant. The time scale
of this adaptivity affects both the stability and meaningfulness (i.e., utility) of
the profile. If the profiles evolve too quickly, they will be less stable (nodes will
be added and removed very frequently); whereas if they evolve too slowly, they
will be less meaningful (miss new important nodes and contain stale ones). Let
t denote the update period of the profile graphlet. Updating the profile means
that the set of significant nodes at a time instance t is the union of the sets at
time t − 1 and t.

We employ a delayed-accept policy to control the addition of new nodes.
Significant nodes are not inserted in the graphlet profile unless they are active
for at least two consecutive intervals t. Such a mechanism is robust to ephemeral
nodes introduced by the reuse of port numbers across flows.

We make use of an aging policy to remove obsolete information. A significant
node is removed from a profile if it is inactive for some period of time. Our time-
out period N is measured in days. Inactivity refers to nodes that are currently
not significant but were in previous time intervals. Due to space constraints, we
do not illustrate the stability and utility tradeoffs we observed for various values
of t and N . In short, we found that using an update period t equal to 15 minutes,
and aging threshold N of one week achieved a good tradeoff between utility and
stability.

4 Properties of the End-System Profiles

Here we describe the properties that establish the robustness of significant nodes
as a means of profiling end-user activity. To this end, we examine the extent to
which our profiles meet the five goals mentioned in section 1.

Goal 1 - Capturing representative information: We first examine the iden-
tities of the nodes that populate the user profiles. Intuitively, the nodes should
depict the primary activities of each end-system and if possible also reflect its
functional role in the network (e.g., client vs. server).
2 Note that ephemeral flows refer to a whole path in the graphlet, while ephemeral

nodes only to the specific node.

Profiling the End Host 193

Table 1. Profile instances of various end-systems

Host activity significant node set
graphlet size in the profile

Client1 104 dst ports: 22 (SSH), 443 (HTTPS), 80 (HTTP), 2233 (VPN)
Client2 72 dst ports: 993 (IMAP), 137 (NETBIOS), 80 (HTTP), 995 (POP3)
Client3 259 dst ports: 80 (HTTP), 6881, 6882, 6884, 6346, 16881 (P2P)

NFS SERVER 31 src port: 2049 (NFS)
LDAP SERVER 309 src ports: 389 (LDAP), 139 (NETBIOS)

Table 1 presents five profile instances for three randomly picked clients and
two servers from our enterprise networks. We observe that all significant nodes in
the client profiles are destination ports reflecting well-known services accessed
by the clients. Note that client 3 appears to run the BitTorrent peer-to-peer
application and the set of significant nodes reflects common ports used by this
application. The significant nodes for the servers, however, reflect the ports where
the offered services reside.

Table 2. Most popular significant nodes

dstP = 80 dstP = 5499 dstP = 443 dstP = 2233 dstP = 53 dstP = 1863 dstP = 389 dstP = 22
WEB CHAT HTTPS VPN DNS MSN LDAP SSH

To examine the identities of our profiles in a broader setting, we looked at
the most popular significant nodes across all profiles. Table 2 presents the eight
most popular nodes which, similarly, represent services at well-known ports. This
initial data exploration indicates that our profiles are able to capture dominant
and meaningful end-system behavior and discriminate its functional role in the
network.

Note that while a number of significant nodes are common in host profiles,
these significant nodes can be annotated with a variety of information such as
their average out-degree to capture the user variability as shown in Fig. 2.

Goal 2 - Compact representation: To assess the breadth and compactness
of the profiles, we define two metrics. Compression is defined as the ratio of
the number of significant nodes over the total number of nodes in the activity
graphlet. Coverage is defined as the fraction of flows that the profile captures
compared to the total number of the flows generated by the host. (A flow is
defined here as a unique 5-tuple.) A good profile should achieve high coverage
and high compression because the significant nodes should: a) represent the
majority of the activity of the edge-host (high coverage), b) amount to only a
small number of the total nodes in the graphlet (high compression).

Fig. 5(left) shows that abstracting the graphlet to a set of significant nodes leads
to a compression greater than 80% compared to the activity graphlet. We also see
that the significant nodes often cover more than 90% of the flows sourced at the
host. Recall that by definition, “uncovered” flows correspond to those whose path
comprises only one-degree nodes in the graphlet. We thus conclude that our set of
significant nodes offers both high compression and coverage.

194 T. Karagiannis et al.

0 20 40 60 80 100
0

20

40

60

80

100

Compression

C
ov

er
ag

e
Hosts (15 minutes)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of change in the significant node set

P
[X

<
x
]

Fig. 5. LEFT: Coverage vs. compression for hourly graphlets (LAB trace). RIGHT:
Similarity across consecutive intervals for the significant node set. For approximately
50% of the intervals the significant node set remains the same across time.

Goal 3 - Stability: Recall that our profiles are updated every 15 minutes. We
now examine the amount and nature of changes occurring in the profile over
time. For each end host, we examined the difference in the set of significant
nodes from one time slot to the next. The difference is the ratio of the number
of nodes present in both intervals divided by the average number of significant
nodes in the two sets. In Fig. 5(right) we present the CDF of these ratios for all
hosts over all time slots.

We observe that roughly 50% of the time there is no change at all from one
time slot to the next. Also, less than 10% of the time does a node change by more
than 70%. We conclude that while there appears to be a reasonable amount of
stability from one 15 minute window to the next, every so often the profile can
experience a large change. These initial results hint that perhaps over shorter
time scales these profiles can remain stable, yet over longer time periods, profiles
can experience large amounts of change. This indicates that a notion of stability
should perhaps be tied to the amount of evolution occurring in user behavior.
This is a subject of our future research.

Goal 4 - Evolvability: Fig. 6(left) demonstrates the impact of the “delayed-
accept” and “aging” policies on the total number of significant nodes for all hosts
in the network. The upper line corresponds to the total number of significant nodes
across all hosts when only “aging” is used, while the bottom line also incorporates
the effect of “delayed-accept”. During the first week of profiling the number of sig-
nificant nodes shows a constant increase in both cases. This is the “learning” stage
of our approach and lasts approximately 1.5 weeks. While the effect of “delayed-
accept” is evident across time, “aging” is observed after the first week due to our
choice of “weekly” history. The sum of significant nodes appears not to vary sig-
nificantly after approximately 2 weeks. Note that while the time interval on the
x-axis spans a time period of a month, we only observe a few changes. These ini-
tial results indicate that our delayed-accept and aging policies do manage to filter
transient behavior while balancing the stability.

Profiling the End Host 195

1 2
0

50

100

150

200

O
u

tD
e
g

re
e

Host

Fig. 6. LEFT: Total number of significant nodes for all network hosts when we use
delayed-accept” and “aging”. RIGHT: Boxplot of the outdegree time-series for a com-
mon significant node for two host profiles.

Goal 5 - Capturing historical information: Recall from section 3 that each
significant node in the profile can be annotated with various time-series informa-
tion. Fig. 6(right) presents such an example in a box plot showing the out-degree
of a common significant node (web) across two hosts. Such time-series can be
further analyzed to provide insight regarding typical individual behavior (e.g.,
average number of TCP connections), a range of behavior (e.g., 90 percentile
points), and outliers (denoted with the points outside the wedges in the fig-
ure). We postulate that this sort of information could be important for anomaly
detection applications (benign or malicious).

5 Conclusions–Discussion

In this paper, we present a novel approach to profile end-host systems based on
their transport-layer behavior. We introduce the idea of using graphs to capture
flow information and inter-flow dependencies. We illustrate that all of a host’s
flow data can be greatly compressed into a compact representation, that captures
dominant user behavior. Initial results suggest that a user’s behavior can undergo
large changes over time, and this underscores the need for adaptive profiling.

We envision our profiling methodology being used in many different ways de-
pending on the intended goal. Examples include:
• For enterprise network management, to understand user behavior for resource
provisioning, load balancing, allowing for user clustering based on similar pro-
files, etc.
• Monitoring the profile graphlet in comparison to the activity graphlet could
be useful for anomaly detection. Abrupt changes in either the normal range of
behavior, or outlier events, could signal an anomaly, whether benign or malicious.
• Monitoring the patterns in the out-degrees of protocol-nodes, or other signif-
icant nodes, could reveal scanning attempts.

196 T. Karagiannis et al.

References

1. Intrusion Detection Systems (IDS) Part 2 - Classification; methods; tech-
niques. In http://www.windowsecurity.com/articles/IDS-Part2-Classification-
methods-techniques.html, 2004.

2. Arbor Networks. http://www.arbor.net/.
3. Graphviz. http://www.graphviz.org/.
4. J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service

attacks: Characterization and implications for cdns and web sites. In Proceedings
of the 11th International World Wide Web Conference, May 2002.

5. T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multi-level Traffic
Classification in the Dark. In ACM SIGCOMM, August 2005.

6. A. Lakhina, M. Crovella, and Christophe Diot. Mining Anomalies Using Traffic
Feature Distributions. In Proc. of ACM SIGCOMM, August 2005.

7. P. McDaniel, S. Sen, O. Spatscheck, J. Van der Merwe, B. Aiello, and C. Kalmanek.
Enterprise Security: A Community of Interest Based Approach. In Proc. of Network
and Distributed System Security (NDSS), Feburary 2006.

8. V. Padmanabhan, S. Ramabhadran, and J. Padhye. NetProfiler: Wide-Area Net-
works Using Peer Cooperation. In Proceedings of the Fourth International Work-
shop on Peer-to-Peer Systems (IPTPS), February 2005.

9. The CoMo Project. http://como.intel-research.net/.
10. G. Theocharous, S. Mannor, N. Shah, B. Kveton, S. Siddiqi, and C.-H. Yu. Machine

Learning for Adaptive Power Management, 2006. Intel Technology Journal.
11. Mengjun Xie, Keywan Tabatabai, and Haining Wang. Identifying Low-Profile Web

Server’s IP Fingerprint. In IEEE QEST, 2006.
12. K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling Internet Backbone Traffic:

Behavior Models and Applications. In ACM Sigcomm, August 2005.

	Introduction
	Data Description
	Methodology
	Capturing Host Activity Via Graphs
	The Advantages of graphlet Profiling
	Building Profiles

	Properties of the End-System Profiles
	Conclusions--Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

