
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Characterizing Dynamic Frequency and Thread Blocking Scaling in GPUs: Challenges and
Opportunities

Permalink
https://escholarship.org/uc/item/0k8128hn

Author
Chow, Marcus N

Publication Date
2018

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0k8128hn
https://creativecommons.org/licenses/https://creativecommons.org/licenses/by/4.0//4.0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Characterizing Dynamic Frequency and Thread Blocking Scaling in GPUs:
Challenges and Opportunities

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Marcus Chow

March 2018

Thesis Committee:

Professor Daniel Wong, Chairperson
Professor Laxmi Bhuyan
Professor Nael Abu-Ghazaleh

Copyright by
Marcus Chow

2018

The Thesis of Marcus Chow is approved:

Committee Chairperson

University of California, Riverside

Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 4
2.1 GPU Execution Model . 4

2.1.1 Nvidia MPS . 7
2.2 Data Center Workloads . 7

2.2.1 DjiNN and Tonic . 8
2.3 Tail Latency . 10
2.4 Related Work . 11

2.4.1 Quality of Service Aware Dynamic Power Management 11
2.4.2 Power Management techniques . 13

2.5 Dynamic Voltage and Frequency Scaling (DVFS) 14
2.5.1 DVFS in GPUs . 15

3 Motivation 16
3.1 Tail Latency Calculations . 16
3.2 Power savings from DVFS . 18
3.3 Thread Block scaling . 20

4 Evaluation 26
4.1 Example Power Management Policy . 26
4.2 Experimental Setup . 28
4.3 Experimental Results . 29

5 Conclusion 31

Bibliography 33

iv

List of Figures

2.1 Example GPU architecture. Shows how a GPU is composed of multiple
Streaming Multiprocessors. Where the Thread Block Scheduler, Schedules
Thread Blocks to every SM . 5

2.2 How the driver handles kernel calls from a CPU Process. Kernels from differ-
ent streams are able to execute concurrently, however kernels from the same
stream are pushed into Driver Queues and executed sequentially 6

2.3 Overview othe Djinn and Tonic service. Adapted from [12] 8
2.4 Example of Latency Distribution in Data Centers. Guaranteed latency is

under the 99 percentile, but average latency is much lower than the tail.
This gives some slack to slow down requests and save energy. 10

3.1 Impact of frequency and server load on tail latency. At light loads, lower
frequencies are able to maintain QoS. 17

3.2 Power Usage of Low, Medium, High loads at varying frequencies. Power
savings is limited at lower frequencies. 19

3.3 Simple example of the effect of thread block scaling with two concurrent
requests of IMC workload. The top figure shows how request 1 consumes most
of the resources,delaying request 2. The bottom figure shows how limiting
the number of thread blocks by half can reduce the overall time of finishing
both requests. 20

3.4 Latency Slowdown due to Thread Block Scaling. 21
3.5 Percentage of Kernels that are greater than the limit. This chart shows that

a large percentage of kernels do not utilize all GPU resources 23
3.6 Expected Energy Consumption . 24

4.1 Runtime Framework in Djinn . 27
4.2 Power and Frequency Results of Titan X while running a Google data cen-

ter utilization trace. Baseline (Blue) shows the behavior of existing power
management in modern GPUs. The red line shows the potential for power
savings by latency-aware dynamic frequency scaling. 29

v

List of Tables

4.1 Precomputed Frequencies to Meet QoS . 28
4.2 Average Power Usage and Frequency . 30

vi

Chapter 1

Introduction

Present day data centers, or warehouse scale computers (WSC), require significant

compute power to accelerate workloads such as Deep Learning (DL) and High Performance

Computing (HPC). However, data center energy consumption is a first-order limiting factor.

GPUs are popular accelerators for the aforementioned type of workloads due to its energy

efficient properties [1], enabling order-of-magnitude improvements in operations per watt

compared to traditional multi-core CPUs.

With the introduction of Elastic GPUs in Amazon EC2 instances and Azure N-

series, it brings us to question “How useful are the GPUs in the Cloud?”. As accelerators,

GPUs are often compared against FPGAs, which consume vastly less power and can accel-

erate many types of regular workloads. For GPUs to be useful in data centers they need to

be energy efficient. By far, the performance and energy efficiency of GPUs in a data center

environment have not been well explored. This has been a challenge because the GPU are

slave devices that are controlled through drivers instead of the operating system. Nvidia’s

1

GPUs use their proprietary CUDA drivers and runtime API that allow only course grain

control. Previous work treat GPUs as black box accelerators, increasing energy efficiency

and utilization through Quality of Service predictions [2, 3].

In contrast to prior works which maximizes throughput and utilization, we instead

aim to improve energy efficiency through exploiting the limited power management polices

on GPUs. In this work, we will show that current power polices implemented in real GPUs

are load agnostic and will run at the highest frequency, aiming to exploit thermal headroom

for performance-only gains. This leaves out any extra power savings through workload

dependent policies. Based on our observations, we propose a runtime frequency scaling

technique that aims to improve the energy efficiency of GPUs that is currently lacking

in existing GPUs. In addition, we will further explore opportunities to further improve

energy efficiency through utilizing request parallelism as a knob to control the amount of

co-location of request possible.

In this paper, we perform power management characterization of real GPUs, tail

latency analyses and explore possible modifications to save power and improve throughput.

In addition, we will highlight the opportunities and challenges that we encounter in regards

to implementing more efficient power management policies on real GPUs. Our contributions

are:

• Evaluating Power Characteristics of GPUs: Our Dynamic Frequency Scaling experi-

ments show a non linear diminishing relationship between frequency and power, lim-

iting potential power savings.

• Thread Block Scaling and its effect on tail latency: We do preliminary tests on Thread

2

Block Scaling to improve throughput and per-request energy efficiency.

• Propose simple power savings policy for GPUs: As a proof of concept, by scaling

frequency with respect to current server utilization, we make theoretical calculations

that show a 1.6x improvement in power savings.

3

Chapter 2

Background

In this chapter, we will provide the background for the GPU Execution Model

and their role in Data Centers. We will also define Tail Latency and Quality of Service

and their use in previous research, as well as, historical use of Dynamic Frequency and

Voltage Scaling. Our policy focuses techniques to reduce power consumption and increase

throughput in GPUs without violating the Quality of Service

2.1 GPU Execution Model

GPUs follow a Single Instruction Multiple Thread (SIMT) execution model run-

ning on thousands of cores. 32 threads are grouped together to execute instructions in the

form of a Warp. Warps consist of 32 threads that operate in a lock-step manner, where

every thread within the warp must execute the same instruction. Should threads within

a warp need to execute different instructions, the warp will diverge, with certain threads

being deactivated if a certain instruction is not in its execution path, leading to under-

4

GPU

SM SM

Thread Block Scheduler

Shared L2 Cache

SM SM SM

SM SM SM SM SM

Figure 2.1: Example GPU architecture. Shows how a GPU is composed of multiple Stream-
ing Multiprocessors. Where the Thread Block Scheduler, Schedules Thread Blocks to every
SM

utilization in the hardware. As shown in Figure 2.1 Warps are then logically grouped into

Thread Blocks and are mapped to hardware structures called Streaming Multiprocessors

(SMs). Current GPUs contain, in the order of 20-30 SMs. Our work uses the Tesla V100,

which contains 80 SMs. Kernels, which represents a program context, are then composed

of multiple thread blocks.

GPUs are slave devices, which process computation that is offloaded from the

CPU. The CPU is referred to as the host side and the GPU is called the Device side.

Every request sent to the GPU involves three stages: 1) Data transfer from Host to Device,

2) kernel execution, 3) and data transfer from Device to Host. All three stages must be

initiated on the host side. These stages can be overlapped by stages from other requests

using different streams. Overlapping two or more streams, can increase overall throughput

5

but can hinder servicing time due to hardware contention (such as cache contention, or

memory bandwidth sharing), which is a critical factor in data centers. Also, unlike the

CPU, NVIDIA GPUs have a hard limit to the number of concurrent kernels it can handle.

On current Pascal GPUs that limit is 128 concurrent kernels [11]. This significantly restricts

the number of requests a device can handle. This means that, when the GPU is at full

utilization, extra requests are filled into one or more work queues. As shown in Figure 2.2,

the driver maps each software stream to one of the hardware work queues [27]. A queue

executes kernels sequentially, however kernels from multiple queues may be executed on the

same GPU concurrently, as long as there exist enough hardware resources (SM) to allow

both kernels to execute concurrently.

CPU Process GPUGPU
DRIVER

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Driver Queues

Figure 2.2: How the driver handles kernel calls from a CPU Process. Kernels from different
streams are able to execute concurrently, however kernels from the same stream are pushed
into Driver Queues and executed sequentially

6

2.1.1 Nvidia MPS

Nvidia Multi-Process Service(MPS) is designed as a way to colocate multiple pro-

cesses to the same GPU, with the goal to increase overall utilization in High Performance

Computing Environments [27]. The under laying service intercepts any kernel calls to the

GPU from the processes and handles the scheduling of separate contexts by acting as an

intermediate context. This allows the GPU to only need to operate on a single context

and reduce overheads of collocating separate processes. MPS is also designed for Execu-

tion Resource Provisioning, which is the ability to limit the amount of resources a single

process uses on the GPU to reduce overall contention. This contention is reduced both in

the on card memory and within SMs. However, this partitioning is static and can only

be assigned when launching the process. Our work aims to provide dynamic resource pro-

visioning through thread block scaling and be able to modify resource limits based off of

current server utilization and Quality of Service constraints.

2.2 Data Center Workloads

Data centers are notoriously energy inefficient, because they must be able to handle

times of peak load, data centers are often provisioned for the worse case. As seen in Figure

4, the top chart shows a typical data center utilization over a period of time from Google’s

data center traces [30]. The utilization traces features periods of high load and low load.

These times of under-utilization provide an opportunity to slow down an incoming request

and save power. The main driver for increased GPU usage in data center is the exponential

demand for more computational power. This growth comes from Cloud Services, such

7

as Amazon Web Services, and a growing reliance on Deep Learning. These Deep Neural

Networks require a high number of computation for training and inference. DNN as a

Service, [13] will continue to grow as more services rely on Deep Learning, and powers

many applications from Intelligent Personal Assistants (such as Apple Siri, Amazon Echo,

and Google Assistant) to Recommendation systems (such as movie recommendations in

Netflix, or product recommendations in Amazon). For the purpose of this work, we mainly

focus on inference workloads which powers much of the user-facing request workloads.

2.2.1 DjiNN and Tonic

Djinn and Tonic [13], is one such implementation of DNN as a Service.

Figure 2.3: Overview othe Djinn and Tonic service. Adapted from [12]

In Figure 2.3, we show an overview of the DjiNN and Tonic suite. It is comprised

8

of two components, Djinn is the server who handles incoming requests and processes them

on the GPU. It uses Caffe [15], a deep learning framework, for its DNN infrastructure. They

also include their Tonic Suite, which comes with pretrained DNN networks for a multitude

of tasks. For each service in the Tonic suite, the client performs some preprocessing on the

data to a Djinn server format. After preprocessing, the client then sends the data along

with the task name, which tells the server which network to run the data through. The

suite consists of the following classes of tasks.

Image Task

The Image tasks are comprised of three separate services; Image Classification, Fa-

cial Recognition, and Digit Classification. Image Classification can predicate one thousand

unique classes with a high accuracy using the AlexNet network [18]. Facial Recognition,

is modeled after Facebook’s DeepFace Network [29] and has an accuracy close to that of

humans. Digit Recognition is used to classify hand written digits and was modeled using

the MNIST Data set [19].

Natural Language Processing Task

NLP tasks take a string of text as an input and are design to extract specific

semantic information from the text. The tasks include; Part-of-Speech Tagging, assigns

whether a word is a verb or a noun, Word Chunking, labels a segment if it either is in

the beginning or inside, and Name Entity Recognition, Labels nouns as a Person, Place, or

Thing.

9

Automatic Speech Recognition

This final task is capable of decoding an audio file to text. This task primarily

uses the framework provided by Kaldi [28]. This network requires the most preprocessing

out of all the tasks, because it most generate feature vectors describing the speech in the

input audio file.

2.3 Tail Latency

Figure 2.4: Example of Latency Distribution in Data Centers. Guaranteed latency is under
the 99 percentile, but average latency is much lower than the tail. This gives some slack to
slow down requests and save energy.

A common performance metric in latency-critical data center application is tail

latency. Specifically, in this paper, we use 99th-percentile tail latency which is defined to

be the time where 99% of all incoming request completes. Tail latency is affected by many

components in a data center. [5] describes why there exists such variability in data centers.

Reasons include, sharing of resources, background daemons, active maintenance, queuing

10

overheads, power and thermal limits, garbage collection, and energy management. Prior

research explore how these overheads and tail latency can be minimized [14,21,31]. In [21],

they were able to accurately measure tail latency caused from interference in the form of

background processes. A real-time scheduler is much more efficient at handling background

processes than a normal priority based mechanism. Important to our work, they also

find power savings techniques, applied in times of low utilization, can actually inflate tail

latency. We aim to exploit this, to reduce power consumption. Figure 2.4 illustrates latency

distribution common in data centers and how there is some slack between the average latency

and the tail latency. To save power, previous papers employ different techniques to push the

average latency closer to the tail, such as using DVFS [14,16] , or Sleep states [4]. Now that

GPUs are gaining popularity in data centers, we examine how to extend average latency

and save power through frequency and thread block scaling techniques.

2.4 Related Work

2.4.1 Quality of Service Aware Dynamic Power Management

There have been many prior works addressing tail latency and Quality of Service

guarantees in data center services. Adrenaline adds fine grain control over CPU voltage

boosting to reduce the tail latency [14]. By shorting the tail latency, the overall efficiency

in the data center is increased; in terms of both utilization and energy. They leveraged

fine grain voltage control in modern CPU’s which is not currently available in GPUs. To

compensate, our work focuses on increasing utilization through concurrent request execution

and thread block scaling.

11

Sleepscale, [22], offers a mechanism to control sleep sates dynamically and stay

within Quality of Service constraints. Our work is also a power management runtime system,

however, we focus on managing power with GPU specific attributes and characteristics.

Prophet [2] shows the main challenge of ensuring QoS when offloading computa-

tion to accelerators. Concurrent stream execution will interfere with each other and make

accurate QoS guarantees difficult to keep. They use tail latency predictions to identify safe

streams to execute without effecting the execution of others. To increase utilization they

co-locate batch applications with latency-critical services. Our work focuses on colloca-

tion of latency-critical services. This provides a different challenge, as we must take into

consideration the Quality of Service constraint with every workload.

CPU-Miser [7] describes a DVFS driven CPU runtime system. This technique

incorporates a power management technique without any performance penalty. This system

consists of a predictor which uses the feedback from performance monitor and scale the

frequency and voltage accordingly.

While most of the work is limited to CPU-only systems, there is minimal explo-

ration of DVFS scheduler in heterogeneous (CPU-GPU) systems. In [17] paper, Komoda

et. al. propose a power capping technique for such heterogeneous systems by coordinating

DVFS and task mapping on GPUs. They built an empirical model based off of work-

load profiling to predict the performance and power consumption when running different

workloads.

One other paper [8] studies the effect of DVFS on performance and energy efficiency

on a K20 GPU. Authors Ge et. al. chose matrix multiplication as the workload and ran it

12

with different input sizes and application clock frequencies.

The Survey and measurement study of GPU DVFS on energy conservation [24]

provides in-depth analyses on dynamic voltage and frequency scaling on different workloads.

Also, the experimental results exclaim the fact that frequency and voltage scaling depend

on both GPU architecture and the application.

Further, all the related GPU DVFS papers we discussed here are based on desktop

grade GPUs. These explorations seem futile since there has been remarkable advancement

in server grade (Tesla) GPUs. Also, they motivate the need for advanced DVFS software

techniques to improve energy savings without performance penalties.

2.4.2 Power Management techniques

Power management is essential to reduce the cost of maintaining a data center. [10]

Multiple DVFS schemes have been proposed to reduce the cost and improve utilization and

energy proportionality [4, 6, 23]. Rubik [16] controls CPU frequency by a statistical model

to predict arrival distributions and without affecting tail latency. They use pre-computed

target tail latency tables to allow fast predictions. Powerchief [31] uses dynamic boosting

techniques to reduce bottlenecks in multi-stage services. In multi-stage service, requests get

queued at each stage, requiring different boosting strategies per stage. Work in this area

primarily focus on GPU power management schemes. However, none of them control power

on the GPU side.

13

2.5 Dynamic Voltage and Frequency Scaling (DVFS)

Power consumption in a CMOS circuit is due to Static Power dissipation and

Dynamic Power dissipation. Static power is the power consumed by the circuitry with no

activity while Dynamic power is when the circuit is operational. Furthermore, static power

consumption is almost negligible due to circuit design optimizations. From [9] Dynamic

power in a CMOS transistor is expressed as:

P = CV 2f (2.1)

In equation 2.1, C, V, and f represents Capacitance, Voltage, and operational

frequency respectively.

Energy is the power consumed over time. Hence,

E = Pt =⇒ E = CV 2 (2.2)

From equation 2.1 and 2.2, it can be clearly understood that changing frequency

and Voltage impacts Dynamic Power consumption that further affects the energy consumed.

DVFS techniques employ this relationship to derive energy savings with negligible perfor-

mance penalty. Additionally, the above relationship helps in understanding that frequency

scaling does not necessarily reduce energy consumption. This is because the reduced fre-

quency corresponds to longer execution times thereby increasing energy consumption, mo-

tivating the need for more than just DVFS policy.

14

2.5.1 DVFS in GPUs

It has been shown previously that DVFS in GPUs can be used without affecting

performance [25], however further research is needed to find optimal policies. Currently,

there are limited power management policies implemented in GPUs. In our initial experi-

ments, we explore the GPUs power characteristics and motivate the need for a better DVFS

policy for GPUs. To increase performance, Nvidia employs GPU Boost to dynamically ad-

just the core and memory frequency in the GPU [26]. GPU Boost increases operating

frequency whenever an application is running and the GPU has not hit its power or ther-

mal limits. Figure 4.2 (Baseline) shows this policy where the frequency starts at 1800 MHz

and gradually steps down it’s frequency to 1746MHz due to the GPUs thermal limit. De-

tails of experimental setup is provided in chapter 4. There are occasion dips in frequency

when there are times of extremely low utilization. Clearly, this policy is purely performance

orientated and does not optimize for low utilization. Frequencies are throttle when power

or thermal caps are hit, or when it is completely idle.

15

Chapter 3

Motivation

In this section, we investigate dynamic frequency scaling effects in latency-critical

services on GPUs. Specifically, our initial experiments explore the following properties;

power savings and Thread Block Scaling. For our experiments, we use the deep neural

network service, DjiNN [13]. DjiNN includes three separate services, image classification,

natural speech processing, and face recognition. We use Djinn to vary the workload as well

as create latency restrictions on the GPU. More explanation can be found in Section 4.2.

3.1 Tail Latency Calculations

To start our experiments we need to determine the Quality of Service (QoS) our

system is capable of handling. To get QoS, we stress our GPU at the maximum frequency

it can sustain without throttling (1809 Mhz) and run multiple tests, to get the baseline

service time for a workload. We use this baseline to find the theoretical number of requests

that can be serviced within a second, as seen in 3.1. We then again test our system with a

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

200

300

400

500

Load (Percentage)

L
an

te
n

cy
(m

s)
1809Mhz
1303Mhz
893Mhz

Figure 3.1: Impact of frequency and server load on tail latency. At light loads, lower
frequencies are able to maintain QoS.

client sending requests at the Theoretical Full Load and record the 99% latency.

TheoreticalFullLoad =
1

tBaseline
(3.1)

From here we define the tail latency, similar to [4,14,16], at the point of the “knee”

when running at full frequency, shown as the dotted line (278 ms) in Figure 3.1. This “knee”

occurs around the 90% load of the GPU. We will use this tail latency as our Quality of

Service requirement throughout our other experiments.

In Figure 3.1, we ran our experiments at three different frequency settings: 1809MHz,

1303MHz, and 893MHz. We ran our experiments at various loads (x-axis), ranging from

active idle (0% load), to maximum load as determined by equation 3.1. As Figure 3.1

shows, when the server is underutilized, the GPU is able to run at much lower frequencies

17

without any QoS violations. For example, at a low load of about 40% load, we can achieve

latency of 113ms , 119 ms, and 131.691 ms, while running at 1809MHz, 1303MHz, and

893MHz, respectively. These latency levels are well below the target tail latency of 278 ms.

By slowing down requests and still meeting the latency targets, we can effectively run at a

lower power. This provides an opportunity to slow down requests and move average latency

closer to the tail latency, which will save overall power in the GPU.

3.2 Power savings from DVFS

Even though GPUs are considered to be more energy efficient in terms of the

number of operations per watt, they have high overall power usage. Since there has been

little study in DVFS in GPUs, it is important to understand how much power savings is

possible. We measured the power of the GPU while varying the frequency under a constant

load. Nvidia provides an API, Nvidia Management Library (NVML), that allows us to

probe the power at the software level. This library’s power measurement has an accuracy

of ±5%. We probe for the frequency every 10 milliseconds.

In Figure 3.2 we show the results of our preliminary study. We vary the frequency

of the GPU from around 300MHz to 1800Mhz (as shown in the x-axis) at a low (blue

line), medium (red line), and high (gray line) load. Here load is measured as the volume of

requests received by the server at a given time.

Clearly, lowering the frequency will result in less power. However, Figure 3.2 shows

that the GPU quickly hits a lower bound in power consumption. Instead of the typical linear

relationship, we observe that power saving start to diminish for frequencies under 1000 MHz.

18

200 400 600 800 1,000 1,200 1,400 1,600 1,800

60

80

100

120

140

Frequency (MHz)

P
ow

er
(W

)
Low

Medium
High

Figure 3.2: Power Usage of Low, Medium, High loads at varying frequencies. Power savings
is limited at lower frequencies.

One possible explanation of this is due to on-card memory and other sources of static power

consumption in the GPU card. Under any type of load, the GPU memory is used often

due to there being many data transfers over the PCIe bus. Even though the GPU can

be clocked at lower speeds, it does not provide any additional power savings. GPUs lack

sophisticated power gating techniques and have a high static power [20]. This limits overall

energy savings that we can achieve through dynamic frequency scaling and requires smarter

polices that is aware of modern GPU’s power consumption characteristics.

19

0 20 40 60 80 100 120 140 160 180 200 220
0

100

200

300
N

u
m

b
er

of
T

B
s

0 20 40 60 80 100 120 140 160 180 200 220
0

100

200

300

Kernel Launches over Time

N
u
m

b
er

of
T

B
s

Request 1 Request 2

Figure 3.3: Simple example of the effect of thread block scaling with two concurrent re-
quests of IMC workload. The top figure shows how request 1 consumes most of the re-
sources,delaying request 2. The bottom figure shows how limiting the number of thread
blocks by half can reduce the overall time of finishing both requests.

3.3 Thread Block scaling

In Figure 3.1, we showed that a latency gap exist at low loads. However, lowering

the GPUs frequency may not entirely close the latency gap, and also may not necessarily

save power, as observed in Figure 3.2. Therefore, we would require a different knob in

order to further close this latency gap. One potential approach is through processor sleep

states [4], however GPUs lack support for deep sleep states at runtime. Therefore, the needs

to be a different approach in GPUs to close the remaining latency gap.

In this paper, we investigate whether scaling the concurrency of the application,

by scaling the number of thread blocks a kernel has, can be utilized to cover the latency gap.

By limiting the number of thread blocks within a kernel, we limit the amount of concurrency

20

an application can achieve on a GPU. Concurrency is also dependent on the mapping of

data to threads and how much work each thread needs to complete. For example, given a

matrix multiplication algorithm, a single thread may be responsible for only one element of

the output matrix, or it may need to compute a block of the output matrix. In the latter,

the elements in the block are complete sequentially since only a single thread is computing

them. Once there are more Thread Blocks than SMs in the hardware, no more concurrency

is gained.

0 5 10 15 20 25 30 35 40 45

0

10

20

30

Thread Block Limit

L
at

en
cy

S
lo

w
d

ow
n

IMC
FACE
DIG
POS
CHK
NER

Figure 3.4: Latency Slowdown due to Thread Block Scaling.

This technique can be seen in Figure 3.3, which shows a simple example of GPU

utilization with two concurrent requests. For this experiment, we ran the IMC workload and

measured the number of thread blocks launched during the processing of a single request.

A single requests calls multiple kernel calls (as shown by each bar in the figure). The height

of the bar shows the number of thread blocks launched by that kernel. In this experiment,

21

we limit the number of thread blocks to 320, which is the physical thread block limit of the

GPU hardware. In this figure, the x-axis the number of kernel launches over the course of

a single request. The top chart shows how the GPU is utilized without any thread block

scaling. In this case, Request 1 would take up all available resources, while request 2 can

only use what is left over. This delays the execution of kernels in request 2, leading to a

much longer runtime of request 2 compared to request 1. However, if we limit the amount

of resources each request gets, then the time to complete both requests is less. This can

be seen in the bottom chart. In this case, we limit each request to exactly half of the

hardware thread blocks available. In this scenario, both request 1 and request 2 can process

at the same time. During high thread block scenarios, the thread blocks are limited in the

hardware, allowing us to to stretch the time of execution. At times of low thread block

counts, both the lower thread block counts of request 1 and request 2 can fit comfortably

into the hardware, and thus run concurrently without any slowdown. As we will see later,

this property allows us to aggressively scale the parallelism of the GPU kernel without

greatly affecting the latency of the request.

Our goal is to limit the number of TB a request is allocated in order to service

multiple requests at the same time. Figure 3.4 shows the potential gains with Thread Block

Scaling. At a medium load, we vary the number of thread blocks a single request uses. For

the purpose of clarity, we only show the results of thread block limits from 1 to 45. We

ran experiments up to the maximum hardware limit, but results from 45 to 320 is similar

with minimal thread block scaling effect. The chart’s y-axis is normalized to the baseline

service time of each workload. We observe that at around 15 thread blocks, our service

22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0

0.2

0.4

0.6

0.8

1

Thread Block Limit

P
er

ce
n
ta

g
e

of
K

er
n

el
s

O
v
er

th
e

L
im

it
IMC
FACE
DIG
POS
CHK
NER

Figure 3.5: Percentage of Kernels that are greater than the limit. This chart shows that a
large percentage of kernels do not utilize all GPU resources

time is still under our system’s tail latency. This is true for all workloads. Below 15 thread

blocks, the amount of latency slowdown increases significantly, depending on how sensitive

an application is. In certain cases, even with a single thread block, some applications, such

as NER and DIG, only slowdown by 3x.

With 15 thread blocks, a single GPU will be able to handle two or more requests

concurrently without violating tail latency. This is possible because every request contains

multiple kernel launches and every kernel launches a different number of thread blocks.

Therefore, limiting the number of thread blocks actually only affects a small percentage of

kernels. This can be seen in Figure 3.5. For every workload we counted the number of

kernels that exceed the thread block limit as a percentage of the total kernels launched.

The figure shows that most kernels are below the threshold and the limit only starts to

23

affect tail latency when around 75% of the kernels are restricted. At the point where the

percentage of kernels over the limit hits around 75%, we observe the spike in latency shown

in Figure 3.4. These results indicate that workloads then to tolerate thread block scaling

well, indicating that we have many opportunities in squeezing more throughput out of the

system.

14 16 18 20 22 24 26

0.6

0.8

1

1.2

Thread Blocks per Request

N
or

m
ai

lz
ed

E
n

er
gy

S
av

in
g
s

Figure 3.6: Expected Energy Consumption

By using streams we can assume two requests are processing on the GPU simulta-

neously and effectively double the energy efficiency per request. Figure 3.6 demonstrates the

potential energy savings. This chart is normalized to the amount of energy used by a single

request with no restriction on the number of thread blocks. Due to the number of thread

blocks greatly exceeding the number of SMs on the hardware, the thread blocks eventually

becomes serialized, incurring significant thread block scheduling overheads. Energy savings

only comes if both requests take a shorter time than running sequential. This is seen when

24

the number of thread blocks is below 14, which actually use more energy because the service

time is more than double a single request. Even though there may be less SM than current

running thread blocks — e.g. two requests using 20 thread blocks each on the Titan X

with 28 SM — there are many opportunities for the two requests to overlap computation.

Therefore, the service time for both requests will be less than double and we expect to see

the type of energy savings similar to our calculations. These initial results show that the

concurrency of thread blocks processing requests can have significant impact on the energy

efficiency of GPUs.

25

Chapter 4

Evaluation

We propose a workload-aware frequency selection policy. The purpose of this initial

work is to demonstrate the potential for energy savings in real GPUs utilizing latency-aware

frequency scaling. For brevity, exploration of Thread Block Scaling is reserved for future

work.

4.1 Example Power Management Policy

We propose our own GPU Runtime in Djinn that takes into account both DVFS

and Thread Block (TB) scaling. Figure 4.1 describes the operation of this runtime system.

All the incoming requests arriving at the network socket is pushed into the Request Queue

(RQ). Caffe further pops the requests out of the queue and processes it. Caffe creates

the thread blocks as per the TB scheduler and launches them on the GPU. Caffe batches

requests based on the limits obtained from the TB scheduler.

The DVFS scheduler obtains GPU performance metrics related to voltage, power

26

Figure 4.1: Runtime Framework in Djinn

and frequency to determine the required frequency and voltage scaling. As the utilization

of the server fluctuates, it will select the minimum frequency the GPU can operate at while

supporting the QoS-level, as determined in previous sections. Utilization is calculated by

the number of incoming requests over a short time frame. The policy selections are based

off of precomputed tail latency tables similar to Rubik [16]. Our tables incorporate queuing

time plus GPU service time. GPU service time is the time for Host to Device transfers,

GPU Execution time, and Device to host transfers. These tables are computed through

empirical testing. We run a test across varying loads, through varying the Requests per

Second at every frequency step on the GPU. Frequency steps are 100 Mhz apart starting

at 1800 Mhz down to 300 Mhz. Table 4.1 shows the precomputed frequencies for a given

load. In this table, we also compute the average power the GPU consumes while running

at the specified frequency and load.

27

Table 4.1: Precomputed Frequencies to Meet QoS

Load Frequency Power Load Frequency Power

5 303 53 55 898 70

10 303 53 60 898 75

15 303 55 65 1202 81

20 303 57 70 1202 80

25 303 61 75 1404 96

30 506 59 80 1404 96

35 607 67 85 1404 101

40 797 66 90 1809 155

45 797 67 95 1809 150

50 898 70 100 1809 155

4.2 Experimental Setup

We evaluate our policy on our GPU server with an Intel Xeon E5-1620 v4 processor,

with 32GB of DDR4 RAM. We use the Pascal-based Nvidia Titan X with 28 SMs. We

modified the Djinn and Tonic suite [13] to be used as a workload for our GPU. For our

tests, we use Djinn’s image recognition service. For these initial experiments we use a static

request size. Each request is batch of 6 face images that are sent to the server and processed

on the GPU using the facial recognition DNN.

We use Google’s 2011 cluster data traces [30] as a simulated data center workload

over a single day. The frequency of requests where then scaled to our hardware’s maximum

28

capacity. As a baseline, we tested the GPUs default Auto boosting policy.

0 100 200 300 400 500 600 700 800
0

0.5

1

L
oa

d

0 100 200 300 400 500 600 700 800
50

100

150

P
ow

er
(W

at
ts

)

0 100 200 300 400 500 600 700 800

500

1,000

1,500

Time (seconds)

F
re

q
u

en
cy

(M
H

z)

Baseline Theoretical Dynamic Frequency Scaling

Figure 4.2: Power and Frequency Results of Titan X while running a Google data center
utilization trace. Baseline (Blue) shows the behavior of existing power management in
modern GPUs. The red line shows the potential for power savings by latency-aware dynamic
frequency scaling.

4.3 Experimental Results

Our baseline evaluation is composed in Figure 4.2. The top chart is the load

overtime. Typical to normal data center workloads, there are times of low load and high

peaks. The baseline is not suited for this type of workload, as the frequency is near constant

throughout the entire test, even during lower load periods. At the beginning it boosts to

the max frequency, however, it cannot sustain this for long, due to thermal overheads,

29

Table 4.2: Average Power Usage and Frequency

Average Baseline DFS

Power 108.98 66.85

Frequency 1757 616

and steps the frequency down slightly. This is seen in the first 120 seconds. In red, is

our theoretical dynamic frequency scaling policy. This was built by using the trace of

server load and for every second took the power and frequency that matched the current

load in our precomputed tail latency table. This process is similar to our proposed policy,

which calculates the current load in real time, based off of the number of requests. Table

4.2, shows the average power and frequency between the two policies. Dynamic Scaling

Frequency shows a significant improvement over the baseline. On average it offers a power

savings of 1.6x over the default. The power savings also come with no loss of performance

with regards to tail latency, because our frequency table was built with the top concern

that at all levels, service time must always be under the tail latency.

As demonstrated in Section 3, significant energy savings still exist as latency slack

cannot be closed entirely by frequency scaling. Thus, these results show conservative energy

savings. Through Thread Block Scaling, we expect the energy efficiency of GPUs to be

improved significantly.

30

Chapter 5

Conclusion

As faster Neural Networks and Deep Learning will continue to become a more

important working in Data Centers, GPUs will be the standard accelerator used because

they have been tightly focused on their performance benefits. This creates a problem as

Data Centers needs to be more energy efficient, because GPUs are high power processors

with limited power management. As demonstrated in our experimental results, existing

GPU power management policies are aimed at exploiting thermal headroom to maximizing

performance. Modern GPU power management are not designed to save power during low

utilization periods, and are not aware of application’s latency requirements.

However, in the case with Data Center, the current load is constantly fluctuating,

which makes high performance not always a necessity. In this work, we examine possible

power management techniques for GPUs. By exploiting discrepancies between the average

and tail service times, we show that there is room for the GPU to save power by scal-

ing frequency based on the current load. We also perform preliminary experiments with

31

Thread Block Scaling and demonstrated it as a potential solution to increase throughput

and increase energy efficiency per request.

As our initial results suggest, there are still significant problems to address and

solutions to explore to maximize energy efficiency in modern GPUs.

32

Bibliography

[1] J. M. Cebŕın, G. D. Guerrero, and J. M. Garcia, “Energy efficiency analysis of gpus,”
in Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, ser. IPDPSW ’12, 2012.

[2] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang, “Prophet: Precise
qos prediction on non-preemptive accelerators to improve utilization in warehouse-
scale computers,” in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, 2017.

[3] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and increased
utilization for non-preemptive accelerators in warehouse scale computers,” ACM
SIGARCH Computer Architecture News, 2016.

[4] C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep: Fine-grained power management
for a latency-critical data center application,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, 2016.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56,
pp. 74–80, 2013. [Online]. Available: http://cacm.acm.org/magazines/2013/2/160173-
the-tail-at-scale/fulltext

[6] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, “Coscale: Co-
ordinating cpu and memory system dvfs in server systems,” in Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
45, 2012.

[7] R. Ge, X. Feng, W. c. Feng, and K. W. Cameron, “Cpu miser: A performance-directed,
run-time system for power-aware clusters,” in 2007 International Conference on Par-
allel Processing (ICPP 2007), Sept 2007, pp. 18–18.

[8] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong, “Effects of dynamic
voltage and frequency scaling on a k20 gpu,” in 2013 42nd International Conference
on Parallel Processing, Oct 2013, pp. 826–833.

33

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

[9] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling
for low power cmos,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–
1216, Aug 1997.

[10] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research
problems in data center networks,” ACM SIGCOMM computer communication review,
2008.

[11] M. Harris, “Gpu pro tip: Cuda 7 streams simplify concurrency@ONLINE,”
January 2015. [Online]. Available: https://devblogs.nvidia.com/parallelforall/gpu-
pro-tip-cuda-7-streams-simplify-concurrency/

[12] J. Hauswald, “Djinn and tonic: Dnn as a service and its implications for future ware-
house scale computers,” Djinn Talk, 2015.

[13] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G. Dreslinski,
J. Mars, and L. Tang, “Djinn and tonic: Dnn as a service and its implications for
future warehouse scale computers,” in Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’15, 2015.

[14] C. H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars, L. Tang,
and R. G. Dreslinski, “Adrenaline: Pinpointing and reining in tail queries with quick
voltage boosting,” in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), 2015.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[16] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik: Fast analytical
power management for latency-critical systems,” in Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, 2015.

[17] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura, “Power capping of
cpu-gpu heterogeneous systems through coordinating dvfs and task mapping,” in 2013
IEEE 31st International Conference on Computer Design (ICCD), Oct 2013, pp. 349–
356.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12.
USA: Curran Associates Inc., 2012, pp. 1097–1105. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2999134.2999257

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov
1998.

34

https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

[20] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.
Reddi, “Gpuwattch: enabling energy optimizations in gpgpus,” in ACM SIGARCH
Computer Architecture News, 2013.

[21] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the tail: Hardware,
os, and application-level sources of tail latency,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. SOCC ’14, 2014.

[22] Y. Liu, S. C. Draper, and N. S. Kim, “Sleepscale: Runtime joint speed scaling and
sleep states management for power efficient data centers,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA ’14, 2014.

[23] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “Towards energy
proportionality for large-scale latency-critical workloads,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA ’14, 2014.

[24] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of gpu dvfs on
energy conservation,” Digital Communications and Networks, vol. 3, no. 2, pp. 89
– 100, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2352864816300736

[25] X. Mei, L. S. Yung, K. Zhao, and X. Chu, “A measurement study of gpu dvfs on
energy conservation,” in Proceedings of the Workshop on Power-Aware Computing
and Systems, ser. HotPower ’13, 2013.

[26] NVIDIA, “Nvidia gpu boost for tesla,” NVIDIA, Tech. Rep., January 2014.

[27] ——, “Multi-process service,” NVIDIA, Tech. Rep., October 2017. [Online]. Available:
https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service Overview.pdf

[28] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech recognition toolkit,” in IEEE
2011 workshop on automatic speech recognition and understanding, no. EPFL-CONF-
192584. IEEE Signal Processing Society, 2011.

[29] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-
level performance in face verification,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, June 2014, pp. 1701–1708.

[30] J. Wilkes and C. Reiss, “Google cluster data 2011 2,” 2016.

[31] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief: Intelli-
gent power allocation for multi-stage applications to improve responsiveness on power
constrained cmp,” in Proceedings of the 44th Annual International Symposium on Com-
puter Architecture, 2017.

35

http://www.sciencedirect.com/science/article/pii/S2352864816300736
http://www.sciencedirect.com/science/article/pii/S2352864816300736
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

	List of Figures
	List of Tables
	Introduction
	Background
	GPU Execution Model
	Nvidia MPS

	Data Center Workloads
	DjiNN and Tonic

	Tail Latency
	Related Work
	Quality of Service Aware Dynamic Power Management
	 Power Management techniques

	Dynamic Voltage and Frequency Scaling (DVFS)
	DVFS in GPUs

	Motivation
	Tail Latency Calculations
	Power savings from DVFS
	Thread Block scaling

	Evaluation
	Example Power Management Policy
	Experimental Setup
	Experimental Results

	Conclusion
	Bibliography

