
Parallel Computation Patterns
(Reduction)

Slide credit:  Slides adapted from 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016





Logistics

• Lab1 due this Friday

• Friday discussion will start lab 2

• From the school –
• In spring 2020, students can withdraw from one or more classes without a “W” grade 

through the end of week eight of instruction without an associate dean’s approval



CUDA Memories



Hardware View of CUDA Memories

GPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR5

Memory
Partition

GDDR5

Memory
Partition

GDDR5 Off-chip DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT
Front End SIMD Datapath

Fetch

Decode

Schedule

Branch

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File



Programmer View of  CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory



Declaring CUDA Variables

– __device__ is optional when used with  __shared__, or __constant__

– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application



Example:
Shared Memory Variable Declaration 

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}



Where to Declare Variables?

Can host 

access it?

Outside of 

any Function
In the kernel

global
constant

register
shared



Shared Memory in CUDA

– A special type of memory whose contents are explicitly defined and used in the kernel source 
code

– One in each SM

– Accessed at much higher speed (in both latency and throughput) than global memory

– Scope of access and sharing - thread blocks

– Lifetime – thread block, contents will disappear after the corresponding thread finishes terminates execution

– Accessed by memory load/store instructions

– A form of scratchpad memory in computer architecture



Global Memory Access Pattern 
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2
…

Global Memory



Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 

of tiles at each point in time  



Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory



Key Takeaways

• Shared Memory is a programmer specified SM memory

• Located inside of an SM Core

• Threads within a single thread block have access to the same space 

• Across thread blocks can not be accessed

• Static declaration through __shared__ int var[numElements]

• Dynamic declaration through func<<gridDim,BlockDim,SharedMemSize>>(args)





Parallel Computation Patterns -
Reduction



“Partition and Summarize”

– A commonly used strategy for processing large input data sets
– There is no required order of processing elements in a data set  (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from each chunk into the final answer

– E.G., Google and Hadoop MapReduce frameworks support this strategy

– We will focus on the reduction tree step for now



Reduction enables other techniques

– Reduction is also needed to clean up after some commonly used parallelizing 
transformations

– Privatization
– Multiple threads write into an output location

– Replicate the output location so that each thread has a private output location (privatization)

– Use a reduction tree to combine the values of private locations into the original output location



What is a reduction computation?
– Summarize a set of input values into one value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often used with a user defined reduction operation function as long as the 
operation
– Is associative and commutative

– Has a well-defined identity value (e.g., 0 for sum)

– For example, the user may supply a custom “max” function for 3D coordinate data sets where 
the magnitude for the each coordinate data tuple is the distance from the origin.



An Efficient Sequential Reduction O(N)

– Initialize the result as an identity value for the reduction operation
– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

– Iterate through the input and perform the reduction operation between the result value 
and the current input value

– N reduction operations performed for N input values

– Each input value is only visited once – an O(N) algorithm

– This is a computationally efficient algorithm.



A parallel reduction tree algorithm performs N-1 operations in 
log(N) steps

13



Work Efficiency Analysis

– For N input values, the reduction tree performs
– (1/2)N + (1/4)N + (1/8)N + … (1)N = (1- (1/N))N = N-1 operations

– In Log (N) steps – 1,000,000 input values take 20 steps

– Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))

– For N = 1,000,000, average parallelism is 50,000

– However, peak resource requirement is 500,000

– This is not resource efficient

– This is a work-efficient parallel algorithm
– The amount of work done is comparable to the an efficient sequential algorithm

– Many parallel algorithms are not work efficient



Basic reduction kernel



Parallel Sum Reduction

– Parallel implementation

– Each thread adds two values in each step

– Recursively halve # of threads

– Takes log(n) steps for n elements, requires n/2 threads



A Parallel Sum Reduction Example



A Naive Thread to Data Mapping

– Each thread is responsible for an even-index location of the partial sum vector (location of 
responsibility)

– After each step, half of the threads are no longer needed

– One of the inputs is always from the location of responsibility

– In each step, one of the inputs comes from an increasing distance away



A Simple Thread Block Design

– Each thread block takes 2*BlockDim.x input elements

– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start + blockDim.x+t];



The Reduction Steps

for (unsigned int stride = 1; 

stride <= blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % stride == 0)

partialSum[2*t]+= partialSum[2*t+stride];

} Why do we need __syncthreads()?



Barrier Synchronization

– __syncthreads() is needed to ensure that all elements of each version of partial sums 
have been generated before we proceed to the next step

– __syncthreads() synchronizes all threads within the block



Barrier Synchronization



Back to the Global Picture

– At the end of the kernel, Thread 0 in each block writes the sum of the thread 
block in partialSum[0] into a vector indexed by the blockIdx.x

– There can be a large number of such sums if the original vector is very large
– The host code may iterate and launch another kernel

– If there are only a small number of sums, the host can simply transfer the 
data back and add them together

– Alternatively, Thread 0 of each block could use atomic operations to 
accumulate into a global sum variable.





A better reduction model



Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence

– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024), where each active warp only has 
one productive thread until all warps in a block retire 



Thread Index Usage Matters

– In some algorithms, one can shift the index usage to improve the divergence behavior
– Commutative and associative operators

– Keep the active threads consecutive
– Always compact the partial sums into the front locations in the partialSum[ ] array



An Example of 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3



A Quick Analysis

– For a 1024 thread block
– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step

– All threads in each warp  either all active or all inactive

– The final 5 steps will still have divergence 




