
Midterm Review



Logistics
• Lab 2 now due Monday May 18th

• Midterm next class
• computer architecture background, gpu architecture, CUDA Parallelism, 

Memory coalescing, warp divergence, thread synchronization, Reduction, Scan, 
and Matrix Multiplication parallel algorithms

• UCR Cares Act
• Hopefully, you have received an email from the financial aid office about 

receiving your CARES Act fund

• Sign up for direct deposit through your student account in rweb



Quiz 2 – Question 1
• Allocate

• cudaMalloc((void**) &d_img, sizeof(float)*width*height);

• Do not allocate height and width as they are not pointers

• Copy to device
• cudaMemcpy(d_img, h_img, sizeof(float)*width*height, cudamemcpyHostToDevice);

• Destination, source, size, direction

• Launch
• BlockDim = (32,32,1) – given in question

• GridDim = (ceil(width/32),ceil(height/32),1) – gridDim also needs to be 2D

• ProcessImage<<<gridDim,BlockDim>>>(d_img,height,width)

• Copy to host
• cudaMemcpy(h_img, d_img, sizeof(float)*width*height, cudamemcpyDeviceToHost);



Quiz 2 – Question 2
• This does not exhibit coalesced memory requests

• Coalesced requests follow indexing pattern of 

• [a + tid.x] where a is some independent expression
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;

// one can think of the RGB image having
// CHANNEL times columns than the gray scale image

int rgbOffset = grayOffset*CHANNELS;

• rgbOffset does not follow this pattern

• [(a+x)*CHANNELS]



Quiz 2 – Question 2 uncoalesced 
unsigned char r = rgbImage[rgbOffset ]; // red value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2 uncoalesced 
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2 uncoalesced 
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2
• One way to make it coalesced is to transpose the matrix and access 

row by row



Quiz 2 – Question 2 coalesced 
unsigned char r = rgbImage[rgbOffset +(width*0)]; // red value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2 coalesced 
unsigned char g = rgbImage[rgbOffset +(width*1)]; // green value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2 coalesced 
unsigned char b = rgbImage[rgbOffset +(width*2)]; // blue value for pixel

Thread 0 Thread 1



Quiz 2 – Question 2
• One way to make it coalesced is to transpose the matrix and access 

row by row

• You could have stored the image in shared memory first and then kept 
the current access pattern, you would need to tile the loads since 
shared memory is limited



Quiz 2 – Question 2
• An exception: In general this does not exhibit memory coalescing 
However….

• This example used 1 byte characters per element [0 255] 

• 32 thread warp X 3 channels per thread = 96 bytes are accessed per 
warp

• If our dram burst size is 128 or anything > 96 bytes then this access 
pattern would still be coalesced in memory

• But you would have to know the burst size which is it is not always the 
case



Quiz 2 – Question 3
• Implementation 2 is better for any size

• It has less warp divergence and exhibits memory coalescing

• Implementation 1 every other thread becomes inactive thus has warp 
divergence after the first phase 

• Implementation 2 active threads are contiguous and do not have 
divergence until the last 5 stages (32,16,8,4,2,1)

• First five stages of no divergence only occurs if the size is 1024



Quiz 2 – Question 4
• The second one does not tile but it is more work efficient

• it does less computation O(n) compared with O(nlogn). 

• It achieves this by using the reduction and then post reduction phases.

• The reduction phase computes partial sums along the vector so there 
is less duplication of work among threads



Midterm Review



Computer Architecture
• Threads and processes

• What they contain and how they relate in hardware and software

• Cache hierarchy
• Understand the memory gap

• SW leads to HW design

• Principles of spacial and temporal locality
• How to write code to apply them

• HW leads to SW design

• Specialization towards parallel processing

• These are foundational concepts questions will not be explicitly 
mentioning them but will have implied understanding



GPU Architecture
• Warps contain 32 threads and execute on a SIMD unit

• SM Cores contain multiple SIMD Units run entire Thread Blocks

• GPU Contains multiple SMs 
Scalar Vector Core Card

Hardware

ALU Unit SIMD Unit SM GPU

Threads

Thread Warp Thread Block Block Grid

Memory Register File L1 Cache L2 / Memory

Address Space Local per thread Shared Memory Global

ALU
ALU

SM SMSIMD



GPU Architecture
• Hardware constraints

• Limit to number of 
threads and thread 
block per SM



GPU Architecture
• Hardware constraints examples

• An SM is fully occupied if it is running the maximum 
number of threads

• 2 blocks with 1024 threads – Fully occupied

• 32 blocks with 32 threads – not fully occupied

• Typically you want the number of threads per block to
be divisible by 32 and have at least 64 threads

• Multidimensional blocks get linearlized

• Block size of (16,16,4) =  16*16*4 =1024 threads

Max warps / SM 64

Max Threads / SM 2048

Max Thread Blocks / SM 32

Max Thread Block Size 1024



CUDA Programming
• Allocate, Copy to Device, Launch, Copy to Host

• Cudamemcopy(dest,src,size,direction)

• globalFunction<<<gridDim,BlockDim>>>(args)

• Allocate and copy data only pointed to by pointers

• Block and Grid size are 3 Dimensional 

• Threads are assigned a Thread id and Block id in each dimension
• Determine proper block and grid size for any input size

• How to assign data with thread and block ids e.g...

• Row = blockIdx.y*blockDim.y + threadIdx.y;

• Col = blockIdx.x*blockDim.x + threadIdx.x;



Memory coalescing
• When all threads of a warp execute a load instruction, if all accessed 

locations are contiguous, only one DRAM request will be made and the 
access is fully coalesced.

• When the accessed locations spread across burst section boundaries 
Coalescing fails and Multiple DRAM requests are made

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3

Un-coalesced Loads

T0 T1 T2 T3

Un-coalesced Loads



Memory coalescing
• Be able to spot and modify code to address memory coalescing concerns

• This affect thread access patterns

• Loads across threads access memory contiguously 

• Threads read across a row and access down a column

• Or load into shared memory if your access pattern cannot be easily altered



Warp Divergence
• Divergence only occurs when 

threads within a warp go 
through different control paths

• 1) all threads are active

• 2) All warps have divergence

• 3) Some threads are inactive but 
no warp divergence 

• 4) Some warps have divergence



Warp Divergence
• Be able to calculate the number of warps that exhibit divergence for a 

particular input and block size

• Spot and modify code to reduce the amount of divergence
• Pad outer bounds with 0 and get rid of any control instructions

• Resize block or change thread access pattern to land on warp boundaries

• Compact active threads to contiguous warps (reduction implementation)



Shared memory

Thread 1 Thread 2 …

Global Memory

Accessing memory is expensive, reduce the number of global memory loads



Shared Memory

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 

of tiles at each point in time  



Shared Memory

• Declare with __Shared__ var[size]

• Load into shared var then read from it

• Shared memory is only useful if you access it multiple times

• How to use it with tiling



Reduction
• Parallel reduction uses tree algorithm for O(logn)

• Two implementations

• Understand the difference in implementation and performance

• Understand as an example of warp divergence, memory coalescing, and thread 
synchronization
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Scan
• Parallel scan either strided array or tree algorithm

• Two implementations

• Understand the difference in implementation and performance

• Understand as an example of work efficiency and thread synchornization

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3

STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg


Tiled Matrix Multiplication
• Great example of tiling algorithm, use of shared memory, and thread synchronization

• Relation between tile size and block size

• Number of tiled phases for any height and width of matrix

• 2D Thread and block ids
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