
Midterm Review

Logistics
• Lab 2 now due Monday May 18th

• Midterm next class
• computer architecture background, gpu architecture, CUDA Parallelism,

Memory coalescing, warp divergence, thread synchronization, Reduction, Scan,
and Matrix Multiplication parallel algorithms

• UCR Cares Act
• Hopefully, you have received an email from the financial aid office about

receiving your CARES Act fund

• Sign up for direct deposit through your student account in rweb

Quiz 2 – Question 1
• Allocate

• cudaMalloc((void**) &d_img, sizeof(float)*width*height);

• Do not allocate height and width as they are not pointers

• Copy to device
• cudaMemcpy(d_img, h_img, sizeof(float)*width*height, cudamemcpyHostToDevice);

• Destination, source, size, direction

• Launch
• BlockDim = (32,32,1) – given in question

• GridDim = (ceil(width/32),ceil(height/32),1) – gridDim also needs to be 2D

• ProcessImage<<<gridDim,BlockDim>>>(d_img,height,width)

• Copy to host
• cudaMemcpy(h_img, d_img, sizeof(float)*width*height, cudamemcpyDeviceToHost);

Quiz 2 – Question 2
• This does not exhibit coalesced memory requests

• Coalesced requests follow indexing pattern of

• [a + tid.x] where a is some independent expression
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;

// one can think of the RGB image having
// CHANNEL times columns than the gray scale image

int rgbOffset = grayOffset*CHANNELS;

• rgbOffset does not follow this pattern

• [(a+x)*CHANNELS]

Quiz 2 – Question 2 uncoalesced
unsigned char r = rgbImage[rgbOffset]; // red value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2 uncoalesced
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2 uncoalesced
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2
• One way to make it coalesced is to transpose the matrix and access

row by row

Quiz 2 – Question 2 coalesced
unsigned char r = rgbImage[rgbOffset +(width*0)]; // red value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2 coalesced
unsigned char g = rgbImage[rgbOffset +(width*1)]; // green value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2 coalesced
unsigned char b = rgbImage[rgbOffset +(width*2)]; // blue value for pixel

Thread 0 Thread 1

Quiz 2 – Question 2
• One way to make it coalesced is to transpose the matrix and access

row by row

• You could have stored the image in shared memory first and then kept
the current access pattern, you would need to tile the loads since
shared memory is limited

Quiz 2 – Question 2
• An exception: In general this does not exhibit memory coalescing
However….

• This example used 1 byte characters per element [0 255]

• 32 thread warp X 3 channels per thread = 96 bytes are accessed per
warp

• If our dram burst size is 128 or anything > 96 bytes then this access
pattern would still be coalesced in memory

• But you would have to know the burst size which is it is not always the
case

Quiz 2 – Question 3
• Implementation 2 is better for any size

• It has less warp divergence and exhibits memory coalescing

• Implementation 1 every other thread becomes inactive thus has warp
divergence after the first phase

• Implementation 2 active threads are contiguous and do not have
divergence until the last 5 stages (32,16,8,4,2,1)

• First five stages of no divergence only occurs if the size is 1024

Quiz 2 – Question 4
• The second one does not tile but it is more work efficient

• it does less computation O(n) compared with O(nlogn).

• It achieves this by using the reduction and then post reduction phases.

• The reduction phase computes partial sums along the vector so there
is less duplication of work among threads

Midterm Review

Computer Architecture
• Threads and processes

• What they contain and how they relate in hardware and software

• Cache hierarchy
• Understand the memory gap

• SW leads to HW design

• Principles of spacial and temporal locality
• How to write code to apply them

• HW leads to SW design

• Specialization towards parallel processing

• These are foundational concepts questions will not be explicitly
mentioning them but will have implied understanding

GPU Architecture
• Warps contain 32 threads and execute on a SIMD unit

• SM Cores contain multiple SIMD Units run entire Thread Blocks

• GPU Contains multiple SMs
Scalar Vector Core Card

Hardware

ALU Unit SIMD Unit SM GPU

Threads

Thread Warp Thread Block Block Grid

Memory Register File L1 Cache L2 / Memory

Address Space Local per thread Shared Memory Global

ALU
ALU

SM SMSIMD

GPU Architecture
• Hardware constraints

• Limit to number of
threads and thread
block per SM

GPU Architecture
• Hardware constraints examples

• An SM is fully occupied if it is running the maximum
number of threads

• 2 blocks with 1024 threads – Fully occupied

• 32 blocks with 32 threads – not fully occupied

• Typically you want the number of threads per block to
be divisible by 32 and have at least 64 threads

• Multidimensional blocks get linearlized

• Block size of (16,16,4) = 16*16*4 =1024 threads

Max warps / SM 64

Max Threads / SM 2048

Max Thread Blocks / SM 32

Max Thread Block Size 1024

CUDA Programming
• Allocate, Copy to Device, Launch, Copy to Host

• Cudamemcopy(dest,src,size,direction)

• globalFunction<<<gridDim,BlockDim>>>(args)

• Allocate and copy data only pointed to by pointers

• Block and Grid size are 3 Dimensional

• Threads are assigned a Thread id and Block id in each dimension
• Determine proper block and grid size for any input size

• How to assign data with thread and block ids e.g...

• Row = blockIdx.y*blockDim.y + threadIdx.y;

• Col = blockIdx.x*blockDim.x + threadIdx.x;

Memory coalescing
• When all threads of a warp execute a load instruction, if all accessed

locations are contiguous, only one DRAM request will be made and the
access is fully coalesced.

• When the accessed locations spread across burst section boundaries
Coalescing fails and Multiple DRAM requests are made

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads

T0 T1 T2 T3

Un-coalesced Loads

Memory coalescing
• Be able to spot and modify code to address memory coalescing concerns

• This affect thread access patterns

• Loads across threads access memory contiguously

• Threads read across a row and access down a column

• Or load into shared memory if your access pattern cannot be easily altered

Warp Divergence
• Divergence only occurs when

threads within a warp go
through different control paths

• 1) all threads are active

• 2) All warps have divergence

• 3) Some threads are inactive but
no warp divergence

• 4) Some warps have divergence

Warp Divergence
• Be able to calculate the number of warps that exhibit divergence for a

particular input and block size

• Spot and modify code to reduce the amount of divergence
• Pad outer bounds with 0 and get rid of any control instructions

• Resize block or change thread access pattern to land on warp boundaries

• Compact active threads to contiguous warps (reduction implementation)

Shared memory

Thread 1 Thread 2 …

Global Memory

Accessing memory is expensive, reduce the number of global memory loads

Shared Memory

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number

of tiles at each point in time

Shared Memory

• Declare with __Shared__ var[size]

• Load into shared var then read from it

• Shared memory is only useful if you access it multiple times

• How to use it with tiling

Reduction
• Parallel reduction uses tree algorithm for O(logn)

• Two implementations

• Understand the difference in implementation and performance

• Understand as an example of warp divergence, memory coalescing, and thread
synchronization

Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1Thread 2Thread 3

Scan
• Parallel scan either strided array or tree algorithm

• Two implementations

• Understand the difference in implementation and performance

• Understand as an example of work efficiency and thread synchornization

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3

STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

Tiled Matrix Multiplication
• Great example of tiling algorithm, use of shared memory, and thread synchronization

• Relation between tile size and block size

• Number of tiled phases for any height and width of matrix

• 2D Thread and block ids

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

