BLAS Libraries for the
Raspberry Pi Quad
Processing Unit

By: Kashyap Panda, Nicole Garcia & Emily Romero

\ What is a Raspberry Pi?

The Raspberry Pi is an embedded
system which consists of a series of
small single-board computers.

Due to its programmability, it has a
broad number of applications.

Features of the Pi Zero

Tiny

Built in Wifi

Great for small projects

Not as much computing power
cost: $5-$10

Features of the Pi Four

Four usb ports

Ethernet Jack

4gb of memory

Built in wifi

Quad core processor :
helps with speed performance

e General Purpose Input/output pins:
- Used to send and receive electrical signals : meaning we can control things that use
electricity to run

e cost:$35+

40pins: 28x GPIO, 12C, SPI, UART

&

Hardware Overview

L
-
L]
L]

v

»
0
-
]
Q
@
o
M
2

- Each model has common elements:
- CPU
- GPU (Videocore 4 or 6)
- RAM
- 1/0

- The main focus is on the Videocore SR
GPU B ssssssssnsssssnnsass

Raspberry Pi 4 Model B
(c) Rasberry Pi2018

D sl
mIEZRE0 30k,

Status LED's

PWR ACT

Power in

\ What is a QPU?

- The main part of the Videocore Unit _
Instruction pool

- Stands for Quad Processing Unit

- 16-way 32-bit SIMD processor
- Single Instruction, Multiple Data
- Simultaneously performs the same operation
on multiple data points
- Inthis case, on 16 data points

[e)
o
Qo
©
-+
©
()]

- 4 sets of 4 points Instruction pool
- Where the Qin QPU comes from

\ Whatis a QPU?
Breaks the 16 points into 4 quads -

- Processes 1 quad per clock cycle
- Processes everything in 4 clock cycles

[e)
o
Qo
©
-+
©
()]

Control Lists .
Control List Executor Primitives

[CLE]

State Change Data (to fifos)

General DMA Write Data VPM DMA Writer [VDW]

Vertex Attributes/
General DMA Read Data Vertex Cache Manager & DMA

[VCM and VCD]

Clipped Primitives

Primitive Tile Binner
Tile Lists (primitives & state) [PTB)

Clipped Primitives .)
Primitive Setup Engine

[PSE]

Front End Pipe [FEP]
(Rasteriser, Early-Z,
Z, W interp, 1/W)

Coverage Accumulate
e [CAP]
T Quad

Fragment Shade Req
Vertex Shade Req
General Program Req

Coverage

g
5
2
8
§
H
g
£
8
5l
g

QPU Scheduler

Quad X,Y,Flags,Z,1/W

Frame Buffer Data

Uns|

Shaded Vertices
Shaded Vertices

Vertex Attributes / Pre-shaded Vertices / General DMA Read Data

General DMA Write Data

Vertex Pipe

haded

& shaded
Quadz, vertices

Colour

Interpolator [VRI] Slice 0

—

QpPUO, 1
Uniforms Cache [QUC]
Icache [QIC]
Texture and Mem
Lookup Unit [TMU]
L2 Cache [L2C]

QPUO,2

Special Functions Unit

[aps] Memory [VPM]

General
Data

Control Lists
Primitives

State Change Data to fifos)

]
PU Ar(hlte(ture

General DMA Read Data Vertex Cache Manager & DMA
[VCM and VCD]

- QPUs are organized into

groups/slices

Front End Pipe [FEP]
- 12 QPUs at 250 MHz on b
Videocore 4 (Pi Zero)

Vertex Attributes / Pre-shaded Vertices / General DMA Read Data

General DMA Write Data

General Program Req
Shaded Vertices
Shaded Vertices

Fragment Shade Req
Vertex Shade Req

- 12 QPUs at 300 MHz on
Videocore 4 (Pi 3)

$
g
3
§
K
g
g
5|
5

QPU Scheduler Vertex Pipe
[aps] Memory [VPM]

Quad X,Y,Flags 2, 1/W

Unshaded

& shaded
Quadz, vertices
Colour

General
Data

- 8 QPUs at 500 MHz on
Videocore 6 (Pi 4)

Special Functions Uni

L2 Cache [L2C]

Control Lists N
Control List Executor Primitives
[CLE)

State Change Data to fifos)

]
rchitecture

General DMA Read Data Vertex Cache Manager & DMA
[VCM and VCD]

- Each QPU has access to

Ot h e r CO m po n e n ts to Shgped Primies Primitive Setup Engine
enable functionality T

(Rasteriser, Early-Z,

- Registers HATHA

- Uniforms

- Texture and Memory
Lookup Unit (TMU) —

- Special Functions
Unit (SFU) — i | e

- And more!

haded Vertices / General DMA Read Data

General Program Req
General DMA Write Data

Fragment Shade Req
Vertex Shade Req
Shaded Vertices
Shaded Vertices

Vertex Pipe
Memory [VPM]

$
g
3
§
K
g
g
5|
5

Quad X,Y,Flags 2, 1/W

Colour

Interpolator [VRI]
Quad Processor

el

QpPUO,1
Uniforms Cache [QUC]
Icache [QIC]

Texture and Memory
Lookup Unit [TMU]

QPUO,2

Special Functions Unit

QPUO,3

L2 Cache [L2C]

Theoretical Outputs

FLOP/S
- Floating-point Operations Per Second
- 1 GFLOP/S = 1000000000 FLOP/S = 10”9 FLOP/S

Videocore 4 (Pi Zero)
- 250MHz * 3slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 24 GFLOP/S

Videocore 4 (Pi 3)
- 300 MHz * 3slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 28.8 GFLOP/S

Videocore 6
- 500 MHz * 2 slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 32 GFLOP/S

Videocore 4 vs 6, General Comparison

Raspberry Pi Raspberry Pi 3 Raspberry Pi 4
Zero
GPU Videocore 4 Videocore 4 Videocore 6
Clock Speed 250 MHz 300 MHz 500 MHz
of QPUs 12 12 8
of slices 3 3 2
Theoretical 24 28.8 32

GFLOP/S

Current Goals

- While the QPU has processing power, most programs and routines built
for the Raspberry Pidon't utilize it

- Optimizing code by using the QPU would provide a massive speedup
throughout the entire device

- Use optimized code to compare the cost and energy efficiency of the
different Raspberry Pi GPUs

How to write code for the QPU

The QPU is programmed
using assembly language

Contains the typical add,
subtract, or, etc.

The Videocore 4 and
Videocore 6 have
different instruction sets

Instruction
nop
fadd
fsub
fmin
fmax
fminabs
fmaxabs
ftoi

itof

add

sub

shr

asr

ror

shl

min
max

and

opcode

O NV~ W NIRLRIO

Description

No operation

Floating point add

Floating point subtract

Floating point min

Floating point max

Floating point min of absolute values
Floating point max of absolute values
Floating point to signed integer
Signed integer to floating point
Reserved

Integer add

Integer subtract

Integer shift right

Integer arithmetic shift right

Integer rotate right

Integer shift left

Integer min

Integer max

Bitwise AND

How to write code for the QPU

- There are libraries available that implement the QPU assembly
language as part of other languages
- Videocore 4
- py-videocore
- VCA4CL
- Videocore 6
- py-videocoreb

- Each library has its own set of benefits and drawbacks

https://github.com/nineties/py-videocore
https://github.com/doe300/VC4CL
https://github.com/Idein/py-videocore6
https://github.com/wimrijnders/V3DLib

About the Libraries

py-videocore and py-videocoreb
Python libraries used for programming on raspberry pi boards

Allow us to communicate with the V3D GPU hardware (a driver used
by the raspberry pi)

Directly maps QPU Python function to the QPU assembly instructions
- E.g.thereis an add function written in Python that directly calls
the QPU add instruction

We have been using these libraries to run tests and analyze the
performance rate of the GPU vs the QPU on the raspberry pi systems

About the Libraries

- V3DLib
- A C++library used for creating programs to run on the VideoCore

GPU on all Raspberry Pi boards

- Doesn’t directly map functions to assembly like py-videocore,
creates a high-level C++ APl that is converted to QPU assembly
- Runs the program on the CPU and offloads to the QPU at
runtime

- Compiles on both VideoCore |V and VideoCore VI

- We have been using this library to run tests and analyze the
performance rate of one QPU vs eight QPU’s on the raspberry pi
systems

About the Libraries

- VC4CL
- Runs the OpenCL language directly on the Videocore 4 GPU

- Converts OpenCL code to assembly
- Not supported for Videocore 6

- Has the benefit of using OpenCL, which is used for a variety of
GPUs and devices

- Not usable for benchmarks, has significant compatibility issues
when running OpenCL code on the Videocore 4

Benchmarks

Multiply matrices directly on the QPU

Measure GFLOP/S
Calculate the number of operations

Measure the time to completion
GFLOP/S = (operations / time) * 10" 9

Results - Videocore 4

12 QPUs
Matrix Size (GFLOP/S) CPU (GFLOP/S)
16 0.0164 0.0497
32 0.1098 0.1392
48 0.3598 0.1837
64 0.7891 0.1135
128 2.7519 0.0451
160 4.1552 0.0571
256 4.336 0.0154
512 2.7411 0.0111

GFLOP/S vs. Matrix Size (py-videocore)

B aru cPU

fQ
o
(e}
pr}
e
[0}

128

Matrix Size

Results - Videocore 4

1QPU 12 QPUs

Matrix Size (GFLOP/S) (GFLOP/S) CPU (GFLOP/S)
16 0.0087 0.0126 0.0497

32 0.0356 0.0856 0.1392

48 0.0536 0.2294 0.1837

64 0.0657 0.3575 0.1135

128 0.0765 0.7522 0.0451

160 0.0802 0.8244 0.0571

256 0.0712 0.8036 0.0154

512 ERROR 0.8762 0.0111

GFLOP/S vs Matrix Size (V3DLib)

B 1QPU @ 12QPUs CPU

Y
o
[e]
|
s
o

0.25

P, . _-l J
16 32 48

il

Matrix Size

Results - Videocore 4

- Despite their speed differences, both libraries outperformed the
CPU on matrix multiplication, especially with large
- Py-videocore ran matrix multiplication much faster than

V3Dlib
- Duetoless overhead and more direct interfacing with the

QPU

- Different matrix sizes affect GFLOP/S
- Achieved 8.7 GFLOP/S with 96x363 and 363x3072 matrices

- The Raspberry Pi Zero dangerously heats up when running this
- Itisagood idea to repeat this with proper power measurement

tools

Results - Videocore 6

Matrix Size QPUs (GFLOP/S) | CPU (GFLOP/S)
orPu W cpPu
64 0.7798 1.336
128 2.746 2.243
192 4.045 2.501
256 4.271 2.354 @
320 4.152 2.501 g
384 4.399 2.539
448 4.06 2.685 I
512 4.322 2.766 128 192 256 320 384 448 512 768 960 1088 1280 1408

Matrix Size

Results - Videocore 6

GFLOPS/S vs Matrix Multiplication (V3DLib)
1QPU 8 QPUs W 1oPU W BQPU cPU
MatrixSize |(GFLOP/S) |(GFLOP/S) |CPU (GFLOP/S)

16 0.004053 0024646 1336

32 0059568 0161280 2243

48 0.057149 0.38400 2,501 0

64| 0117160| 0626737 2.354| |
128 0169393 1221971 2,501
160 0.183535 1376901 2,539 i I
256 0.205640 1479911 2.685 R RS .256
512 0.109250 138213 2.766 Matrx Size

\ Results - Videocore 6

- Using the Py-videocore library our QPU runs faster than the
CPU with a matrix 128x128 - 1088 x 1088

- Using the V3D Lib library the CPU outperforms the QPU by a
great amount

- Findings : The Py videocore 6 library ran matrix multiplication
significantly faster than the VD3Lib library

Videocore 4 vs 6, Benchmark Comparison

Videocore 4 QPUs Videocore 4 Videocore 6 QPUs Videocore 6
Matrix Size (GFLOP/S) CPU(GFLOP/S) (GFLOP/S) CPU(GFLOP/S)
16 0.0126 0.0497 0.004053 1.336
32 0.0856 0.1392 0.059568 2.243
48 0.2294 0.1837 0.057149 2.501
64 0.3575 0.1135 0.117160 2.354
128 0.7522 0.0451 0.169393 2.501
160 0.8244 0.0571 0.183535 2.539
256 0.8036 0.0154 0.205640 2.685
512 0.8762 0.0111 0.109250 2.766

Videocore 4 vs 6, Benchmark Comparison

Videocore 4 vs Videocore 6 (V3DLib)

I Videocore 4 QPUs (GFLOP/S) [Videocore 4 CPU(GFLOP/S) Videocore 6 QPUs (GFLOP/S) [Videocore 6 CPU(GFLOP/S)

3

GFLOP/S

0 - 1 |
16 32 48 64 128 160 256 512

Matrix Size

Videocore 4 vs 6, Benchmark Comparison

- Depending on the library, the Videocore 4 sometimes outperforms
the Videocore 6

- py-videocore and py-videocoreé always outperform V3DLib when
executing code on the QPU

- Likely due to the difference between assembly implementations
- Faster to directly map assembly to functions, rather than
making a high-level API

Future Goals

- We plan to further expand our understanding by continuing to run tests
and analyzing the performance of the system
- Overclock the Raspberry Pi 4

- Implement BLAS
- Basic Linear Algebra Subprograms
- Common linear algebra operations like dot products, matrix
multiplication, etc.

- Libraries that implement BLAS already exist for both Videocore GPUs
- amkl and amklé (which use py-videocore and py-videocoreé

underneath)
- Current libraries are either incompatible with all models or have

an incomplete featureset

https://github.com/Idein/qmkl
https://github.com/Idein/qmkl6

Future Goals

- Improve performance and compatibility with models by making
modifications to the BLAS libraries

- This will help with analysis of more complex libraries which will also
increase the capabilities of the Raspberry Pi

- Beable touse the BLAS libraries on the QPU to accelerate machine
learning frameworks, like Py Torch

- Use the optimized frameworks and BLAS libraries to measure
power consumption

https://pytorch.org/

QUESTIONS?

