
Quiz 1



Quiz 1 – Question 1
Compare the differences between a thread and a process. What do both contain and how do they relate 
to one another? Why is a thread considered "lightweight"? And if so, assess the need for a process.

• Processes and threads are dynamic
• Processes contain the static input and code 

data but also have a global heap
• Threads only contain their local stack and 

registers – this makes them lightweight
• Processes are still needed to keep separate 

address spaces



Quiz 1 – Question 2
What are temporal and spacial cache locality? How can a programmer take advantage of both? 
Demonstrate a case for both localities.

• This was the  most misunderstood question 
• Everyone got what temporal and spacial locality definitions
• Very few applied them 



Question 2 examples
What are temporal and spacial cache locality? How can a programmer take advantage of both? 
Demonstrate a case for both localities.

• Loops are not an application of locality; they are a description of what locality is
• This is the programs behavior that the caches take advantage of 
• Not how a programmer can take advantage of locality
• The following exhibit the same behavior 

a = 0;
for(int i = 0; i < 10; ++i){

a += i;
}

a = 0;
a+=1;
a+=2;
.
.
.



Question 2 examples
What are temporal and spacial cache locality? How can a programmer take advantage of both? 
Demonstrate a case for both localities.

• An example for spacial may be
• Transposing a matrix to access rows instead of columns
• Purposely  putting related items next to each other in a structure
• Computing on small region of data before moving to another

• An example for temporal may be
• Moving computation of the same data next to each other
• Reusing a loaded value
• Computing on small region of data before moving to another



Question 2  - the HW-SW stack
What are temporal and spacial cache locality? How can a programmer take advantage of both? 
Demonstrate a case for both localities.

• What this question is asking is how does 
HW affect the way software is written

• Describing what locality is shows how SW
affected HW design

• Looking for you to explain and create



How I’m organizing the class

Lectures

Quizzes

Labs and Tests



Quiz 1 – Question 3
Explain what a SIMD unit is and what additions does it need compared to a scalar ALU. Create a 
scenario in which you would prefer SIMD units, when would you prefer a scalar ALU?

• SIMD are vector processing units they execute Single Instruction on Multiple Data
• SIMD units are an array of scalar ALUs along with a wider register file (data path)
• SIMD is better for vector processing, ALU may be better for control flow or small

amounts of data SIMD does take up more power!
• Misconceptions

• SIMD still executes a sequence of instructions in serial. Its just that a single 
instruction is now a vector instruction

• SIMD instructions are the same complexity as ALU. They both do arithmetic



Quiz 1 – Question 4
Describe the hierarchy of execution units within a GPU and relate the unit of scheduling to each level of 
the hierarchy. Evaluate the hierarchy in terms of programmability,performance,use cases,general vs 
specialization,etc..

• Sorry for the poorly written question, but most people understood the question
Scalar Vector Core Card

Hardware

ALU Unit SIMD Unit SM GPU

Threads

Thread Warp Thread Block Block Grid

Memory Register File L1 Cache L2 / Memory

Address Space Local per thread Shared Memory Global

ALU
ALU

SM SMSIMD



Quiz 1 – Question 4
Describe the hierarchy of execution units within a GPU and relate the unit of scheduling to each level of 
the hierarchy. Evaluate the hierarchy in terms of programmability,performance,use cases,general vs 
specialization,etc..

• Good evaluations of hierarchy
• Easier to program, as we only worry about thread blocks and grids
• Reduces hardware complexity and reduces power consumption
• Scalable,  just add more SMs to get more performance
• Use cases for graphics and matrix multiplication map very well to this hardware
• Allows the GPU to be programmed generally and reduces specialization



Scan



Inclusive Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator ⊕
(pronounced as circle plus), and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕… ⊕ xn-1)].

Example: If ⊕ is addition, then scan operation on the array would 
return

[3  1  7   0   4    1   6   3], [3  4 11 11 15 16 22 
25].



An Inclusive Scan Application Example
– Assume that we have a 100-inch sandwich to feed 10 people

– We know how much each person wants in inches

– [3  5   2   7   28 4  3 0  8  1]

– How do we cut the sandwich quickly? 

– How much will be left?

– Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc. 

– Method 2: calculate prefix sum:

– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

13



Typical Applications of Scan
– Scan is a simple and useful parallel building block

– Convert recurrences from sequential:  
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– Into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

– Useful for many parallel algorithms:

• Radix sort

• Quicksort

• String comparison

• Lexical analysis

• Stream compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Histograms, ….



Other Applications
– Assigning camping spots

– Assigning Farmer’s Market spaces

– Allocating memory to parallel threads

– Allocating memory buffer space for communication channels

– …

15



An Inclusive Sequential Addition Scan 
Given a sequence  [x0, x1, x2, ... ]

Calculate output [y0, y1, y2, ... ]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition 

yi = yi − 1 + xi

16



A Work Efficient C Implementation

y[0] = x[0];

for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)!

Only slightly more expensive than sequential reduction.

17



A Naïve Inclusive Parallel Scan
– Assign one thread to calculate each y element

– Have every thread to add up all x elements needed for the y element

y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do not care about performance.”

18





A Better Parallel Scan Algorithm
1. Read input from device global memory to shared memory

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

• Active threads stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from shared memory and writes result 
into element j in shared memory

• Requires barrier synchronization, once before read and once before write

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1

STRIDE = 1

STRIDE 1



A Better Parallel Scan Algorithm
1. Read input from device to shared memory

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration. 

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 2

STRIDE = 2

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2



A Better Parallel Scan Algorithm
1. Read input from device to shared memory

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

3. Write output from shared memory to device memory

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3

STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4



Handling Dependencies
– During every iteration, each thread can overwrite the input of another thread

– Barrier synchronization to ensure all inputs have been properly generated

– All threads secure input operand that can be overwritten by another thread

– Barrier synchronization is required to ensure that all threads have secured their inputs

– All threads perform addition and write output

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1

STRIDE = 1

STRIDE 1



A Work-Inefficient Scan Kernel
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < InputSize) {XY[threadIdx.x] = X[i];}

// the code below performs iterative scan on XY

for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {

__syncthreads();

float in1 = XY[threadIdx.x + stride];

__syncthreads();

XY[threadIdx.x] += in1;

}

__ syncthreads();

If (i < InputSize) {Y[i] = XY[threadIdx.x];}

}



Work Efficiency Considerations
– This Scan executes log(n) parallel iterations

– The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each

– Total adds: n * log(n)  - (n-1) → O(n*log(n)) work

– This scan algorithm is not work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) can hurt: 10x for 1024 elements!

– A parallel algorithm can be slower than a sequential one when execution 
resources are saturated from low work efficiency



Improving Efficiency
– Balanced Trees

– Form a balanced binary tree on the input data and sweep it to and from the root

– Tree is not an actual data structure, but a concept to determine what each thread does 
at each step

– For scan:
– Traverse down from leaves to the root building partial sums at internal nodes in the tree

– The root holds the sum of all leaves

– Traverse back up the tree building the output from the partial sums

26



Parallel Scan - Reduction Phase

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In-place calculation 

Value after reduce



Reduction Phase Kernel Code

28

// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1;stride <= BLOCK_SIZE; stride *= 2) 

{

int index = (threadIdx.x+1)*stride*2 - 1;

if(index < 2*BLOCK_SIZE)

XY[index] += XY[index-stride];

__syncthreads();

}

threadIdx.x+1    = 1, 2, 3, 4….

stride = 1, 

index = 1, 3, 5, 7, …



Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2
∑x0..x1 ∑x4..x5

∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value  to a central 

location where it is needed



Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6



Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg


Post Reduction Reverse Phase Kernel Code 

for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {

__syncthreads();

int index = (threadIdx.x+1)*stride*2 - 1;

if(index+stride < 2*BLOCK_SIZE) {

XY[index + stride] += XY[index];

}

}

__syncthreads();

if (i < InputSize) Y[i] = XY[threadIdx.x];

First iteration for 16-element section
threadIdx.x = 0
stride = BLOCK_SIZE/2 = 8/2 = 4
index = 8-1 = 7



Work Analysis of the Work Efficient Kernel
– The work efficient kernel executes log(n) parallel iterations in the reduction step

– The iterations do n/2, n/4,..1 adds

– Total adds: (n-1) → O(n) work

– It executes log(n)-1 parallel iterations in the post-reduction reverse step

– The iterations do 2-1, 4-1, …. n/2-1 adds

– Total adds: (n-2) – (log(n)-1) → O(n) work

– Both phases perform up to no more than 2x(n-1) adds

– The total number of adds is no more than twice of that done in the efficient sequential algorithm

– The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware



Some Tradeoffs
– The work efficient scan kernel is normally more desirable

– Better Energy efficiency

– Less execution resource requirement

– However, the work inefficient kernel could be better for absolute performance due to its single-
phase nature (forward phase only)

– There is sufficient execution resource



Handling Large Input Vectors
– Build on the work efficient scan kernel 

– Have each section of 2*blockDim.x elements assigned to a block
– Perform parallel scan on each section

– Have each block write the sum of its section into a Sum[] array indexed by blockIdx.x

– Run the scan kernel on the Sum[] array

– Add the scanned Sum[] array values to all the elements of corresponding sections

– Adaptation of work inefficient kernel is similar.

35



Overall Flow of Complete Scan



Exclusive Scan Definition
Definition: The exclusive scan operation takes a binary associative operator ⊕, and an array of n elements

[x0, x1, …, xn-1]

and returns the array

[0, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)].

Example: If ⊕ is addition, then the exclusive scan operation

on the array [3  1  7   0   4   1   6    3],

would return [0  3  4 11  11 15 16 22].



Why Use Exclusive Scan?
– To find the beginning address of allocated buffers

– Inclusive and exclusive scans can be easily derived from each other; it is a matter of 
convenience

[3  1  7   0   4   1   6    3]

Exclusive [0  3  4 11  11 15 16 22]

Inclusive [3  4 11  11 15 16 22 25]



A Simple Exclusive Scan Kernel
– Adapt an inclusive, work inefficient scan kernel

– Block 0:
– Thread 0 loads 0 into XY[0]

– Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

– All other blocks:
– All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into XY[threadIdex.x]

– Similar adaption for work efficient scan kernel but ensure that each thread loads two elements
– Only one zero should be loaded

– All elements should be shifted to the right by only one position


