
1

Discovering Internet Topology ④④④④

R. Siamwalla, R. Sharma, and S. Keshav
Cornell Network Research Group
Department of Computer Science

Cornell University, Ithaca, NY 14853
{rachit, sharma, skeshav}@cs.cornell.edu

Abstract
In large and constantly evolving networks, it is difficult to determine how the network is actually laid out. Yet this
information is invaluable for network management, simulation, and server siting. Traditional topology discovery
algorithms are based on SNMP, which is not universally deployed. We describe several heuristics and algorithms
to discover both intra-domain and Internet backbone topology while making as few assumptions about the network
as possible. We quantitatively evaluate their performance and also present a new technique for visualizing Internet
backbone topology.

1. Introduction

Network topologyis a representation of the interconnection between directly connected peers in a network. In a
physical network topology, peers are ports on devices connected by a physical transmission link. A physical
topology corresponds to manylogical topologies, each at a different level of abstraction. For example, at the IP
level, peers are hosts or routers one IP hop from each other, and at the workgroup level, the peers are workgroups
connected by a logical link. In this paper, by network topology we refer exclusively to the logical IP topology,
ignoring hubs and bridges, and link-level details such as FDDI token rotation times, ATM or Frame-relay links,
and Ethernet segment lengths. At this level, a peer corresponds to one or more IP addresses, and a link corresponds
to a channel with specific delay, capacity, and loss characteristics.

Network topology constantly changes as nodes and links join a network, personnel move offices, and network
capacity is increased to deal with added traffic. Keeping track of network topology manually is a frustrating and
often impossible job. Yet, accurate topology information is necessary for:

• Simulation: In order to simulate real networks, the topology of the network must be first obtained.

• Network Management: Network topology information is useful in deciding whether to add new routers and to
figure out whether current hardware is configured correctly. It also allows network managers to find
bottlenecks and failures in the network.

• Siting: A network map helps users determine where they are in the network so they can decide where to site
servers, and which ISP to join to minimize latency and maximize available bandwidth.

• Topology-aware algorithms: Topology information enables a new class of protocols and algorithms that
exploit knowledge of topology to improve performance. Examples include topology-sensitive policy and QoS
routing, and group communication algorithms with topology-aware process group selection.

Thus, there is a considerable need for automatic discovery of network topology. Currently, the only effective way
to do so is by exploiting SNMP (Simple Network Management Protocol). However, there are many situations
where SNMP cannot be used. SNMP is not implemented in most older machines, and in newer machines, SNMP
may be turned off or have restricted access. In a growing heterogeneous network, where decisions about the
network and access are decentralized, it is naive to assume that SNMP has been installed, and is accessible, on
every node in the network. For example, in thecornell.edu domain, SNMP can only discover 8% of the hosts.
We think that this situation is the norm, rather than the exception.

④ Submitted to IEEE INFOCOM’99

2

2. Goals

The goals of our work are to automatically discover network topology both within a single administrative domain,
and in the Internet backbone, while making as few assumptions as possible about the network. In particular, we do
not assume that SNMP is globally available, or that the discovery tool is allowed to participate in routing protocols
such as OSPF or DVMRP. Moreover, we would like our algorithms to be:

• Efficient: impose the least possible overhead on the network,
• Fast: take the least possible time to complete the job,
• Complete:discover the entire topology, and
• Accurate: not make mistakes

Because every discovery algorithm represents a trade off between these competing goals, we present a suite of
algorithms that make a range of tradeoffs, and is each suited to a different operating environment.

3. Background and tools

The Internet is divided into several thousand administrativedomains. All hosts, routers, and links in a domain are
administered by a single entity, and are addressed by IP addresses that share the same common prefix, also called
the network number. Within each domain, IP addresses are further grouped bysubnets, so that all IP addresses
within a subnet share the same subnet prefix. Thesubnet maskidentifies the number of bits in an IP address that
correspond to the subnet number. For example, the Cornell domain owns, among others, the 128.84 network. This
is further subdivided into subnets, including the 128.84.223 subnet and the 128.84.155 subnet. All IP addresses in
each of these subnets starts with the subnet number, and has a subnet mask of 255.255.255, which indicates that the
subnet number is 24 bits long.

Routing between subnets is accomplished by routers. A router is simultaneously present on multiple subnets, and
therefore has multiple IP addresses. The standard convention is to give routers the first address in each subnet
range. For example, a router that connects subnets 128.84.223 and 128.84.155 would have two IP addresses,
128.84.223.1 and 128.84.155.1.

The algorithms discussed in this paper are based on three widely available tools:

• Ping/Broadcast Ping

Every IP host is required to echo an ICMP ‘ping’ packet back to its source. The ping tool therefore accurately
indicates whether the pinged machine is on the Internet or not (actually, since ping packets can get lost, we
always ping an address twice, deeming it unreachable only if both do not elicit a reply). With suitably small
packets, ping also has a low overhead. Pings to live hosts succeed within a single round-trip time, which is a
few tens of milliseconds, so the tool is fast. Pings to dead or non-existent hosts, however, timeout after a
conservative interval of 20 seconds, so pings to such hosts are expensive.

`Directed broadcast ping’ refers to a ping packet addressed to an entire subnet rather than just one machine.
This can be done by addressing either the ‘255’ or the ‘0’ node in the subnet (e.g. to broadcast to all nodes in
the 128.84.155 subnet, ping 128.84.155.0 or ping 128.84.155.255—more generally, these two addresses
corresponding to extending the subnet address either with all 0s or all 1s). A broadcast ping is received by all
hosts in the subnet, each of which is supposed to reply to originator of the ping. This is useful in finding all the
machines in a subnet. Ping broadcast however is not supported fully in all networks. In some networks, only
the router responsible for that subnet responds to the broadcast ping (we refer to this as theweak ping
broadcast assumption). In other networks, broadcast ping is not even responded to at all. These modifications
prevent a denial-of-service attack called “smurfing” where a large subnet is broadcast with a ping packet
whose return address is set to that of the victim. The victim gets swamped with ICMP ping replies and soon
dies.

3

• Traceroute

Traceroute discovers the route between a probe point and a destination host by sending packets with
progressively increasing TTLs. Routers along the path, on seeing a packet with a zero TTL, send ICMP TTL-
expired replies to the sender, which tallies these to discover the path. Traceroute is usually accurate because all
Internet routers are required to send the TTL-expired ICMP message. However, some ISPs are known to hide
their routers from traceroute by manipulating these replies to collapse their internal topology. This reduces
both the accuracy and the completeness of topologies discovered using traceroute. Traceroute sends two
probes to every router along the path, so it generates considerably more overhead than ping. Since probes to
consecutive routers are spaced apart to minimize the instantaneous network load, the time to complete a
traceroute is also much longer than a ping.

• Zone transfer from a DNS server

A domain’s DNS name server keeps a binding from every name in the domain to its IP address. Most DNS
servers respond to an ‘zone transfer’ command by returning a list of every name in the domain. Thus DNS
zone transfer is useful in finding all hosts and routers within a domain. This technique has low overhead, is fast
and is accurate. It may not be complete, however, since hosts obtaining IP addresses using DHCP are not
served by DNS. Moreover, some network managers disable DNS zone transfer due to security concerns.

The table below summarizes the performance characteristics of the three tools.

Ping Traceroute DNS zone transfer
Applicability All domains All domains Most domains
Overhead Low High Low
Speed Fast for live hosts;

Slow otherwise
Slow Fast

Accuracy Accurate Usually accurate Usually accurate

4. Heuristics

We now describe three heuristics that we will use in the algorithms presented in Section 5.

4.1 Subnet guessing using broadcast pings
The first heuristic, when given an IP address, determines the length of the address mask associated with that
address as follows:

The idea is to test progressively decreasing mask lengths by pinging broadcast addresses corresponding to these
mask lengths. A reply to a ping indicates that the guessed mask length is correct. The reason for sending a ping to
both broadcast addresses is because otherwise we might make the following error. Suppose we are trying to guess
the network mask for the address 171.64.255.16 with a ping to only the ‘255’ broadcast address. Suppose also that
the true mask length is 16 bits. When we probe a mask length of 24 bits we will ping 171.64.255.255, which
happens to be the broadcast address for the 171.64 subnet. Since we get multiple replies for this address, we
erroneously conclude that the mask length is 24 bits. We can avoid this by trying both broadcast addresses. Now,
the broadcast to 171.64.255.0 will elicit no replies, so that we do not make this mistake. Notice that in step 1.d we

for masklen = 31 to 7 do
a. assume network mask is of length masklen
b. construct the ‘0’ and ‘255’ directed broadcast addresses for that address and masklen
c. ping these directed broadcast addresses
d. if more than two hosts reply to both pings then return masklen else continue

4

look only for a non-zero number of broadcast ping replies. This allows us to deal with cases where a router sends a
single ping reply on behalf of the subnet in response to a broadcast ping.

This heuristic can be used in a domain that supports pings to broadcast addresses. Although it is accurate, because
it sends a series of pings, it is both slow and has a high per-address overhead.

4.2 Subnet guessing from a cluster of addresses
Suppose we know that hosts with addresses A1, A2, and A3 are all one hop away from a router whose closest
interface to these hosts has IP address A. The goal of this heuristic is to determine the address of the subnet that
A1, A2, and A3 belong to, and the corresponding subnet mask (see Figure 1). The idea is that the bitwise AND of
A, A1, A2, and A3 approximates the subnet number because all four addresses must share this number as a
common prefix, and changes in the remaining bit positions ought to, on average, cancel out. For example, assume
that the router’s interface address is 128.84.155.192 and the three host addresses are 128.84.155.195,

128.84.155.216, and 128.84.155.228. To clarify our presentation, we will omit the first three bytes of the address
and represent the last byte in binary. With these modifications, the router’s address is 1100 00010, and the three
host addresses are 1100 0011, 1101 1110, and 1101 1010. The bitwise AND of these addresses is 1100 0010,
which is our initial guess for the subnet number. We then compute the bitwise OR of the host and router addresses,
because the subnet should cover at least these bits in the address space. Here, the bitwise OR is 1101 1111, which
indicates that the subnet address space should include at least the last five bits of the address space (leading 1’s can
equally well be part of the subnet’s network number). We can now refine our choice of the subnet number. Because
subnet masks must be contiguous, the subnet number cannot be 1100 0010, so the last five bits of the mask should
be of the form 0 0000. We now have four choices for the subnet number (assuming that the preceding three bytes
are 128.84.155): 110, 11, 1, and null. Given only addresses A, A1, A2, and A3, we cannot make further progress.
However, suppose that we discover that address A4 = 128.84.155.2 (0000 0010 in our notation) also can be
reached by a one-hop path from the router. Then, the bitwise AND becomes 0000 0010, eliminating subnet choices
of 110, 11, and 1. We can now confidently state that the subnet number must be null = 128.84.155, and the subnet
mask must be 255.255.255.0.

This heuristic is applicable in all domains, is fast, and imposes no additional overhead. It is accurate if the hosts in
a subnet are widely dispersed in the subnet’s address space, so that the bitwise AND of the addresses results in
outliers that can be eliminated by the contiguity rule. It is encouraging to note that almost all subnets have this
property. If all hosts lie in the higher end of the address space, the heuristic cannot unambiguously decide on the
subnet number and mask.

4.3 Guessing valid addresses in a domain
Our third heuristic is a way to choose 32-bit values that, with good probability, lie within a chosen subnet’s address
space. It is derived from the following observations in thecornell.edu andcs.cornell.edu domains (in
decreasing order of generality). See the Appendix for a more detailed description of these observations.

B

A
128.84.155.192
1100 0010 A1

128.84.155.195
1100 0011

A2
128.84.155.216
1100 1110

A3
128.84.155.228
1101 1010

A4
128.84.155.2
0000 0010

Figure 1

5

• For each host with address a.b.c.d that responded to a ping, the subnet included a `corresponding’ address of
the form a.b.c.1, which usually was the gateway router. This corresponds to a subnet mask of 255.255.255.0
(24 bits long).

• Most hosts that respond to a ping are close to each other in the address space (for example, if 128.84.227.50
exists, there is a high chance that 128.84.227.51 exists)

• Some hosts that responded to ping had a corresponding address that ended in *.129, which was often a router.
This was when the subnet mask is 25 bits long.

• Some hosts that responded to ping had a corresponding address that ended in *.65 and *.193, which was often
a router. This is usually when the subnet mask is 26 bits long.

Based on these observations, we use the following heuristic to populate a ‘temporary set’ of addresses likely to be
in domain’s address space (we use ‘ping’ to discard invalid addresses from this set):

The choice of N determines how aggressively the heuristic populates the address space. If N is high, it finds all live
hosts, but also many invalid addresses; if N is low, most guesses are valid, but not all hosts may be found. All
results presented in this paper use an N value of 5.

5. Algorithms

5.1 Basic algorithm

The discovery algorithms described in this section are variations on the following algorithm:

When it completes, a discovery algorithm generates a topology representation consisting of lists of hosts, routers,
and subnets. Each item may be associated with additional information such as the host name, or the number and
type of interfaces present at each route. (At the moment, we do not discover link information such as capacity and
delay: this is the subject of future work.) The information is stored as a simple directory tree in the Unix file
system, where each directory node in the tree is a subnet or a router, and each file is either a host or a description of
a subnet or router. This concisely represents topology information in an easily retrievable form. Better yet, simple
shell scripts allow us to perform complex operations on the topology. Recently the IETF has proposed the PTOPO
MIB information structure to store physical topology information [IETF 97]. Information in our directory structure
can be easily converted to this format.

We now present a suite of discovery algorithms derived from the basic algorithm. We first discuss four discovery
algorithms that operate within a single administrative domain, then discuss our algorithm for discovering the
Internet backbone.

5.2 Algorithm 1: SNMP

This algorithm is the simplest because it assumes that SNMP is available everywhere in the domain. The first
router added to the temporary set is the discovery node's gateway router (step 1). For each router in the temporary
set, we find neighboring routers from that router’s ipRouteTable MIB entry (step 2e). Hosts are obtained from the
router’s ARP table entries (step 2c).

1. Determine a ‘temporary’ set of IP addresses that may or may not correspond to actual hosts and routers.
2. For each element of the temporary set:

a. Validate the address
b. If the address is valid, find out how it relates to other addresses already in the permanent set, and add it

to the permanent set.
c. Use this address to generate more IP addresses and add them the temporary set.

foreach address successfully pinged
add the next N consecutive addresses to temporary set
if (address ends in 1, 63, 129, or 193) // a router: may have other hosts in this space

add N random addresses with the same prefix to the temporary set.

6

This algorithm is efficient, fast, complete, and accurate, and has the added benefit that additional SNMP
information can be gathered for each node. However, it can only be used on networks where SNMP is enabled on
all routers. Thus, it fails to meet one of our primary goals.

5.3 Algorithm 2: DNS zone transfer with broadcast ping

This algorithm assumes that the domain allows DNS zone transfer and pings to broadcast addresses. It first does a
DNS zone transfer to get a list of all hosts in the domain (step 1). Assuming that this retrieves a list of all hosts in
the domain, the only remaining problems are (a) to eliminate invalid names in the listing and (b) to determine the
identity of each subnet in the network. We validate hosts by pinging them (step 2b). Subnets are discovered using
the subnet-guessing algorithm (step 2c). Finally, in order to discover nodes not found in the DNS zone transfer, the
algorithm directs a broadcast ping to newly discovered subnets (step 2e), and adds responding nodes to the
temporary set (step 2f).

This algorithm is neither efficient nor fast, because subnet guessing is both slow and involves considerable
overhead. Moreover, it heavily depends on DNS zone transfer and broadcast ping, which may both be unavailable
for reasons of security. In this case, the algorithm would also be incomplete. Although running several versions in
parallel can speed up the algorithm, we do not recommend its use. Its main purpose is to show that network
topology can be correctly determined even in the absence of SNMP. Our subsequent algorithms eliminate many of
the deficiencies in this algorithm.

5.4 Algorithm 3: DNS zone transfer with traceroute

This algorithm replaces the expensive subnet-guessing technique of the second algorithm with the more efficient
computation of Heuristic 2. It still assumes that the domain a DNS zone transfer is allowed, and returns a list of all
hosts and routers in the network. It also assumes that the DNS server returns all the IP addresses associated with a
router, instead of picking one at random.

The basic idea here is to get a list of all routers and hosts in the domain with DNS zone transfer (step 1). We then
initiate a ping and traceroute to each member of this list (steps 3a and 3c). Recall that Heuristic 2 requires us to
provide the addresses of a cluster of hosts in a subnet and the ‘closest’ router interface. We therefore need to store
the set of hosts associated with a particular router. A host’s router is just the next-to-last value in a traceroute to that
host, so the router is easily determined. However, traceroute may return the IP address of an interface that is not
necessarily the interface used to route to that host (for example, in Figure 1, traceroute may return address B

1. temporarySet = get_default_router()
2. foreach router ∈ temporarySet do

a. ping(this_router)
b. if (this_router is alive) then permanentSet = permanentSet ∪ this_router
c. hostList = SNMP_GetArpTable(this_router)
d. permanentSet = permanentSet ∪ hostList
e. routerList = SNMP_GetIpRouteTable(router)
f. permanentSet = permanentSet ∪ routerList
g. temporarySet = temporarySet ∪ routerList

1. temporarySet = DNS_domain_transfer(domain)
2. foreach node ∈ temporarySet do

a. ping(this_node)
b. if (this_node is alive) then permanentSet = permanentSet ∪ this_node
c. this_subnet = SubnetGuessingAlgorithm(this_node)
d. permanentSet = permanentSet ∪ this_subnet
e. if unknown this_subnet then ping_broadcast(this_subnet)
f. foreach responding_host do

add responding_host under this_subnet
temporarySet = temporarySet ∪ responding_host

7

instead of address A). To find the right interface, we do an inverse name lookup on the next-to-last address and, for
each returned address, XOR it with the hosts address. The best match between the router interface and the host has
the fewest ‘1’ bits and is chosen as the correct interface. Instead of storing a list of host addresses in a hash table
keyed on a router’s interface address, we maintain two hash tables called cumulativeAnds and cumulativeOrs
keyed on this interface. The first contains the bitwise AND of all the hosts for which this interface is the next-to-
last hop and the second contains the bitwise OR of all the hosts for which this interface is the next-to-last hop. As
more and more hosts get processed, the cumulativeAnds value for a particular interface value gets closer and closer
to the actual subnet. Given the subnet number and the cumulativeOrs value, we can quickly determine the subnet
mask (step 3k). As explained earlier, this determination may be incorrect--we choose the smallest possible subnet
mask that is consistent with the data. Here is the algorithm:

This algorithm is faster than the previous one and has fewer overheads because it replaces the expensive subnet
guessing heuristic with a faster one. Moreover, it makes fewer assumptions than the previous algorithm, and thus is
more widely applicable. However, because it depends exclusively on DNS zone transfer to retrieve the temporary
set, it may not be as complete as the previous algorithm. There is also a problem with correctness: the subnet mask
may be incorrectly determined when there all machines in a subnet use IP addresses at the high end of the subnet’s
address space. If this were the case, then the discovered mask would be longer than it should be (because the
common initial bit string is longer). A second correctness problem with the algorithm is that it assumes that an
inverse DNS lookup returns all the IP addresses of a router. In some networks, all the routers’ IP addresses are not
entered in the DNS. This results in incorrectly aggregating subnets that are served by routers one hop away from a
specific router.

4.5 Algorithm 4: Probing with traceroute

Algorithm 3 uses DNS zone transfer to determine all the hosts in a network. This is disabled in many domains for
reasons of security. Algorithm 4 replaces this by intelligent guesses about the IP addresses in the domain, as
explained in Heuristic 3 (Section 3.3). Thus, it makes very few assumptions about the network. The algorithm
assumes that traceroute is supported, and that a DNS lookup returns all the IP addresses associated with a router.
The intuitive idea is to generate IP addresses at random in the address space belonging to the domain. Traceroute
probes to these addresses expose the routers in the network and Heuristic 2 allows us to guess the associated subnet
numbers. The differences between this algorithm and Algorithm 3 are shown in italics.

1. temporarySet = DNS_domain_transfer(domain)
2. initialize cumulativeAnds{} and cumulativeOrs{} hashtables to null
3. foreach node ∈ temporarySet do

a. ping(this_node)
b. if (this_node is alive) then permanentSet = permanentSet ∪ this_node else continue
c. traceroute(node)
d. this_router = next to last hop in traceroute
e. find all IP addresses of this_router with a DNS lookup
f. this_gateway = address such that number of ‘1’ bits in IP(this_router) XOR this_node is minimized
g. oldSubnet = cumulativeAnds{this_gateway} //this notation means look up the hash table with this key
h. cumulativeAnds{this_gateway} = this_node AND cumulativeAnds{this_gateway}
i. cumulativeOrs{this_gateway} = this_node OR cumulativeOrs{this_gateway}
j. newSubnet = cumulativeAnds{this_gateway}
k. newSubnetMask = NOT (cumulativeAnds{this_gateway} XOR cumulativeOrs{this_gateway})
l. Store node in newSubnet
m. If necessary, move hosts in permanent set's oldSubnet to newSubnet.

8

This algorithm only uses traceroute and ping to determine topology. Thus, it can be used in practically any
network. However, in order to find all hosts in the network, we need to choose a large N value in Heuristic 3,
slowing down the algorithm. Specifically, to use ping to determine that node does not exist is expensive, because
this requires waiting for a fairly long timeout. Thus, if Heuristic 3 adds many nonexistent nodes to the temporary
set, the algorithm takes a long time to complete. We recommend that it should be used when discovering routers
and subnets is more important than discovering all the hosts. A second problem is that we assume that inverse DNS
lookups return all the IP addresses associated with a router, which may not be universally true.

4.6 Backbone topology discovery

Discovering the topology for the Internet backbone is quite different than discovering the topology within a
domain. Within a domain, we can exploit addressing conventions and broadcast pings to quickly discover large
clusters of hosts. In the backbone, the best, and perhaps the only way to find the topology is to find the all the
routers and links using traceroute. Here is a naive algorithm that does this:

The problem with this algorithm is that, depending on the number of addresses probed, it is either very expensive,
or discovers only a small fraction of the backbone. Even though the algorithm is easily parallelized, the number of
addresses for effective discovery of backbone topology is still too large. Our initial attempt to use this algorithm to
probe Internet backbone topology took about a month to complete, even when split between twelve different
processes!

The solution to this problem is to reduce the number of IP addresses probed. This can be done by taking advantage
of the aggregation of IP addresses used to help simplify routing in the backbone. Indeed, the publicly available
BGP routing tables contain the IP addresses of a large percentage of the domains connected to the Internet
backbone. By sending a probe to a randomly chosen IP address in each advertised domain, we are guaranteed to hit
a large number of backbone routers and links. This leads to the following revised algorithm:

1. temporarySet = random addresses in domain that end in “.1”
2. initialize cumulativeAnds{} and cumulativeOrs{} hashtables to null
3. foreach node ∈ temporarySet do

a. ping(node)
b. if (this_node is alive) then permanentSet = permanentSet ∪ this_node else continue
c. Use Heuristic 3 to add more addresses to temporary set
d. traceroute(node)
e. this_router = next to last hop in traceroute
f. find all IP addresses of this_router with a DNS lookup
g. this_gateway = address such that number of ‘1’ bits in IP(this_router) XOR this_node is minimized
h. oldSubnet = cumulativeAnds{this_gateway} //this notation means look up the hash table with this key
i. cumulativeAnds{this_gateway} = this_node AND cumulativeAnds{this_gateway}
j. cumulativeOrs{this_gateway} = this_node OR cumulativeOrs{this_gateway}
k. newSubnet = cumulativeAnds{this_gateway}
l. newSubnetMask = NOT (cumulativeAnds{this_gateway} XOR cumulativeOrs{this_gateway})
m. Store node in newSubnet
n. If necessary, move hosts in permanent set's oldSubnet to newSubnet.

1. Generate a number of IP addresses well distributed in the IP space.
2. foreach address

a. traceroute to the address
b. store all the links and nodes the traceroute returns

3. Correlate the results

9

This reduces the number of probes to the number of domains, which is less than 50,000 as of April 1998. The
algorithm, when divided into twenty-five processes probing 2,000 addresses each, takes approximately 48 hours to
complete (for more details, see Section 6).

While the revised algorithm is relatively efficient, it still suffers from a serious problem: it only discovers a tree of
nodes leading away from the source of the probes and thus ‘cross-links’ will not be discovered. For example, in
Figure 2, the intermediary node and links between Domain A and Domain B will not be found:

Figure 2

This problem is partially solved by choosing multiple probe sources. For example, suppose we had a probe point at
Domain B, we would have found the link to Domain A. Although the algorithm can never guarantee to find all the
nodes and links unless there is a probe source in every domain, if probe sources are evenly distributed throughout
the network, we should be able to get a good approximation of Internet backbone topology.

6. Evaluation

6.1 Domain topology discovery
In this section we evaluate the performance of the four algorithms described in Sections 5.2-5.5, in the
cs.cornell.edu (CUCS) and cornell.edu domains. The cs.cornell.edu domain has about 480 hosts and six routers,
one of which is outside a firewall. The cornell.edu domain has about 8200 hosts and 140 routers in more than 500
subnets. We believe that these domains are representative of department and campus domains elsewhere in the
Internet. The algorithms were implemented on a SPARCsystem-600 machine running SunOS 5.5.

We now compare the four algorithms in terms of their speed, overhead, completeness and accuracy. We measure
speedby the time in minutes taken to discover the domain, as measured by the Unixtime command. We measure
overheadby the number of hops taken by ping packets and traceroutes in the domain. Recall that we ping each
address twice. Thus, the overhead, in terms of packets forwarded in the network, to ping a node H hops away is 4H,
because two request and two reply packets have to each traverse H hops. With traceroute, we choose to send an

Domain A

Domain B

Probe source

1. Get BGP routing information, for instance from route-server.cerf.net
2. Extract all domains from this information
3. Choose an address in each domain, such as the a.0.1 or a.0.0.1, where a is the network number
4. foreach address

a. traceroute to the address
b. store all the links and nodes the traceroute returns

5. Correlate the results

10

ICMP packet to every router twice. The total cost to traceroute to a host H hops away is four times the arithmetic
sum from 1 to H, i.e. 4H(H+1)/2, because we incur a cost of 4h, 1<= h <= H, for each router h hops from the
source. Thus, the normalized cost of a traceroute to a host H hops away, relative to the cost of a ping, is (H+1)/2. If
the mean distance between the probing source and the rest of the nodes in the domain is H*, the mean cost of a
traceroute, compared to that of a ping is (H*+1)/2. The H* values for the CUCS domain and the cornell.edu
domain are 2.8 and 7.9. We measurecompletenessby the fraction of the topology discovered by each algorithm.
For simplicity, we assume that the domain size is the largest of those discovered using any of our algorithms. The
only inaccuracy introduced in our algorithms is due to Heuristic 2, which may choose a subnet mask incorrectly if
all hosts in a subnet are in the higher end of the subnet’s address range. Thus, we measure inaccuracy as the ratio of
the number of times the heuristic faced an ambiguity to the number of discovered subnets, andaccuracyas its
complement. Note that it is impossible to fairly compare the algorithms in the sense that some networks may not
support DNS zone transfer or ping broadcast, ruling out the second and third algorithms. However, we do feel that
relying entirely on SNMP to discover network topology is a bad idea: though other algorithms take more time and
more overhead, for a large topology, they are significantly more complete.

CUCS Network Speed Overhead Completeness1 Accuracy
Time
(minutes)

pings # traces Normalized
overhead

Hosts Routers Subnets

SNMP 11 5 0 5 482
(99%)

5
(100%)

7
(100%)

100%

DNS zone transfer/
broadcast ping

148 1195 0 1195 485
(100%)

5
(100%)

6
(86%)

100%

DNS zone transfer/
traceroute

128 840 480 1752 480
(99%)

5
(100%)

7
(100%)

99%

Probing/traceroute 58 611 336 1249 317
(65%)

5
(100%)

7
(100%)

99%

Table 1: Comparison of intra-domain discovery algorithms in the cs.cornell.edu domain.

Table 1 compares the four algorithms in the CUCS domain. The SNMP algorithm runs the fastest by far, and, in
this domain, discovers the entire network accurately. This is clearly the algorithm of choice. The other algorithms
have nearly the same overhead, and all discover nearly the entire topology, except for the probing/traceroute
algorithm, which takes significantly less time than the other two, but discovers only 65% of the hosts. Note that the
time taken by any of the algorithms can be reduced by parallelizing it. Thus, for this domain, we recommend using
SNMP, failing which, the second best choice is DNS zone transfer/ping broadcast, since it has less overhead than
DNS zone transfer/traceroute, but still discovers nearly the entire topology.

Cornell Network Speed Overhead Completeness1 Accuracy
Time
(minutes)

pings # traces Normalized
overhead

Hosts
(%)

Routers
(%)

Subnets
(%)

SNMP algorithm 193 139 0 139 602
(8%)

139
(90%)

93
(15%)

100%

DNS zone transfer/
broadcast ping *

- - - - - - - -

DNS zone transfer/
traceroute

2880 10204 7367 42987 7367
(100%)

155
(100%)

622
(100%)

90%

Probing/traceroute 1080 8532 2735 20702 2734
(37%)

144
(93%)

512
(82%)

90%

*The cornell.edu domain does not allow pings to broadcast addresses

Table 2: Comparison of intra-domain discovery algorithms in the cornell.edu domain

Table 2 presents the results for the cornell.edu domain. Here, the performance of the four algorithms is rather
different. In contrast to the excellent performance of SNMP in the CUCS domain, SNMP in this domain discovered

1 Percentages are with respect to the largest number of hosts, routers, or subnets discovered by any of the four
algorithms.

11

only 8% of the hosts and 15% of the subnets. We conjecture that this is because many hosts in the domain are idle
and therefore do not show up in router ARP tables, and many of the routers do not accurately report subnet
information. The cornell.edu domain does not allow pings to broadcast addresses, so this algorithm cannot be used.
The DNS zone transfer/traceroute algorithm is complete, but has a high overhead and is rather slow. In contrast, the
probing/traceroute algorithm takes about a third as much time, but discovers only a third as many hosts. Thus, for
discovering the complete topology, we recommend the use of the DNS zone transfer/traceroute algorithm.
However, if only router information is desired, the probing/traceroute algorithm may prove sufficient.

6.2 Backbone topology discovery
In this section, we report on the performance of the algorithm described in Section 4.6 that discovers the Internet
backbone. We ran the algorithm for 48 hours from three probe points at Cornell, UC Berkeley, and Stanford. We
discovered 76,127 nodes, where each node corresponds either to a backbone router or to an interface on a backbone
router, and 98,538 links. While the volume of data is too large to display here, Figure 3 shows a fraction of the
topology of the NYSERNET backbone, as discovered by our algorithm. (An interactive viewer for this topology
can be found at http://www.cs.cornell.edu/cnrg/topology/nysernet/index.html.) Note that collating data from the
three probe points allows us to discover more than just a tree rooted at a probe point, as is evident from the figure.

As is evident, displaying backbone topology is difficult because of the large number of nodes. Therefore, we have
come up with a visualization technique called ahop contour mapthat summarizes topology information.
Intuitively, a hop contour map shows the number of routers on a contour line corresponding to a certain number of
hops from a source. The Y-axis of a hop contour map is a hop count, and the X-axis is the number of routers found
at that hop count. For example, Figure 4, a hop contour map of the NYSERNET backbone, shows that we
discovered three routers six hops away from Cornell. Figure 5 is a concatenation of hop contour maps for a
number of ISP backbones. Here, the Y-axis is the number of hops from the Cornell probe point and the X-axis is a
concatenation of contour maps for different ISPs. The distance between two columns is 500 routers. The plot
shows, for example, that ISPs ‘alter’ and ‘MCI’ have 200 routers at some hops and an individual ISP can have
more than 1000 routers. From this plot, we estimate that the number of backbone routers in the Internet is in the
20,000-router range.

Figure 3: A portion of the NYSERNET topology discovered by our algorithm.

12

Figure 5: Hop contour maps for all large ISPs (labels are left aligned with columns)

Figure 4: Hop contour graph for NYSERNET

13

Hop contour maps provide an interesting way to evaluate the ‘goodness’ of a particular ISP backbone. To see this,
consider the hop contour map of a linear backbone (Figure 6a) It is clear that this corresponds to a ‘tall and skinny’
hop contour map, since each new hop only adds one more router to the set of discovered routers. In contrast, with a

densely connected topology such as a star or a clique, the hop contour map is ‘short and fat’: once we enter a
backbone, all other routers are one or two hops away (Figure 6b). Since we would like to traverse backbones with
as few hops as possible, we claim that a good measure of backbone design is the degree to which it is ‘short and
fat’ as compared to ‘tall and skinny’. Of course, the presence of ATM backbones distorts this measure, since ATM
hops cannot be detected by traceroute. In future work, we intend to come up with appropriate metrics on hop
contour maps that correlate with desirable backbone features such as high-connectivity and a diversity of alternate
paths.

7. Related work

Network topology information is often disclosed by ISPs. Two notable collections of known topologies can be
found at References [Atlas 98, CAIDA 98]. These topologies, however, are neither automatically discovered, nor
updated.

Automatic network discovery is a feature of many common network management tools, such as HP’s OpenView,
and IBM’s Tivoli. These tools, however, assume that SNMP is universally deployed. As we saw in Section 6.1,
such a tool would fail to discover 10% of the routers and 92% of the hosts in the cornell.edu domain.

Other commercially available tools for network discovery use a variety of information sources to augment SNMP.
These include:

• netViz: netViz exploits Microsoft Windows internal network calls to discover servers running Windows 95,
98 or NT, volumes and printers in a Microsoft network. The main focus of this product appears to be a user-
friendly GUI to browse the topology [NetViz 98].

• Optimal Surveyor: Optimal Surveyor uses SNMP and Novell network queries to discover network topology
[Actualit 98].

X

X

X

X

Source

Number of routers

Hop count

Source

X

X X X

Number of routers

Hop count

(a) (b)

Figure 6: Hop contour map as a function of topology

14

• Dartmouth Intermapper: Intermapper discovers topology using SNMP queries and Appletalk broadcast
calls. Intermapper also discovers and displays link and server load [Intermapper 98].

To sum up, these tools exploit network-specific protocols, such as Windows Networking, Novell Networking, and
Appletalk to augment the information provided by SNMP. From this perspective, our work can be viewed as
augmenting SNMP in aprotocol-independentfashion. Thus, it can be used to improve the functionality of any of
these tools.

The idea of discovering network characteristics to help improve protocol performance is at the heart of several
recent studies. For example, in the SPAND approach [SSK 97], network characteristics passively discovered by a
cluster of hosts are shared through a performance server. This helps in decisions such as choosing the closest web
site that contains a copy of the desired information, and choosing a data format that is consistent with the available
capacity. Our work differs from this in that we perform active probing, and we do not discover network
performance characteristics, only network topology. A detailed critique of several other algorithms that perform
network probing for determining expected performance and server selection can be found in Reference [SSK 97].

The IDMaps project [FJPZ 98] seeks to provide client applications with approximate hop counts and expected
performance between pairs of IP subnet numbers to allow them to suitably adapt their behavior. The focus of this
work is primarily on creating avirtual topology that accurate represents performance characteristics between
subnets. In contrast, we aim to discover thelogical topology of the network at the IP level.

8. Future work

The algorithms described in this paper can be extended in a number of ways, including:

Exploiting history: We think that it would be interesting and insightful to periodically run intra-domain and
backbone discovery algorithms and analyze how topologies change over time. This would allow us to track growth
patterns, particularly in the backbone, where ISPs rarely reveal topology information.

Evaluating ISP goodness:Hop contour maps display backbone topologies in a way rather different from a normal
graph layout. In future work, we would like to correlate metrics on hop contour maps, such as the ratio of the
maximal width to the height, with the ‘goodness’ of an ISP’s topology. This would allow customers to quickly and
objectively evaluate the relative merits of competing ISPs.

Correlation: Currently, the backbone discovery algorithm discovers a tree of links and nodes rooted at a single
source point. While it is possible to generate multiple rooted trees by choosing multiple probe points, correlating
this information to form a single topology is a complex task. Our current approach to collating this information is
semi-automatic and requires both skill and many hours of painstaking work. In future work, we would like to
automate this process.

Analysis: While we have evaluated the performance of our algorithms in a couple of domains, we have yet to carry
out a formal asymptotic analysis of their complexity. We would like to do so in the future, because we think that
this will allow us to gain insight into their behavior, and perhaps suggest variations that have better performance.

Link characteristics: Currently, we do not discover link characteristics such as capacity and mean delay. Existing
tools such aspathchar [Jacobson 97] and PBM [Paxson 97] can discover these automatically. In future work, we
plan to integrate these tools with ours.

Exploit other sources of information: At the moment, our tools do not exploit routing information within a
domain. If a topology discovery tool were allowed to extract information from a routing daemon running RIP or
OSPF, it would be possible to quickly get subnet information within a domain. Similarly, we could extract
network-specific information from a Microsoft WINS server, a Novell Directory Server, or an Appletalk network.
In future work, we plan to integrate these sources of information with our tools.

15

9. Conclusions

Topology information is critical for simulation and network management. It can also be used effectively for siting
decisions, and as an element in a new class of topology-aware distributed systems. We have presented several
algorithms that discover intra-domain and backbone topology without relying on SNMP. We find that our
algorithms, though slower than those using SNMP, are often able to discover far more nodes and subnets. This
reflects the fact that SNMP is not universally deployed, particularly at end-systems, and indeed is the motivation
for our work. We also evaluated a backbone discovery tool that was able to discover more than 70,000 nodes in the
Internet backbone. This data, when visualized using hop contour maps, allows us to compare ISP backbone
topology.

10. References

[Actualit 98] Actualit Corp., Optimal Surveyor home pagewww.actualit.com/products/optimal
/optimal_surveyor/optimal_surveyor.html

[Atlas 98] An Atlas of Cyberspace,http://www.geog.ucl.ac.uk/casa/martin/atlas
/atlas.html

[CAIDA 98] CAIDA Mapnet viewer, http://www.caida.org/Tools/Mapnet/

[FJPZ 98] P. Francis, S. Jamin, V. Paxson, L. Zhang,, Internet Distance Maps, Presentation available from
http://idmaps.eecs.umich.edu/

[IETF 97] IETF Physical Topology MIB Working Group, PTOPO Discovery Protocol and MIB, Internet draft
available fromhttp://www.ietf.org/internet-drafts/draft-ietf-ptopomib-pdp-02.txt

[Intermapper 98] Intermapper home page,http://intermapper.dartmouth.edu

[Jacobson 97] V. Jacobson, “Pathchar” binary,ftp://ftp.ee.lbl.gov/pathchar/

[MJ 98] G.R. Malan and F. Jahanian. An extensible probe architecture for network protocol performance
measurement,Proceedings of SIGCOMM'98, Sept. 1998, Online version available fromhttp://www.merit.
edu/ipma/docs/paper.html

[NetViz 98] NetViz home page,http://www.netviz.com

[Paxson 97] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics,Ph.D. Thesis, UC Berkeley,
May 1997.

[SSK 97] S. Seshan, M. Stemm, and R.H. Katz, SPAND: Shared Passive Network Performance Discovery, Proc
1st Usenix Symposium on Internet Technologies and Systems (USITS '97),Monterey, CA, December 1997.

16

Appendix: Evaluation of Heuristic 3--Guessing valid addresses in a domain

Heuristic 3 described some rules for guessing valid IP addresses in a domain. These are based on the following
observations in the CUCS and cornell.edu domains.

CUCS2 cornell.edu2

Total number of subnets 8 537
Subnets with a valid “.1” addresses 8 (100%) 421 (78%)
Subnets with a valid “.129” addresses 6 (75%) 120 (22%)
Subnets with a valid “.65” addresses 2 (25%) 104 (19%)
Subnets with a valid “.193” addresses 4 (50%) 48 (9%)

Table 3: Valid addresses in the CUCS and cornell.edu domain.

In Table 3, the first row is the number of subnets in the CUCS and cornell.edu domains, assuming that both
domains use only the 255.255.255.0 netmask (other netmasks are accounted for by looking for *.65, *.129 and
*.193 addresses, as described in Section 4.3). We see that in the CS domain, 100% of the subnets had a valid *.1
address, and 75% had a *.129 address. In the larger cornell.edu domain, nearly 80% of the subnets had a
corresponding *.1 address, and 22% had a corresponding *.129 address. Thus, we believe that the heuristic of
guessing that a subnet has a *.1 address is very effective, guessing the other ‘typical’ router addresses less so.
(Incidentally, 95% of the subnets that did not have a *.1 address are in the Cornell medical school.)

CUCS3 cornell.edu3

Total number of valid addresses 502 8189
Number of valid IP addresses adjacent to another valid address 384 (76.5%) 5924 (72.3%)
Number of valid IP addresses up to two away from another valid address 460 (91.6%) 6763 (82.6%)
Number of valid IP addresses up to three away from another valid address 472 (94.0%) 6927 (84.6%)

Table 4: Valid adjacent addresses in a domain.

Table 4 shows measurements of the number of adjacent IP addresses in the CUCS and cornell.edu domains. The
first row shows the total number of nodes in each domain. The next rows show the number of valid addresses that
are up to one, two, three, four, and five addresses away from another valid address. Consider the second row. It
tells us that in the cornell.edu domain, given a valid IP address, the probability that one of its adjacent IP addresses
is valid is roughly 72.3%. If we add four addresses to the temporary set, two on either side of a valid address, the
probability that we have added at least one valid address to the temporary set increases to 82.6%. The CUCS
domain, which is more heavily populated, is even more easily discovered with Heuristic 3.

2 Percentages are with respect to the total number of subnets in that domain
3 Percentages are with respect to the number of valid addresses in the domain.

