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Abstract—Smartphones are envisioned to provide promising
applications and services. At the same time, smartphones are also
increasingly becoming the target of malware. Many emerging
malware can utilize the proximity of devices to propagate in
a distributed manner, thus remaining unobserved and making
detections substantially more challenging. Different from existing
malware coping schemes, which are either totally centralized or
purely distributed, we propose a Community-based Proximity
Malware Coping scheme, CPMC. CPMC utilizes the social
community structure, which reflects a stable and controllable
granularity of security, in smartphone-based mobile networks.
The CPMC scheme integrates short-term coping components,
which deal with individual malware, and long-term evaluation
components, which offer vulnerability evaluation towards indi-
vidual nodes. A closeness-oriented delegation forwarding scheme
combined with a community level quarantine method is proposed
as the short-term coping components. These components contain
a proximity malware by quickly propagating the signature of a
detected malware into all communities while avoiding unneces-
sary redundancy. The long-term components offer vulnerability
evaluation towards neighbors, based on the observed infection
history, to help users make comprehensive communication de-
cisions. Extensive real- and synthetic-trace driven simulation
results are presented to to evaluate the effectiveness of CPMC.

Index Terms—Granularity of security, mobile networks, prox-
imity malware, signature, social network analysis, vulnerability.

I. INTRODUCTION

Malware [1] has become the major impediment in the de-
velopment of networks. Any new type of network that provide
promising applications always becomes the main target of
new malware. Among the recent viruses and worms, those
propagating in a distributed manner and without central control
are the hardest to defend against. In the last year, the rapid
outbreak of the Confilcker worm [2], which propagates updates
in a distributed peer-to-peer way, clearly indicates the difficulty
and importance of coping with distributed malware.

Mobile devices have increasingly penetrated work and fam-
ily life. With the emergence of powerful new devices, such as
the Blackberry, iPhone, and Palm Treo, the smartphone-based
mobile network is considered to be a promising branch for
the next generation networks. Many revolutionary applications,
such as opportunistic podcasting [3], have been proposed for
this type of network. The distributed nature of these networks
gives the malware the opportunity to propagate through direct
pair-wise communications, i.e. bluetooth or Wi-Fi, between
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Fig. 1. Proximity malware propagation. Malware can propagate through
bluetooth connections when two nodes are in geographical proximity.

nodes in geographical proximity. A typical proximity mal-
ware propagation process is shown in Fig. 1. Several newly
reported families of worms, including Commwarrior, Cabir,
and Lasco [4], belong to the proximity malware category.
These worms can easily persist in the network and remain
undetected because of the decentralized infection and the
dynamic topology. Moreover, since heterogeneous devices
exist in the networks, only a portion of the smartphones will
have malware detection capabilities. The threats of proximity
malware are immediate and rapidly growing due to these
networks’ growing popularity and convenience.

Most of the existing malware coping schemes, such as
the approaches in response to the MMS/SMS malware [5],
[6], utilize centralized methods implemented in the provider
network. However, these centralized defense methods are only
effective towards malware propagated through the centralized
infrastructure. Defending against proximity malware, however,
poses very different challenges, since the absence of the
provider network and the highly dynamic topology blurs
the possible line of defense. In [7], Zyba et al. present
a purely distributed coping scheme, which allows nodes to
detect malware and flood the signature in the network to
eliminate the proximity malware. This kind of method also
shows limitations: each node’s own view is too limited, and
the signature flooding is too costly. Since both the centralized
and purely distributed schemes need to be improved, we intend
to find a novel and suitable granularity in between to facilitate
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the malware coping task.
Mobile smartphones are personal in nature, i.e. they stay

and travel together with one person most of the time, and
thus enter various social contexts of that person. Therefore,
nodes’ movements in these networks are usually repetitive
to a certain extent, and bear the social network properties
of their owners. We exploit these social network properties
in proposing the coping scheme. In these networks, metrics
based on the contact history are usually helpful in depicting
the level of closeness among nodes. Ina addition, the social
grouping structure [8], [9], [10] has been observed in multiple
sets of real Smartphone-based mobile network traces, such as
Haggle [11] and Reality Mining [12]. Although the instant
topology of the mobile networks is transient, the grouping
structure tends to be stable over time.

These observations provide us the ground to offer malware
coping strategies at a new granularity in the mobile networks.
Based on the concept of community, which is a clique-based
social structure that represents the controllable granularity, we
propose the Community-based Proximity Malware Coping
scheme (CMPC for short). It contains two kinds of com-
ponents, short-term coping and long-term evaluation compo-
nents, both aiming to fully utilize the structural advantages.

The proximity malware usually adopts a flooding scheme to
propagate. To beat a particular malware, the signature of the
malware, which will intrigue the malware to be removed on the
received nodes, needs to be propagated fast and efficiently. In
the short-term component, we combine the efficient signature
propagation with a community quarantine. The signature will
only be further propagated by nodes that have some social
properties to be the better delegates to propagate it in more
communities. When a signature reaches a community, all
nodes in this communication will reject communications from
the original community for a short period of time. Besides the
short-term components to coping with one particular type of
proximity malware, long-term evaluation components are pro-
posed to measure the vulnerability of each node. Since nodes
in the mobile network tend to have different security settings
and policies, as well as distinct neighbors, they will appear to
be different in vulnerability towards a new type of proximity
malware. We first develop a way for nodes to evaluate the
vulnerability of their direct neighbors. Because each node’s
own view is very limited, we propose a consensus scheme
that utilizes the information collected from a community to
calculate the vulnerability value.

The contributions of this paper are three-fold. First, we
exploit a new granularity of security, which is based on the
stable neighboring relationships and community structure, to
guide the design of the malware coping scheme. Second,
instead of the flooding mechanism, we develop an efficient dis-
tributed signature propagation process, and combine it with the
community quarantine process to make the signature propagate
faster than the malware. Third, we develop the vulnerability
evaluation scheme to link a node’s past history with future
predictions, and enlarge each node’s view of vulnerability
evaluation from community consensus.
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Fig. 2. Relationship abstraction. The bar graph represents the bluetooth
contact history between two smartphones. Notions, including local neighbors,
nodding acquaintances, and strangers, intuitively depict the corresponding
closeness.

II. PRELIMINARY

We focus on using the short range communication capability
of the smartphones to form the mobile networks. We assume
that a store-and-forward style scheme, which belongs to the
main stream forwarding schemes [13], [14] in this kind of
challenging environment, is adopted to deliver packets via
intermittently connected nodes.

A. Relationship abstraction

In mobile networks, each node can record the encounter
time and duration whenever it meets another node. Nodes’
original knowledge, which includes both temporal and spacial
information, can be abstracted into a single closeness metric
cij ∈ [0, 1] for nodes i and j. Several examples of closeness
abstractions are shown in Fig. 2.

To measure cij , the average separation period D̄ij is mea-
sured during a training time window before the abstraction
starts. D̄ij is defined as the total separation time between i
and j divided by the number of separations during the training
window. For example, the D̄ij of the first case in Fig. 2 is 1
unit. D̄ij is a comprehensive metric to start the time-space
abstraction since it reflects both the frequency and length of
the encounters. Smaller D̄ij indicates shorter communication
latency between i and j. We apply the Gaussian similarity
function [15] to normalize D̄ij as follows and denote the
resulting metric as closeness cij :

cij = exp(− (D̄ij)2

2σ2
). (1)

Here, σ is a scaling parameter [15] for the separation period.

B. Social group identification

Many recent studies [16], [17], [18] based on real mobile
traces reveal that the mobile network shows certain social
network properties. They apply social network analysis in
mobile networks without [16] or with communities [8]. In [8],
Hui et al. analyze k-clique community structure from mobility
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Fig. 3. Community formation. Dotted lines enclosed the formed community.

traces and use them for forwarding algorithms. In [17], [18],
communities are organized based on location preferences of
nodes. In [9], [10], we propose to use the closeness-based
community to reflect the locality in mobile networks. The
closeness locality concept is suitable for the definition of
controllable granularity for security.

In graph theory, a clique is a subgraph in which every vertex
is connected to every other vertex in the graph. We extend
the concept in the CMPC scheme and define a community in
the mobile networks as follows: For any pair of nodes in the
community, a link exists such that the closeness of the link is
larger than the threshold value T . As a criterion to determine
whether the relationship between two nodes is strong enough
to be considered as in the same group, we adopt an adjustable
threshold T . If cij > T , we consider nodes i and j potentially
members of the same community. One example with T = 0.6
is shown in Fig. 3. The non-overlapped community structure
can be constructed in a distributed manner using a simplified
clique formation algorithm (one example is proposed in our
previous work [9]). Each node only needs two hops of local
information in the community construction.

III. CPMC MAIN SCHEME

The CPMC scheme integrates both the short-term and long-
term components, on top of the social community, to cope with
the proximity malware comprehensively.

The short-term coping components, shown in Fig. 4 on
the left, including signature propagation and community quar-
antine, deal with each individual proximity malware. The
short-term coping components classify each round of com-
munication as normal (black arrows in Fig. 4) or malware
infected (red arrows in Fig. 4). If malware infected, community
quarantine starts and a signature (blue arrow on the top of
Fig. 4) will be generated and propagated. The short-term
coping components also decide whether to accept or reject
one round of communication, based on the feedback of the
long-term evaluation components (black arrow in the middle
of Fig. 4), when in proximity of a particular node.

The long-term evaluation components, shown in Fig. 4 on
the right, provide nodes with comprehensive information based
on others’ history security performances. They also provide
the incentive for nodes to enforce strong security policy. We
introduce the concept of vulnerability, and evaluate a node’s
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Fig. 4. CPMC scheme overview.

vulnerability based on the results gathered from the short-
term components, which are the α and β in Fig. 4. We also
offer a method to draw consensus from the opinions originated
from nodes in the same community. The community consensus
expends an individual node’s view and improves the evidence
sufficiency. The vulnerability consensus from the long-term
components will be considered as the feedback to the short-
term components (black arrow in the middle of Fig. 4), and
guide the future decisions made by the short-term components.

The short-term and long-term components are closely com-
bined to utilize the designed granularity of security reflected by
the community. Both types of components are constructed on
top of the relationship-based community structure abstracted
from community history, as shown in the bottom of Fig. 4.

A. Short-term coping components

The short-term coping components deal with each individual
type of proximity malware. A node in the mobile networks
decides whether to reject a communication request based on
the result of the short-term coping component.

Signature propagation component. This component is de-
signed to quickly propagate the signature to all the communi-
ties without the cost of flooding. A signature will be delegated
to nodes that can quickly propagate it to more communities,
i.e. if a current delegate i of a signature encounters node j,
and j is closer, in terms of social relationship, to one or more
communities than i and the nodes that i met before, i should
forward the signature to j and allow j to further propagate the
signature.

A malware signature consists of the summarized malicious
patterns in the malware, which can be included in an alert or
a patch. If a node receives the signature before it is infected
by a proximity malware, it will become immune towards
the specific malware. However, the heterogeneous equipments
and distributed environment in the smartphone-based mobile
networks decide that only a portion of the devices will have the
capability to detect and generate the signature of a proximity
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Algorithm 1 Signature delegation forwarding

1: Node i encounters node j;
2: for each signature in i’s buffer do
3: Examine {F1, . . . FX , . . . FY };
4: if ∃ X that satisfies cj(X) > FX then
5: if node j never receives this signature before then
6: Node i duplicates and delegates the signature to j;
7: end if
8: for each community Y do
9: Set FY = max{cj(Y ), original FY } on nodes i and j;

10: end for
11: end if
12: end for

malware. The signature will be generated only when a device
i detects that an infected device j in i’s proximity is trying to
propagate the malware.

Inspired by [19], we propose the efficient community-
based delegation scheme to propagate the signature after a
signature has been generated on a node. In our community-
based signature forwarding process, each copy of a signature
maintains a set of forwarding thresholds {F1, . . . FX , . . . FY }
which is initialized as the quality of its original node, based
on the closeness of the node to communities {1, . . . X, . . . Y }.
For each community X , node i will use the value ci(X) =
maxj∈X{cij} to represent its closeness to the community. This
value represents the node’s best possible relationship with the
community. For the community that node i belongs to, both
ci(X) and FX will be set to 1. If node i has no previous
contact with a community X , ci(X) will be set to 0.

Whenever node i meets node j, node i delegates the
signature to j if and only if the forwarding quality of node j
towards one or more communities X exceeds the message’s
threshold FX , i.e. ∃ community X , where cj(X) > FX on
i. Here, delegating means that node i will forward a copy of
the signature to j and allow j to further propagate the copy.
After that, the {F1, . . . FX , . . . FY } of both copies in i and
j are set to FX = max{cj(X), original FX}. In the case
that j’s quality is better than the i’s copy’s threshold F but j
already has the signature, the signature is not forwarded, but
the F values of both copies on i and j will still be set to
FX = max{i’s original FX , j’s original FX}.

The basic idea of this decision is that node i needs to check
whether a potential forwarder j has better forwarding quality
than node i, and all the delegates that node i met before. Node
i will avoid delegating the signature to node j without a better
quality. However, in this case, delegate i will still send the
signature to j if j does not have a copy already, but j should
not further forward the signature. The idea of the signature
efficient propagation can be guaranteed through Algorithm 1.

Community quarantine component. This component ex-
tends the community concept in biological epidemiology and
quarantines a community when a signature from it is received.

Quarantine is defined as the voluntary or compulsory isola-
tion, typically to contain the spread of something dangerous.
In existing proximity malware coping schemes [7], [20], when

Algorithm 2 Community quarantine

1: Node i encounters node j that is in another community;
2: if Node i receives a new signature from node j then
3: Node i starts timer Qt and rejects communication (except

signature) with nodes in X(j);
4: Node i propagates a quarantine notice, which includes current

Qt, to nodes in X(i);
5: end if

a node is found to be infected, it can immediately be isolated
(quarantined) by the neighbors that detect the suspicious
behavior. However, this node-oriented isolation is not sufficient
in the smartphone-based mobile networks. Since the proximity
malware is detected in a distributed manner, the node-oriented
quarantine won’t stop the malware from propagating to neigh-
bors that cannot detect it. The key problem is deciding an
appropriate scope for the quarantine. Since the community
is a good reflection of locality in smartphone-based mobile
networks, it is a natural candidate for the scope.

A community will enclose nodes that have close relation-
ships, i.e. encounter more frequently or for longer durations.
When one node is infected by a proximity malware, these close
neighbors also have a larger chance to get contaminated. Al-
gorithm 2 reflects our thoughts on the community quarantine.

In Algorithm 2, X(i) represents the community X that node
i belongs to. In this way, the signature propagation will further
catch up with a malware’s fast infection speed and constrain
its propagation. To avoid the high cost of false alarms and
interruptions of normal communication, our dynamic scheme
will always lift after the timer Qt expires.

B. Long-term evaluation components

The long-term evaluation components allow nodes to eval-
uate our nodes’ vulnerability based on the security history,
thus providing nodes with more information about others’
history security performances as well as the incentive for
nodes to enforce a strong security policy. The security history
is collected from the short-term coping components. The
results will guide the nodes in making future communication
decisions.

Vulnerability evaluation component. This component aims
to offer a rational way for a node i to link its observed
security history towards node j with i’s prediction of j’s future
behavior.

Vulnerability is originally defined as the susceptibility to
physical or emotional injury or attack. In the smartphone-based
mobile networks, we use vulnerability to refer to a node’s
state of being susceptible to proximity malware. The reasons
for vulnerability of a node in the smartphone-based mobile
networks include loose security policy, high risk communica-
tions, and sensitive stored information. We aim to quantify the
vulnerability based on nodes’ security histories.

For each round of communication between two nodes i and
j, a result of whether a proximity malware is involved can be
determined by the short-term coping components. Therefore,
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a node i can accumulate its observation results towards node
j according to the feedback of the short-term components. In
our system, we use α to represent the total number of observed
normal communications, and β to represent the total number
of observed infections from known proximity malware. When
there is no observation, the initial value of both α and β is 1.

We use Bayesian inference to reason from observation
results to the vulnerability metric. Bayesian inference is statis-
tical inference in which evidence or observations are used to
update or to newly infer the probability that a hypothesis may
be true. According to Bayesian inference, the vulnerability
metric can be quantified using the portion of evidence that
supports the claim that a node is vulnerable. Therefore, node
i will calculate node j’s vulnerability metric v as:

v =
β

(α + β)
. (2)

The evaluation is limited by i’s own observation towards
node j. The v metric gives nodes the hint about other nodes’
vulnerability. However, there is another dimension of eval-
uation that should be included, which is node i’s certainty
towards its prediction. Imagine the following two cases: one is
that node i observes that node j has been infected by proximity
malware for 50 times out of the past 100 interactions, and
another case is 1 observed infection in the only 2 interactions.
The resulting v metric will be the same. However, the certainty,
i.e. evidence sufficiency, in these two cases are quite different.
Therefore, we present our definition of uncertainty u to reflect
the difference in this dimension of evaluation:

u =
4 · min{α, β}

(α + β)2
. (3)

Here, Equation 3 is just one of the possible definitions for u.
When α or β dominates, the u value will be low, which reflects
the factor that the result of the next communication will be
more predictable. When (α + β) is larger, the u value will
also be low, which reflects the situation with more sufficient
evidence. When there is no evidence and α = β = 1, u should
be 1, which represents the maximal uncertainty,

The vulnerability evaluation result (v, u) will guide the
short-term coping components in making more comprehensive
communication decisions. To communicate with nodes that
are highly vulnerable, a node i may use more caution and
sometimes directly reject to establish a connection to avoid the
risk. The node also has strong incentive to enforce a strong
security policy, since being highly vulnerable will make it
unwelcome in future communication.

Community consensus component. The vulnerability eval-
uation based on each node’s own information is too limited.
With this component, nodes in the same community can draw
consensus on vulnerability towards nodes in the community
or nodes with direct contact to the community.

Using the vulnerability evaluation component, each node
will form its own view (v, u) on its social neighbors’ vulner-
ability. In order to expand the view, nodes need to exchange
opinions and form consensus. However, a global consensus

on nodes’ vulnerability evaluations is both costly and unnec-
essary. Our consensus component is built on the community
level, which allows nodes in the same community to share
information. Since the community is constructed to reflect
locality, nodes can easily verify each others’ claims, and form
views towards similar targets.

Each node will collect 2 hops of information before starting
the calculation. More specifically, each node will evaluate
all of its social neighbors’ (v, u) and c value, and send the
information to all of its neighbors in the same community.
After the information has been exchanged and collected in the
community, each node will follow the following two phases
to calculate the group consensus.

In the first phase, each node i calculates a consensus
vulnerability value towards a node j according to the opinions
of all the nodes in the same community as i. Here, j could be
a node in the same community as i, or j could be a node that is
the social neighbor of some nodes from the same community
as i. The vulnerability value of j is calculated as:

v(0)
j =

(1 − ukj)∑
k∈X,k "=j(1 − ukj)

· vkj , (4)

where k represents the node in the same community X as node
i. (vkj , ukj) represents node k’s initial view towards node j.
In this phase, the consensus vulnerability value v(0)

j towards a
node j is the weighted sum of the direct views from all nodes
in the same community as node i. The weight is decided by
the node k’s certainty towards the vulnerability evaluation.
An opinion with larger certainty will gain more weight in the
calculation.

After the first phase, we will have a vector (−→v (0))T =
{1, . . . , v(0)

i , . . . , v(0)
j }, which is the initial consensus view.

However, this vector has not included the vulnerability propa-
gation effect. The following are three network related proper-
ties that should be taken into consideration in the vulnerability
evaluation.

Property 1: If a node is very vulnerable, its close neighbors
also have a large chance to be infected.

Property 2: If a node has two neighbors and one is closer
than the other, then it will be more dangerous if the closer one
is more vulnerable.

Property 3: A popular node tends to be more vulnerable
than a lonely node, if their security policies are the same, and
the lonely node’s neighbors are the subset of the popular node.

To reflect the vulnerability propagation, we integrate close-
ness and consider the vulnerability propagation effect as
follows:

v(1)
j =

1∑
l∈N(j) clj

· (v(0)
j +

∑

k∈N(j)

ckj · v(0)
k ), (5)

Here, N(j) represents j’s social neighborhood including node
j. v(1)

j not only includes the vulnerability from node j’s
own policy, which is reflected by v(0)

j , but also considers the
vulnerability propagated from j’s neighbors in N(j). For a
node k ∈ N(j), the vulnerability that k propagates to j is
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Fig. 5. The synthetic mobility traces are generated based on information
collected from a university.

reflected by ckj ·v(0)
k . If k and j are close neighbors, this item

will be larger. If k is more vulnerable, this item will also be
larger. Therefore, this equation complies with our observation
reflected in Properties 1 ∼ 3. The factor 1∑

l∈N(j) clj
is used to

normalize v(1)
j . We can define cjj = 1 and ckj = 0 when

k &∈ N(j). Then the coefficient for each item ckj∑
l∈N(j) clj

reflects node k’s influence in j’s vulnerability. We can define
C as the matrix [ cij∑

l∈N(i) cli
], and then Equation 5 can also be

expressed in the matrix form:

−→v (1) = C · −→v (0)
, (6)

After j’s vulnerability has been updated, the propagation
function should be updated as well. v(2)

j = 1∑
l∈N(j) clj

·(v(1)
j +

∑
k∈N(j) ckj · v(1)

k ). We can continue in this manner, and

calculate −→v = (C)n · −→v (0). If the community size is n,
node i will get the aggregated views of all nodes in the same
community as i, after n rounds of iterations.

However, if the community size n is large, the compu-
tational cost will be high. Fortunately, when the closeness
matrix C is irreducible and periodic, which is generally true
for the cases of the communities, the vulnerability vector
−→v will converge to the same vector, i.e. the left principal
eigenvector of C multiple with −→v (0), for every node i in
the same community. Therefore, each node should repeat
−→v (r+1) = C ·−→v (r), until r = n or ||−→v (r+1)−−→v (r)|| < ε. The
final vector −→v will be treated as the community consensus on
the vulnerability of each node in the community’s view.

With these vulnerability values, a node can make compre-
hensive decisions. The security policy of the reactions on these
values should be tailored according to the needs of a specific
application. We offer one example in the simulations, where
the communication request will be rejected and the quarantine
time will be doubled when a node’s v value is larger than 0.7.

IV. SIMULATION

In our simulations, we compare the effectiveness of our
scheme with a distributed local detection based coping scheme

TABLE I
Characteristics of three mobility datasets

Dataset Haggle Reality Synthetic
Device iMotes Phone N/A

Network type Bluetooth Bluetooth N/A
Duration (days) 3 246 10

Number of nodes 41 97 200
Number of contacts 22, 459 54, 667 Vary

(Distributed for short), and a proximity signature dissemina-
tion based coping scheme [7] (Proximity for short). In the
Distributed scheme, each node makes decisions based on its
own information, and it will decline communications with a
neighbor if that neighbor is detected as the infected node. In
the Proximity scheme [7], when a node detects a malware, it
will generate the signature of this malware and propagate it
to all the other nodes that come into its proximity.

A. Simulation setup

We primarily focus on two parameters: 1) Malware infection
Ratio: for each specific malware, the infection ratio is reflected
in the proportion of nodes infected by the malware; and
2) Alert overhead: the alert contains the signature, and the
overhead is defined as the average number of alerts forwarded
in the mobile network for each malware.

Mobility and contact traces. We ran trace-driven simulations
with two different datasets: Haggle project [11] and MIT
Reality Mining [12]. In both datasets, bluetooth contacts were
logged and provided. Each contact recorded in the datasets
includes the start time, end time, and IDs of the nodes in
contact. For each round of simulation, a portion (default 30%)
of the dataset was used as the contact history. The closeness
associated with each neighboring relationship was constructed
based on the contact history. The malware was then introduced
and combined with the remaining portion to evaluate the
effectiveness of the malware coping schemes.

We also adopted a community mobility model extended
from [18] and generated synthetic traces based on information
collected from the Florida Atlantic University (FAU). The
collected information included a map of buildings as shown
in Fig. 5(a), and the enrollment information of 250 students
from four departments. The trace of a node, which represents
a smartphone carried by a student, was generated according
to a Markov chain, and an example chain is illustrated in
Fig. 5(b). The states and probabilities were determined by the
students’ class schedules and enrollment information. If two
nodes were in the same building at the same time, they had a
probability (default 0.6) to setup a bluetooth connection. The
contact length follows a power-law distribution.

Malware propagation and nodes’ policy. We simulated the
malware similar to the Cabir or CommWarrior (bluetooth
part) [4]. For all these bluetooth-oriented worms, the malware
first scans the proximity of the infected node and tries to
setup a connection and propagate whenever possible. However,
based on the receiver’s security policy and the malware’s
quality of concealment, the infection succeeds only with a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

In
fe

ct
ed

 r
at

io

Time(hours)

No Coping
Distributed

Proximity
CPMC

(a) Haggle

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

In
fe

ct
ed

 r
at

io

Time(hours)

No Coping
Distributed

Proximity
CPMC

(b) Reality

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

In
fe

ct
ed

 r
at

io

Time(hours)

No Coping
Distributed

Proximity
CPMC

(c) Synthetic

Fig. 6. Performance comparison on malware infection ratio.
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Fig. 7. Performance comparison on total number of alert forwards.

certain probability. For each simulation, nodes were uniformly
selected to be the origin of a proximity malware (seed), and
the number of initial devices infected was one adjustable pa-
rameter (default: 1). The proximity malwares were generated
by a Poisson process.

Each node was associated with an actual vulnerability factor
that complies with the uniform distribution on interval (0, 1]. A
node with a smaller vulnerability value indicates the tightened
security policy. Each category of malware was also associated
with a concealment factor that complies with the uniform
distribution on interval (0, 1]. When an infected node meets a
susceptible node, the susceptible node becomes infected with
a probability equal to its vulnerability factor multiplied with
the malware’s concealment factor.

Our model is different from traditional epidemic SIR mod-
els [21]. First, SIR models are homogeneous, in the sense
that an infected node is equally likely to infect any other
susceptible nodes. We simulate nodes with different security
policies as well as heterogeneous proximity malware in our
model, which is the usual case in smartphone-based mobile
networks. Second, our simulation is carried on top of realistic
network topology abstracted from real and synthetic traces.

Each node knows only its own contact history before the
community is formed. Each simulation was repeated 30 times
with different random seeds for statistical confidence. The
default threshold for forming communities is T = 0.5.

B. Simulation results

We first examine the effectiveness (i.e. malware infection
ratio) and the cost (i.e. number of alert forwards) of the
three schemes in three very different mobility scenarios in

Figs. 6 and 7. The Reality dataset and Haggle dataset show
two extreme cases in mobile networks. Haggle has extremely
dense contact distribution, while Reality has extremely sparse
contact distribution. We adjust key parameters of the mobile
networks in the Synthetic dataset to investigate the coping
scheme in more different scenarios.

The malware infection rates under different coping schemes
are compared in Fig. 6 with accumulated simulation time.
The results show that our CPMC scheme successfully controls
the spreading of the proximity malware in the mobile net-
work. The CPMC scheme also shows a steady improvement
(5% ∼ 10%) in terms of malware infection ratio over the
proximity signature dissemination based coping scheme, since
it combines the underlining community structure with a delib-
erated alert forwarding and quarantine plan. This improvement
is significant, since the proximity signature dissemination
scheme floods the signatures in the network in order to control
the spreading of the proximity malware, which incurs huge
alert forwarding costs as shown in Fig. 7.

Although the Distributed scheme incurs no alert forwarding
cost, as shown in Fig. 7, it also loses the opportunity to
exchange the signatures in the mobile networks. That leads
to its poor performance illustrated in Fig. 6. This intuitive
method only deters the propagation of proximity malware. The
proximity signature dissemination scheme is more effective,
but the alert flooding will become a heavy burden. As shown
in Fig. 7, it may produce 3 ∼ 6 times more alerts forwardings
compared to the CPMC scheme. With the help of long-term
components, the CPMC scheme can reduce the malware even
more effectively than the flooding-based proximity signature
dissemination scheme. According to Fig. 6, the differences
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Fig. 8. Malware infection ratio with different a) number of initially infected
nodes, b) total number of nodes in Synthetic trace.

are larger especially when the simulation time is between 30
to 72 hours. This is because many nodes have accumulated
some evidence to accurately evaluate others’ vulnerability.
Combining the results in Fig. 7 with the steady improvement in
Fig. 6, CPMC outperforms other existing proximity malware
coping schemes in both effectiveness and cost efficiency.

To investigate the performances of the malware coping
schemes in more cases, we vary two key factors in the
synthetic trace: the number of initially infected nodes in
Fig. 8(a), and the number of students (nodes) in Fig. 8(b). The
differences in the number of students (nodes) create different
densities of contact distribution.

Fig. 8(a) presents the difference of the malware infection
ratio given a different initial number of seeds. In the original
SIR model analysis, the number of initial seeds is considered
as one key factor that may decide whether a malware will
prevail in the network. However, according to Fig. 8(a), despite
the difference in the peak of the malware infection ratio, our
CPMC scheme always achieves a tendency to exterminate
the malware given enough time. This further proves the
effectiveness of the CPMC scheme.

Fig. 8(b) illustrates that the peak of the proximity malware
infection ratio depends on the contact density distribution.
In a sparser mobile network, such as the case of 50 nodes
in Fig. 8(b), the long-term component needs more time to
accumulate evidence and provides feedback to the short-term
component. In a dense mobile network, the community will
be larger and both the short-term and long-term components
need less time to react to the proximity malware.

To illustrate the importance of integrating long-term compo-
nents, we turn the long-term components on and off and com-
pare the performance in Fig. 9(a). At the beginning, the two
curves are very close to each other, which is because the long-
term components have not accumulated enough evidences
and the high uncertainty makes the vulnerability evaluation
less instructive. But after 30 hours, the tendency of these
two curves divides. Without the long-term component, since
new proximity malware continue to occur in the network, the
proximity malware persist in the network. The curve for the
case with long-term components shows another tendency, since
the vulnerability evaluation approaches the actual vulnerability
of the nodes. High risk nodes will be treated with more caution
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Fig. 9. Performance comparison a) with and without long-term component,
b) with different community size in Synthetic trace.

in the communications. So, by combining the long-term and
short-term components, the coping scheme can achieve a better
control over the proximity malware.

Fig. 9(b) indicates the effectiveness of community-based
consensus. The first curve shows the case in which each node
conducts vulnerability evaluation without exchanging opinions
with other nodes in the community. Compared to the second
and third curves, the CPMC scheme without forming the
community consensus is less effective, since the information
that each node has is very limited. Although the difference
in the malware infection ratio is around 5%, the difference
is still significant if we consider the overall improvement
of the long-term components in Fig. 9(a). T = 0.5 curve
represents the case with a larger community but loosely intra-
connected communities, while T = 0.7 curve represents the
case with a smaller community with stronger intra-connection.
In our simulation, the T = 0.5 case appears to be better.
However, we infer that the optimal community size for the
vulnerability evaluation depends on the distribution of contacts
in the smartphone-based mobile networks.

Simulation results confirm that, compared with existing
proximity malware coping schemes, CPMC has a better per-
formance in controlling the malware infection ratio and a
low cost. The results under the different settings of the real
and synthetic traces prove the superiority of CPMC, which
deliberately utilizes the community structure, a controllable
granularity of security, in the mobile networks. It also reduces
the alert forwarding overhead.

V. RELATED WORK

Proximity malware. With the inherent convenience and in-
creasing computation and communication power, smartphones
and other mobile devices have become natural focus of future
network applications. At the same time, the smartphone-based
mobile networks will also become the focus of malware.
A number of studies have demonstrated the severe threat
of proximity malware propagation through Bluetooth. Su et
al. gather Bluetooth scanner traces and use simulation to
demonstrate that one effective way for malware to propagate
is via Bluetooth [22]. Yan et al. develop a detailed Bluetooth
worm model [23]. Bose and Shin show that a worm that uses
both SMS/MMS and Bluetooth can propagate faster than by
messaging alone [5].
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Packet forwarding in mobile networks. In mobile net-
works, one cost-efficient way to route packets is via short-
range communication capabilities of intermittently connected
smartphones [13], [14]. The delegation forwarding [19], [24]
is one of these routing schemes. In [19], each message
copy maintains a forwarding threshold which is initialized as
the quality of its source node towards a certain destination,
and then updated with new delegate’s quality. Forwarding to
intermediate nodes with worse quality will be avoided. Our
signature propagation component extends this idea on the
community level and uses a set of closeness thresholds to
decide on delegates.

While early work in mobile networks used a variety of
simplistic random i.i.d. models, such as random waypoint,
recent findings [18] show that these models may not be
realistic. Moreover, many recent studies [16], [17], [18] based
on real mobile traces reveal that the nodes’ mobility processes
certain social network properties.

Trust evaluation schemes. We develop our vulnerability
evaluation component based on the observation that trust
evaluations can be the bridge to link the past experiences
with future predictions. Various frameworks [25], [26] have
been designed to model trust networks. We can divide them
into three main categories. The trust management systems in
the first category have a central authority, usually called the
trusted third party. In the second category, one global trust
value is drawn and published for each node, based on other
nodes’ opinions of it. EigenTrust [27] is one mechanism in this
category. The third category includes the trust management
systems that allow each node to have its own view of other
nodes [28], [29]. Our vulnerability evaluation is conducted on
the community level, which draws trust evaluation results from
a new granularity.

VI. CONCLUSION

In this paper, we propose CPMC, an efficient proximity
malware coping scheme based on the social relationships
and community structure of the smartphone-based mobile
networks. We first propose a short-term community-based del-
egation forwarding scheme to quickly propagate each signature
into all communities while avoiding unnecessary redundancy.
A community quarantine method is presented to enhance the
difference in signature propagation and malware propagation.
We also design a long-term vulnerability evaluation scheme,
including community consensus formation, to help users make
comprehensive communication decisions. Extensive results of
simulations based on real and synthetic traces are provided,
which further illustrate the efficiency of the proposed scheme.
In the future, we plan to investigate the detection node deploy-
ment problem in proximity malware protection by utilizing the
community structure.
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