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Logistics

• Lab1 due this Friday

• Friday discussion will start lab 2

• From the school –
• In spring 2020, students can withdraw from one or more classes without a “W” grade 

through the end of week eight of instruction without an associate dean’s approval



CUDA Memories



Hardware View of CUDA Memories
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Programmer View of  CUDA Memories
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Declaring CUDA Variables

– __device__ is optional when used with  __shared__, or __constant__

– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application



Example:
Shared Memory Variable Declaration 

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}



Where to Declare Variables?

Can host 
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Shared Memory in CUDA

– A special type of memory whose contents are explicitly defined and used in the kernel source 
code

– One in each SM

– Accessed at much higher speed (in both latency and throughput) than global memory

– Scope of access and sharing - thread blocks

– Lifetime – thread block, contents will disappear after the corresponding thread finishes terminates execution

– Accessed by memory load/store instructions

– A form of scratchpad memory in computer architecture



Global Memory Access Pattern 
of the Basic Matrix Multiplication Kernel
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Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 

of tiles at each point in time  



Tiling/Blocking - Basic Idea
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Key Takeaways

• Shared Memory is a programmer specified SM memory

• Located inside of an SM Core

• Threads within a single thread block have access to the same space 

• Across thread blocks can not be accessed

• Static declaration through __shared__ int var[numElements]

• Dynamic declaration through func<<gridDim,BlockDim,SharedMemSize>>(args)





Parallel Computation Patterns -
Reduction



“Partition and Summarize”

– A commonly used strategy for processing large input data sets
– There is no required order of processing elements in a data set  (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from each chunk into the final answer

– E.G., Google and Hadoop MapReduce frameworks support this strategy

– We will focus on the reduction tree step for now



Reduction enables other techniques

– Reduction is also needed to clean up after some commonly used parallelizing 
transformations

– Privatization
– Multiple threads write into an output location

– Replicate the output location so that each thread has a private output location (privatization)

– Use a reduction tree to combine the values of private locations into the original output location



What is a reduction computation?
– Summarize a set of input values into one value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often used with a user defined reduction operation function as long as the 
operation
– Is associative and commutative

– Has a well-defined identity value (e.g., 0 for sum)

– For example, the user may supply a custom “max” function for 3D coordinate data sets where 
the magnitude for the each coordinate data tuple is the distance from the origin.



An Efficient Sequential Reduction O(N)

– Initialize the result as an identity value for the reduction operation
– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

– Iterate through the input and perform the reduction operation between the result value 
and the current input value

– N reduction operations performed for N input values

– Each input value is only visited once – an O(N) algorithm

– This is a computationally efficient algorithm.



A parallel reduction tree algorithm performs N-1 operations in 
log(N) steps

13



Work Efficiency Analysis

– For N input values, the reduction tree performs
– (1/2)N + (1/4)N + (1/8)N + … (1)N = (1- (1/N))N = N-1 operations

– In Log (N) steps – 1,000,000 input values take 20 steps

– Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))

– For N = 1,000,000, average parallelism is 50,000

– However, peak resource requirement is 500,000

– This is not resource efficient

– This is a work-efficient parallel algorithm
– The amount of work done is comparable to the an efficient sequential algorithm

– Many parallel algorithms are not work efficient



Basic reduction kernel



Parallel Sum Reduction

– Parallel implementation

– Each thread adds two values in each step

– Recursively halve # of threads

– Takes log(n) steps for n elements, requires n/2 threads



A Parallel Sum Reduction Example



A Naive Thread to Data Mapping

– Each thread is responsible for an even-index location of the partial sum vector (location of 
responsibility)

– After each step, half of the threads are no longer needed

– One of the inputs is always from the location of responsibility

– In each step, one of the inputs comes from an increasing distance away



A Simple Thread Block Design

– Each thread block takes 2*BlockDim.x input elements

– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start + blockDim.x+t];



The Reduction Steps

for (unsigned int stride = 1; 

stride <= blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % stride == 0)

partialSum[2*t]+= partialSum[2*t+stride];

} Why do we need __syncthreads()?



Barrier Synchronization

– __syncthreads() is needed to ensure that all elements of each version of partial sums 
have been generated before we proceed to the next step

– __syncthreads() synchronizes all threads within the block



Barrier Synchronization



Back to the Global Picture

– At the end of the kernel, Thread 0 in each block writes the sum of the thread 
block in partialSum[0] into a vector indexed by the blockIdx.x

– There can be a large number of such sums if the original vector is very large
– The host code may iterate and launch another kernel

– If there are only a small number of sums, the host can simply transfer the 
data back and add them together

– Alternatively, Thread 0 of each block could use atomic operations to 
accumulate into a global sum variable.





A better reduction model



Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence

– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024), where each active warp only has 
one productive thread until all warps in a block retire 



Thread Index Usage Matters

– In some algorithms, one can shift the index usage to improve the divergence behavior
– Commutative and associative operators

– Keep the active threads consecutive
– Always compact the partial sums into the front locations in the partialSum[ ] array



An Example of 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3



A Quick Analysis

– For a 1024 thread block
– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step

– All threads in each warp  either all active or all inactive

– The final 5 steps will still have divergence 




