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Space-Time  Models  of  Asynchronous  CSMA 
Protocols  for  Local  Area  Networks 

Abstract-Carrier  sense  multiple-access (CSMA) protocols are widely 
used  in  local area  networks (LAN’s)  to control access to  a  shared com- 
munications  channel  such  as  a  coaxial  cable or radio  frequency  band. 

, CSMA protocols are  designed  to  exploit  the  property  that  the  signal 
propagation  time  across  the LAN is  much  smaller  than  the  packet 
transmission  time.  Consequently,  their  performance  depends  on  the 
exact  timing of a  sequence of asynchronous  events  originating  at 
different  points  in  the  network.  Previous  models of CSMA  protocols 
have  not  captured  this  essential  space-time  characteristic.  Instead,  the 
system  has  been  reduced  to  a  1-dimensional model (i.e., a  sequence of 
events  on  a  single  time  line) by assuming  either  that  events  are  syn- 
chronous (i.e., “slotted”  operation of the  protocol) or that  all  stations 
are  mutually  equidistant (so it  can be assumed  that  each  station’s  time 
line is identical).  The  novelty  in our work  is  to  describe  the  system  state 
in  terms of an ( N  + 1)-dimensional  “ribbon” of space-time,  allowing 
us to  faithfully  model  the  exact  timings of events  for LAN’s where  the 
stations are  distributed  over  a  fully  connected  region  in N-space. For 
example,  an  Ethernet-like  “bus”  network  can be viewed as  a  l-dimen- 
sional  LAN,  a  terrestrial  packet  radio  network  can be viewed as  a 2- 
dimensional  LAN,  and so on.  First we highlight  some of the key prop- 
erties,exhibited by such  a model  in the  general  case,  including  the no- 
tion of an  embedded  Markovian  sequence of “idle  points,” and  the 
decomposition of the  space-time  ribbon  into cycles  (each of which can 
be further  decomposed  into  a  number of “regions”).  Then we present 
extensive  results for  the  interesting  special  case of a  1-dimensional LAN, 
i.e., an  Ethernet-like  “bus”  network. Our results  show  that  previous 
models of bus LAN’s can, significantly  underestimate  their  perfor- 
mance. 

\ 

C 
I .  INTRODUCTION 

ARRIER sense multiple-access (CSMA) protocols are 
distributed algorithms for serializing the transmission 

of packets in  a local area network (LAN). All the stations 
are connected to a common channel, such as a coaxial 
cable, radio frequency band, etc., where every transmis- 
sion originating from each station is broadcast to all  the 
other  stations.  The key properties that enable CSMA pro- 
tocols to be used on this type of LAN are  that i) we re- 
quire each station to be able to track changes in the  “local 
state” (i.e.,  idle/busy/. . . ) of the common channel, and 
ii) the network diameter is sufficiently small for  different 
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stations to observe  the  same “evolutionary history” of 
the local state, except for small perturbations in the state 
transition times. 

In the  case of CSMA,  the first property is satisfied using 
carrier  sensing, which allows each station to distinguish 
between an  “idle” channel (where no packet transmis- 
sions.are taking place) and a  ‘‘busy”  channel  (where  one 
or more concurrent packet transmissions are taking place). 
And  in the  case of CSMA/CD, we  further  assume that 
each station is capable of collision  detection, and hence 
can determine within a few bit times’whether  the channel 
is currently “busy”  because of a single packet transmis- 
sion or multiple, mutually interfering packet transmis- 
sions (i.e., a collision), even if the station is among the 
active  transmitters.  Since  the probability that a packet is 
corrupted because of random channel noise is typically 
orders of magnitude smaller than the probability that it is 
involved in a  collision, it is customary to iequate the event 
that a packet transmission is not part of a collision with 
the event that the packet transmission is “successful,” 
i.e., that a  correct copy of the packet is received by all 
stations, including the intended (set of) recipient(s). 

The second property is obtained by limiting the  dis- 
tance between the stations in the LAN relative’ to the 
transmission time  for  a  packet.  More  precisely, we re- 
quire that in the worst case,  the signal propagation time 
between any pair of transmitters is smaller than the trans- 
mission time  for  a  packet. 

Unlike. more conventional models of CSMA,  we allow 
the network to be  a region in N-space where the position 
of each station, i for  instance, is given by a point Zi = 

tions i and j is given by the Euclidean distance between 
Zi and Zj in  N-space, namely 

( X ; ,  1,  X ; , 2 ,  - * , X;,,,), and the  distance between two  sta- 

a, .  = A 
‘J 

2 
J ( X i , ,  - X j , , )  + ( X i , 2  - X j , 2 )  + * + ( X i , N  - xj,N) . 

2 2 

Notice that aij = aji holds (although many  of our results 
in Sections I1 and I11 do not depend on this result), and 
so does the  triangle  inequality, i.e., aik 5 aij + ajk. With- 
out loss of generality, we shall normalize time so that  the 
expected transmission time  for  a packet is unity (in which 
case  the previous requirement may be written as aij 
<< 1 ), and  we normalize distance so that an average 
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packet travels one unit of distance during its transmission 
time  (which, of course  is  unity). 

Although a variety of different CSMA protocols exist, 
we will restrict our  attention  in  this work to the asyn- 
chronous (“unslotted”) version of nonpersistent CSMA. 
Here  a station transmits its packet immediately if the 
channel was sensed idle-when  the packet was generated, 
and simply drops  the packet if it was generated when the 
channel was busy.  We  consider only nonpersistent CSMA 
because it is the simplest one  to analyse. Since  our pri- 
mary goal is to consider  the effect of topology on perfor- 
mance, attempting to use another, more complicated pro- 
tocol will only make our models become intractable 
sooner! And  we restrict our attention to asynchronous op- 
eration because the performance of a synchronous (“slot- 
ted”) protocol is independent of the topology and thus 
uninteresting for  our  study. 

11. ESTABLISHING A CONSISTENT VIEW OF THE 
CHANNEL ACTIVITY 

Before we can proceed with the  analysis, we  must  first 
establish that it is possible to discuss “the performance” 
of a CSMA protocol without reference to a particular sta- 
tion’s view of the network. To do this, we  now  show that 
if  we enforce a (possibly station dependent) lower bound. 
on the transmission times, then we can guarantee that the 
local views of the channel activity by each station (and 
indeed, with respect to any sensible frame of reference) 
will be consistent, in the following sense. Whenever two 
(or more) packet transmissions are observed to collide by 
some station, then it must also be the  case that they are 
observed to collide by every other station (including the 
transmitters). ‘Note that it follows from this property that 
every time  a packet transmission is successfully received 
by one  station, it must also be successfully received by 
every other  station, and hence that the probability of suc- 
cess for  a given packet transmission is independent of its 
destination. 

Lemma I :  Suppose two distinct stations i and j are per- 
mitted to transmit packets according to the rules of carrier 
sensing, beginning at times ti and ti, respectively. Then if 
we enforce on station i a minimum transmission time of 
at least 

n rii = max { aii + ajk - aik } ( 1 )  

it must either be the case that all stations (including i and 
j )  observe these transmissions to collide or that none of 
the stations do. 

Proof Let ti and $ be  the times that stations i and j ,  
respectively begin transmitting their packets. Without loss 
of generality, assume ti I ti; otherwise simply inter- 
change the roles of the  two  stations.  Clearly, if $ L ti + 
aij, then these two packet transmissions cannot collide be- 
cause carrier sensing will have forced station j to defer its 
transmission until station i was finished. And because the 
triangle inequality (i.e., aik ,I aij + ajk) holds in N-space, 
the end of the transmission by station i must arrive at k 

k 

before the start of the transmission by j does.  Thus the 
lemma is true if we can show that whenever ti I $ < ti 
+ aij, every station must have observed a collision be- 
tween these two packets. 

Suppose some station k (possibly i or j ) does not ob- 
serve a collision in this case. Then clearly the end of the 
earliest packet to reach k must have gotten there before 
the start of the latest packet to reach there. But this is 
clearly impossible if and only if 

max { ti + a&, 5 + ajk } 
I min {ti + aik + rij,  ti + ajk + r j i } .  (2)  

Let tj = ti + 6, 0 I 6 I ai.  Then (2) may be simplified 
to yield 

max {a&, 6 + ajk} I min { aik + rii, 6 + ajk + rji}  

( 3 )  
from which it follows that 

rij 2 max { 0, 6 + ujk - aik} 
OsGSaU 

Substituting aij for 6, the maximum possible value, yields 
the term due to station k that appears above in (1); the 
term is clearly nonnegative because of the triangle in- 
equality. Note that we may interchange the roles of sta- 
tions i and j in (4) (so that i is the lust rather than the first 
to begin transmitting) to give us another lower bound, 
namely T~ L ajk - aik, but this is clearly weaker than the 
previous one. 

Lemma 2: The minimum transmission time that must 
be enforced on station i to ensure that alt stations observe 
a consistent view of the channel history is exactly 

ri = max { aii + u j i } .  a 
j 

Proof: Necessity follows immediately from Lemma 
1 when we let station i take on the role of station k ,  and 
optimise with respect to j .  To see that this worst case 
round-trip time between i and each of the  other transmit- 
ters is sufficient, we proceed as follows. Suppose there 
were some other  station, j ,  and observation point z such 
that an observer z would not ‘see a collision if station j 
were to begin a transmission (of duration r j )  6 time units 
after station i began a transmission of duration ri, 0 I 6 
I aii. Suppose this situation arose because the time at 
which the end of the packet from station i arrived at z ,  
namely ri + aiz, is less than the time at which the start of 
the packet f romj arrived at z ,  namely 6 + ajz. But 6 I 
ai j ,  and because of the triangle inequality we have that ajz 
5 aji + aiz, so to avoid seeing a collision at z we  must 
have 

Ti < aij + aji 

which contradicts the definition of ri. Thus the situation 
must have arisen because the  time  at which the end of the 
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packet from station j arrived at z ,  namely 6 + ai, + r j ,  is 
less than the  time at which the start of the packet from i 
arrived at z ,  namely ai,. But 6 1 0 and we have that ai, 
I’ aii + ai, from the triangle inequality, so to avoid seeing 
a collision at z we must have 

rj < aij 

which contradicts the definition of rj .  This completes the 
proof of the Lemma 2. 

For  the  case of 1-dimensional “bus”  networks,  Field 
and Wong [ l ]  first showed that  a slightly stronger condi- 
tion, namely ri 1 2 { a j k  } ~ is sufficient to ensure 
consistency among the  stations.  It is worth noting that in 
the proof of Lemma 2, we placed no restriction on the 
position of the observation point z .  That  is, it could be 
one of the  transmitters,  an arbitrary point “inside”  the 
network (i.e., within the  conyex hull of the set of trans- 
mitters { x’i }), or indeed anywhere in N-space! This means 
that we’can freely add passive extensions to the channel 
(where there may be additional receivers but not trans- 
mitters) without affecting  the operation of the CSMA pro- 
tocol in any way,  and we can be  sure that these external 
receivers see every successful transmission as  a  success, 
and every collision as  ‘a collision.  Thus,  as shown by the 
following theorem, it makes no difference what frame of 
reference we use to calculate . .  the  throughput’ of the’ pro- 
tocol in equilibrium. 

Theorem I: Let y and z be any two observation points. 
Then, providing each station satisfies its minimum trans- 
mission time  requirement, namely ri for station i ,  the lim- 
iting value of the obseryed throughput will be  the  same at 
y ‘and z .  

Proof: Let It) and UP) be  the  time at which the kth 
transition from busy to idle on the  channel takes place and 
the duration of any successful transmissions that took 
place during the kth channel busy time,  respectively,  ac- 
cording to an  observer situated at z .  Then  we define 

N 

as  the normalized throughput between I$) and I $ )  as ob- 
served from z .  Clearly, if a limiting value  exists  for the 
throughput observed . .  from z ,  S“j, then we must have 

$ 2 )  = lim s ; ~ N  (7) 

for any M .  Similarly, we can define the analogous quan- 
tities with respect to  an  observer at y to obtain 

N 4  m 

N 

Let us now  fix M and N and  compare Sg ,L  with S z l N .  
From Lemmas 1 and 2 (and the obvious fact that the  du- 

ration of a given station’s transmission is the same from 
any stationary observation point), we have that 

u p  = ut )  (10) 
must hold for  all k, and hence the numerators of (6) and 
(8) are identical. Now consider I:) and I$). First, sup- 
pose that I$’ 1 Zg) and that the transmission from station 
i is the  last  one to finish at z .  Since  the channel must have 
remained bqsy at y at least until the transmission from i 
finished, we  know that 

I N  2 !$) - aiz + aiy- ( Y )  

But from the  triangle inequality we  have that ai, I ai, + 
ayz, and hence that I;) 2 IF) - u y z .  Conversely, if I!) 
I Zg), we can easily show that I$) 1 Zg) - azy, and 
hence that 

I$) - uyz I .zg) I I$) + azy (11) 

must hold for any N .  Notice ‘that  (1 1) depends only on  the 
geometry of the network and has nothing to do with the 
evolution of the  channel state up  to I N .  Thus, it should be 
clear’ that in the worst case,  the  greatest  difference  that 
can arise between the denominators of (6) and ( 8 )  is when 
one of the  observers, say z, is maximally ahead of  the 
other at Z M ,  and then maximally behind the  other at IN;  in 
which case 

1 (!:) - 1;)) - ( I N   I M  ) I 5 ayz + ( 2 )  - ( z )  

must hold for  all M and N .  Now since IN + 00 as N + 

00, the  result’  follows. 
Notice that  the proof of Theorem 1 did not depend on 

the duration of any station’s  transmission,  as  long  as 
Lemma 2 is satisfied, so the result is true whether or’not 
we allow variable packet lengths’ and/or collision detec- 
tion.  Thus,  in  the remainder of this work,  we  shall insist 
that each station always satisfies its minimum transmis- 
sion time requirement defined by Lemma 2. In this way, 
we can freely choose any observation point(s) from which 
to monitor the operation of the protocol. 

111. PARTITIONING THE SPACE-TIME EXECUTION TRACE 
INTO  CYCLES 

Suppose { aii } is such that the LAN can be embedded 
in N-space. Then we can construct an ( N  + 1)-dimen- 
sional execution truce for  the protocol in which the first 
N dimensions represent position -in the LAN and the, ( N  
+ 1 ) st dimension represents the passage of time.  For  ex- 
ample,  an  Ethernet-like network [4] consisting of a single 
unbranched coaxial cable may be viewed as a  linear  (one- 
dimensional) LAN-where the location of a station is 
given by its distance  from, say, the left-hand end of the 
cable-and its execution  trace consists of a  two dimen- 
sional “ribbon” of space-time. Similarly,  a ground radio 
packet-switched network [2] may be viewed as  a plaQar 
(two dimensional). LAN where the  execution  trace is a 
three dimensional “cylinder” of space-time, and so on. 

Now, in view of Lemma 2 and Theorem 1, we can par- 
tition the  execution  trace into an alternating (in time)’ se- 
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TIME ’ 
I 

Fig. 1 .  The busy  band  that  results when transmitters  at X, and X, collide. 

quence of busy and idle  “bands.” Note that the form of 
these “bands”  is, in general,  quite complicated because 
of the spatial geometry of collisions. Whenever some sta- 
tion, i for  instance, transmits a packet of duration &, be- 
ginning at the time t i ,  it causes the channel to be busy in 
a cone-shaped region in space-time, centered at ( Zi; t i ) ,  
namely 

Bi( t i ,  c )  2 ( (  Zj ;  t )  I Zj E RN, ti + 1 Zi - Zjl 

I t I ti + q + p i  - Z j l ] .  
Thus, whenever stations i ,  j ,  - _  - - collide, the resulting 
busy band is the union of Bi ( ), Bj ( - ) - . In Fig. 1, 
for  example, we show the busy band that results from a 
collision between two transmitters on a  linear (bus-like) 
LAN. Notice that the  “initial”  surface of the band (i.e., 
earliest in time) contains a local minimum at each trans- 
mitter-as it must because carrier sensing only permits a 
station to begin transmitting if it is the  “first”  one  ac- 
cording to its own frame of reference.  Conversely,  the 
“final”  surface of the band (i.e., latest in time) contains 
a  single, global minimum that we shall call an idle point 
I? the earliest point in the LAN to observe the transition 
from busy to idle channel;’ The remainder of the LAN 
senses the transition as the leading edge of a convex idle 
cone reaches them. 

It is not hard to see that even in N-space, the final sur- 
face of each busy band must be  a convex idle  cone, start- 
ing from a unique idle point. To see  this, we recall that 
the idle band is actually the intersection of one  or more 
convex cones-bounded  by the final surfaces of Bi ( ), 
Bj( * ) - * *-and the intersection of convex sets is itself 
convex. 

‘The existence  of idle  points on 1-dimensional LAN’s was first shown 
by Field and Wong [l]  where  they  were called rime origin points. How- 
ever, their  work did not consider the stochastic structure  induced  by  the 
idle  points.  Instead, they calculated throughput  under  the  approximation 
that  both  the  traffic  and  the location of the idle points  are  uniformly dis- 
tributed along the bus. 

TIME 

I 

I 

Fig. 2. The  components I ,  V, and U for a cycle with  a  successful trans- 
mission. 

Following [3], the throughput analysis of asynchronous 
CSMA protocols is usually carried out with the aid of re- 
newal theory in terms of a sequence of transmission 
cycles, each consisting of an “idle  period” followed by 
a “busy period.” It is worth noting that in previous work 
(where,  for  simplicity, the worst case  “star” topology 
was assumed) it made no difference whether we defined a 
cycle to be  an  idle period followed by a busy period, or a 
busy period followed by an idle period. However, in our 
work (where we  are explicitly modelling the network to- 
pology) it is important to define a cycle to begin with the 
idle period so the boundary between successive cycles in 
space-time is  as clean as  possible, namely a convex idle 
cone. 

In Figs. 2-4, we illustrate the various components of a 
cycle that arise in. a successful transmission, a collision 
without collision detection, and a collision with collision 
detection, respectively, in  the  case of a 1-dimensional 
(linear) LAN. Notice that unlike the worst case  “star” 
analysis (where because of symmetry and the memoryless 
property of Poisson arrivals, successive cycles are i.i.d.), 
there is a dependence between successive transmission 
cycles through the geometry of the separating idle cone. 
But because of the Poisson traffic assumption, it should 
be clear that the sequence of idle cones forms an embed- 
ded Markov chain. 

Each transmission cycle begins with an  idle volume Z 
obtained by “sweeping” the initiating idle  cone forward 
along the time axis until the first transmission is encoun- 
tered. Note that the station, say j at ,position Zj ,  that ter- 
minates Z is the one that begins its transmission at time ti 
after sensing the channel idle for  the minimum time. Be- 
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TIME 

I 

Fig. 3 .  The  components I, V ,  and F for a  cycle with a  collision,  assuming 
no collision  detection. 

TIME 

1 

Fig. 4. The components I, V ,  and F for a  cycle  with  a  collision,  assuming 
each transmitter jams the channel for c time units after detecting  a  colli- 

sion. 

cause of carrier  sensing,  this transmission will be suc- 
cessful if and only if  no other transmissions arise within 
the corresponding vulnerable volume V that separates Z 
from Bj ( - ), the contribution to the busy band due to j .  If 
the transmission from j is successful (Fig. 2), then the 
busy band is exactly , Bj ( ), and hence its trailing edge 

forms the idle cone that terminates this  cycle. If the trans- 
mission from j is a  failure (i.e., a collision occurs), then 
we have several cases, depending on the durations of each 
conflicting transmission (which, in turn, may depend on 
how collision detection operates, if it exists). 

First of all, it is easy to see that ,if  one of the transmit- 
ting stations, j for  instance, observes its own transmission 
to be the last one  to terminate from its own point of view 
(i.e., at Z j ) ,  then we  say that its transmission dominates 
the rest in the  sense that the trailing edge of Bj ( - ) com- 
pletely defines the  idle  cone. To see  this,  suppose that 
stations i and j stop transmitting their packets at times ti’ 
and tj, respectively, and that the  end of station i ’ s  trans- 
mission arrives at j before j stops  transmitting, i.e., 

ti’ + aii < t,!. (12) 

Now  if there is some  other observation point, say z, where 
the  order of termination is  reversed, then we must have 
that 

ti‘ + ai, > t,! + ujz. (13) 

But uij + ujz 2 ai, from the  triangle  inequality, so that if 
(13) holds then so must 

t[ + aii + ajz > ti’ + ai, 

which contradicts (12).* 
In general, if none -of the conflicting transmissions 

dominates the  rest, then it is difficult to say much about 
the structure of the busy band without further assump- 
tions. However, if we restrict our attention to  linear (bus- 
like) networks with constant length packets [6], then it is 
easy to  see that in  a  collision,  the trailing edge of the busy 
band is completely determined by the two transmitters that 
are closest to  the  opposite  extremes of the network, re- 
gardless of the total number of stations involved in the 
conflict. 

Lemma 3: Suppose a conflict arises  on  a  “bus” net- 
work among K > 2 stations, such that  the positions of the 
transmitters (with respect to  the left-hand end of the  bus, 
say) satisfy XI I X2 I * * - 5 XK. Assume that t l ,  t2, 
- * * , tK are  the respective times that each station began 
its transmission. Then, if the durations of all transmis- 
sions are  equal to some constant T the  idle point will be 
completely determined by the  two  extreme  transmitters, 
i.e., the left-hand ray leaving the  idle point will be  the 
end of the transmission from XK and the right-hand ray 
leaving the  idle point will be the end of the transmission 
from XI. 

Proofi First,  we note that  the  last transmission to ur- 
rive at any point z must also  be  the  last  one to terminate 
there because of the constant packet length assumption. 
Now suppose that X l ,  - , Xj all fall to  the  left of z. In 
this case,  because of the linearity of the  network, we have 

’It is worth noting that if station j were to retransmit its packet imme- 
diately in this case, then this new attempt would be successful with prob- 
ability one under the Poisson traffic model since the vulnerable volume 
would be zero. 
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that for  the mth such transmitter, 1 < m 5 j ,  

alz = a l m  + amz- (14) 
Since adding t l  to both sides of (14) cannot affect the 
equality, and we must have tm 5 tl  + alm (or  else  carrier 
sensing would have prevented station m from transmitting 
in the first place),  we  see immediately that the transmis- 
sion from station m could not have arrived at z after the 
one from station 1. Thus it follows that we  need only con- 
sider the left-most transmitter to the  left of z to determine 
the time at which the channel goes idle at z .  Similarly, if 
there are transmitters to the right of z ,  we need only con- 
sider the right-most one.  Thus,  to  complete  the proof  of 
the Lemma, we need only show that if at some point z the 
transmission from station 1 amves after  the transmission 
from station K ,  then the same must be  true  for all points 
z’ > z .  But this is obviously true,  since the difference in 
arrival times of the packets from the two extreme trans- 
mitters, according to an  observer at z ,  is given by t ,  + alz  
- tK - aKz, and al, - aKz is a nondecreasing function of 
z .  This completes the proof of Lemma 3.  

It is worth noting that the new idle point r2 will be 
located at the point z*,  such that tl + alz* = tK + aKz*. 

Unfortunately, if we now consider  a slightly more gen- 
eral system, then we  find that many of these nice results 
no longer hold. For  example,  consider  a generalization of 
Lemma 3 to a 2-dimensional (i.e., planar) network where 
we would like to show that the  idle  cone is once again 
determined by the extreme transmitters. Suppose we once 
again restrict all  the transmissions to be of constant du- 
ration, and even restrict our attention to  the special case 
of a collision among three collinear transmitters, denoted 
by i j  and k ,  as shown in Fig. 5 .  To simplify the problem 
(after all, we are just providing a counterexample!) as- 
sume that aU = a j k  = aik/2, and that their respective 
transmission times satisfy ti = tk, tj = ti + C for some 0 
< C < aik. Now consider  the difference At between the 
times that the  ends of the transmissions from i andj ,  re- 
spectively,  arrive at some point z on  the right bisector to 
ik. (Note that from symmetry, we need not consider the 
transmission- from k . )  Clearly, we have 

At = ( t i  + ai, + T )  - (tj + a,, + T )  
- - aiz - ( C  + Uj, ) . .  (15) 

Now since ai, is the hypotenuse of a right triangle,  and, 
obviously, &? = x ,  (15) may be rewritten as 

At = - JC’ + X u j z  + a;. (16) 

Thus,  since & is monotonic in x, At is clearly positive 
whenever 

a? - c2 
ajz 5 rJ 

2c (17) 

holds. Equation (1 7) is clearly true  for small values of ujz 
because we have already imposed 0 < C < aij .  However, 
since the right-hand side of (17) is independent of z ,  and 
the left-hand side depends on  the  distance between j and 

I J K 

12 

Fig. 5. The transmitter  directly between two others can affect  the idle cone 
in 2-space. 

z, the transmission fromj will be  the  last  one to terminate 
at z for  all points sufficiently far from j. 

Thus, we have found that even with constant packet 
lengths, a transmitter situated on the line joining two other 
transmitters may contribute to the definition of the idle 
cone in 2-space. The problem of finding the idle cone- 
or even just the set of transmitters contributing to its 
boundary-is even more difficult when we consider vari- 
able packet lengths, such as might arise with collision de- 
tection. (As we will see  in Section V,  the problem of find- 
ing the  idle cone-or, equivalently,  the  failure area in a 
collision cycle-is the main stumbling block in this type 
of the analysis.) 

IV.  TOWARDS THE TRAFFIC-DEPENDENT ANALYSIS: 

“FIRST”  TRANSMITTER 
FINDING THE PROBABILITY OF SUCCESS FOR THE 

In previous sections, we derived some properties that 
are independent of the traffic generation model. In this 
section, we begin the task of evaluating some traffic-de- 
pendent properties of the protocol with the ultimate aim 
of finding the throughput as  a function of load and the 
network topology. 

In the remainder of this work, we will consider the 
traffic (including the retransmission of previously collided 
packets) to be a  time homogeneous, space inhomoge- 
neous ( N  + 1 )-dimensional Poisson process at an aggre- 
gate rate of G packet transmission attempts per packet 
transmission time. That is, we allow the distribution of 
this traffic over  the  spatial extent of the network to be 
governed by an arbitrary nonnegative load intensity func- 
tion g ( x’) satisfying 

Thus,  for  example, to model a  large number of stations 
uniformly distributed over  some region R,, we let 

Ro 

for all x’ E R,; to represent a set of discrete stations at Zl,  
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x’*, ?g, * - generating Poisson traffic at rates GI,   G2,   G3,  
* * , respectively, we let 

g(? )  = C GiS(2 - .‘i) ,C G; = G 
I I 

and so on. 
From renewal theory,  the throughput over all time can 

be found from the expected behaviour of the protocol over 
a transmission cycle  as  the ratio of the expected amount 
of useful work performed in a cycle E [ U ] to  the expected 
duration of a  cycle, E [ L ]  . The main result of this section 
is to derive  a  simple hwer bound on  the probability of 
success for  the ‘first’ Eransmitter in  a  cycle, in terms of a 
“natural” measure of the dispersion of the traffic  we call 
the average vulnerable period ( E ) .  This bound holds for 
the general case of an arbitrary load intensity function in 
N-space. Note that because of carrier  sensing,  the success 
of a given transmission attempt is independent of the 
packet length.  Thus,  since  we  have already normalized 
time so that  the  average packet length is  unity, E [ U ]  is 
equal to the probability of success for  the  “first” trans- 
mitter in a  cycle. 

Before proceeding with the derivation of the  bound, it 
’ is instructive to consider  the notion of a frame of refer- 

ence F with respect to which we say that  a given station 
was the first one  to  transmit.  We say that two events that 
took place at points Zi  and 2, in the network and at times 
ti and 9, respectively,  are simultaneous with respect to F 
if 

t .  - t .  = f .  
I I V (19) 

where&, is a constant that  depends  on x’i, 2, and satisfies 
f .  v = -Ai. We say that F is a consistent frame if 

I f i j l  I p i  - qjl E a.. ‘J 

holds for  all 2;, 2,. In  other  words, were we to send ob- 
servers to both points, neither one could disprove  our 
claim of simultaneity because he observed the distant 
event before  the local one.  Some examples of consistent 
frames of reference include “absolute”  time ( A,, = 0), 
each station’s local measurement of elapsed time  since the 
staq of the last idle period ( &, is defined by the idle cone), 
and a single station’s measurement of the  time at which it 
observed every event ( &, is defined by a right circular 
hypercone, centered at the  observer, that opens toward 
the negative time  axis). 

Lemma 4: Assume that enough time has elapsed in the 
current idle period for  the  entire network to be “simul- 
taneously” idle with respect to a consistent frame of ref- 
erence, F. Then  the pdf for  the location of the first station 
(with respect to F )  to transmit in the  idle period is given 
by g (  2 ) / G ,  independent of our cho’ice  of F. 

Proof: Consider  two contours of simultaneity with 
respect to F, namely C ,  upon which the  entire network is 
seen to be idle, and C ’ ,  obtained from C by advancing it 
forward in time by At.  Clearly C must exist under the 
assumptions of the Lemma. Since  the  channel is com- 
pletely idle prior to C ,  no station will be forbidden from 

transmitting between C and C’ because it senses an  “ear- 
lier” (with respect to F )  transmission. However, should 
one station begin transmitting after C ,  it  may prevent other 
stations from transmitting due  to  carrier sensing. (And 
since F is a consistent frame, no station will be prevented 
from transmitting between C and C’ because it senses a 
transmission that began after C’. ) Thus,  the probability 
that exactly one transmission occurs between contours C 
and C ’ ,  given that at least one  occurs, is lower bounded 
by the probability that exactly one packet is generated be- 
tween contours C and C ’ ,  given at least one. But since 
the total traffic is  Poisson, it is well known that as At -+ 

0, this lower bound converges to unity.  Furthermore, 
since we  may interpret the total traffic G as  the superpo- 
sition of  many Poisson streams-say at rate g ( x’) d x’ from 
an infinitesimal volume dx’ at position 2-it should be 
clear that the pdf for  the position of the first transmitter is 
given by the normalized load intensity function, g ( 2 )  / G, 
i.e., the proportion of the total traffic originating from 
each point. 

Before continuing on with the main theorem of this sec- 
tion, we note that in view of Lemma 4 and the memory- 
less property of the Poisson distribution, it should be clear 
that we must “sweep” the contour C forward along the 
time axis for  an exponentially distributed distance with 
mean 1 / G before we encounter  the first transmission. 

Theorem 2: If the channel is completely idle (with re- 
spect to a consistent frame of reference F )  when the 
“first” station begins its transmission, then its probability 
of success, averaged over  the pdf for  the location of the 
first station, satisfies 

 success] 2 e-“ (20) 

where 

(21) 
is the  average  distance between two points drawn at ran- 
dom according to the normalized load intensity function 
g ( 2 ) / G  and is independent of the total traffic G and of 
F. 

Proof: Clearly the probability of success, condi- 
tioned on the location of the first transmitter Zl  is given 
by the probability that no othertraffic is generated within 
the vulnerable volume V that lies between the  contour of 
simultaneity C and the busy cone  due to Zl ,  namely Bl(  * ). 
Hence,  as illustrated in Fig. 6 ,  we have 

P [ success I Zl]  

where 

a12 = )Il - 4 .  
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/ 
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X ,  X, Theorem 3: Consider a 1-dimensional network having 
a (strictly) continuous load intensity function g ( x ) ,  0 5 
x I a. Then the probability of success, conditioned on 
the position of the idle point I’ has continuous first and 
second derivatives with respect to I’ in [ 0,  a], and attains 
(possibly local) maxima at r = 0 and I’ = a.  Further- 
more, if g(x)  is symmetric (i.e., g(x)  = g(a  - x )  for 
all 0 I x I a ) ,  then the conditional probability of suc- 
cess as  a function of r (and thus also  the unconditional 
probability of success) is  lower bounded by 

i 

Fig. 6. The interference between X, and X, when one of them is the  “first” 
transmitter. If we rewrite (26) in terms of g* ( x )  ( a / G )  g (  a x )  

instead of g(x) ,  i.e., 
Unconditioning on 71, (22) gives us 

P[success] = - s dx’l g(.’1) 
P [ success I r ] 2 g*(1/2) 

g* (1 /2) + aG/2 (27) 

G X ’ I C W N  then we can separate the influences on the probability of 
success from the  “shape” of the load intensity function 

dzz [a12 - h2] 8( 7 2 )  . (given by g* ( * )), the  “scaling” parameter a and the load 
G. It is interesting to note that these  last  two factors only 

(23) enter (27) through the product aG, and that the lower 
) x’2ERN 

, I  

bound is actually hyperbolic in aG, and thus inversely 

asymptotic result is generally true for any continuous g ( x )  
But since exp ( ’ is a ‘Oncave function, we can proportional to aG when aG >> 1. Indeed, this type of 
Jensen’s inequality to (23) to obtain 

I n 

P[success] 2 exp ( - l / G )  ( I X ’ l s a N  d71 
n 

But since f i 2  = -hl, we see that by reversing the roles 
of  and Z2 in (24) the  effect of F cancels, leaving 

, 
P[success] 2 exp ( 1 / G )  ( I Z I C R N  dx’l 

n , 

Substituting (21) into (25) gives us (20), thus completing 
the proof  of the theorem. 

Before ending this section, it is worth considering the 
probability of success in the special case of a  l-dimen- 
sional (bus) network in greater  detail.  First, we have been 
able to show [7] that 5 5 a / 2  must hold for every load 
intensity function, with equality in the case of two sta- 
tions with equal loadings of G/2 at opposite extremes of 
the bus.  Thus, we have immediately from Theorem 2 that 
the probability of success in  the bus is at least This 
result is significantly stronger than the well-known result, 
obtained using a worst case  “star” approximation, namely 

, especially when a and/or G is large.  And, in addi- 
tion, the relatively simple structure of the 1-dimensional 
case has allowed us to obtain even  stronger results on the 
probability of success  as  a function of the  idle point I?. 
The next two theorems are proven in [7]. 

e-aG 

where we have 

P [  success I I? = 7, UG >> 1 ] = 
- 

{ O < y < a  I J g o n  
2G 

Zheorem 4: Consider  a 1-dimensional network having 
a  discrete  load intensity function 

M 

g(x) = C G i 6 ( ~  - ai) 
i =  1 

where 0 = al I a2 < * - < U M  = a ,  Gi > 0 for all i 
and C E l  Gi = G. Then the probability of success, con- 
ditioned on the position of the  idle point r is continuous 
in [0, a]; its derivative is continuous in the open interval 
( a i ,  ai + ) and does not exist at { ai } (each of which is a 
local maximum). Furthermore,  we have that 

It is also possible to  obtain  the complete solution to the 
two-station case, including the pdf for.the  idle point and 
the exact probability of success, which in its symmetric 
form attains the worst possible value of Zi on  the  l-dimen- 
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sional (bus) network [7]. In this case, we have 

1 
1 + aG/2 

P [ success] = 

which, surprisingly,  is equal to  the  lower bound for uni- 
form traffic (i.e., g ( x )  = G/a for  all x )  implied by Theo- 
rem 3. 

v. RESULTS ON THROUGHPUT 
To find throughput as  a function of G and the network 

topology, it remains to find the expected duration of a 
transmission cycle.  Since the expectation of a sum is equal 
to the sum of the  expectations,  we may consider each of 
the components of a  cycle  separately. Recall that in Sec- 
tion 111, we decomposed each cycle into  the  idle  volume, 
I ,  followed by the vulnerable volume V and finally either 
the useful volume U or the  failure volume F in the  case 
of a successful transmission or a  collision, respectively. 

The  idle volume I is constructed by translating the idle 
cone forward along the  time axis until the first transmis- 
sion is encountered.  Thus,  for each cycle,  the measured 
duration of I must be exactly the  same, no matter what 
observation point we  use  to make the measurement. Since 
the idle cone is a  consistent  frame of reference, it is  clear 
that I is unaffected by the outcome in this  (or,  for that 
matter,  the previous) cycle.  Furthermore,  since the gen- 
eration of  traffic is Poisson (recall that  our traffic model 
is a  time homogeneous, space inhomogeneous N + 1-di- 
mensional Poisson process), it is  .clear that from any ob- 
servation point, say z, the measured duration of I must be 
exponentially distributed with mean E:') [ I ]  = 1 /G. (For 
region R ,  we use the notation E:'? [ R ]  to mean the ex- 
pected value of the length of R along the  time axis at  ob- 
servation  point 2 . )  

Similarly, we note that  the length of a successful trans- 
mission is (obviously) independent of our observation 
point. Thus,  since  we  have defined the  average packet 
length to be unity,  we  have immediately that E:') [ U 3 = 
P [ success 1. 

The remaining two  terms, namely V and F,  are more 
difficult to characterize,  since  for  a given cycle it is clear 
that the measured duration of these volumes can vary 
drastically as  a function of our observation point.  In par- 
ticular,  the shapes of V and F depend on both the geom- 
etry of the idle cone and the position of the first transmit- 
ter. In addition,  the  shape of F also depends on  the 
position(s), differences in starting time(s), and differences 
in transmission time(s) between the first transmitter and  a 
(random number of) conflicting transmitter(s).  Thus we 
face  a  far more challenging problem in evaluating E:')[ V I  
and E:') [ F 1 .  

In view of the discussion above, it seems quite remark- 
able that with the  aid of the following "trick" we can 
obtain a.  simple  expression  for Et [ V I ,  which is indepen- 
dent of the idle  cone.  The main idea is that instead of a 
single fixed observation point,  we now propose to make 
our measurements of the duration of a  cycle with respect 
to a generalized observation point z* consisting of a 

weighted average of the measurements obtained from 
many different observation points. 

First of all,  since 

= alE[X,] + C Y ~ E [ X ~ ]  + * . . (28) 

holds for any random variables X,, X,, * - and real num- 
bers al, a2 ,  - - , we may replace { X i  1 by the respective 
sets of measurements of I and U at zi and replace { ai ] by 
any set of nonnegative "weights" summing to unity to 
see that both 

E: '*)[ I]  = aiEf"'[Z] = E , [ I ]  
i 

and 

E!'*'[ U] = aiEjZi)[U] = E,[U] 

must hold for  all  z*..Thus, from now on  we can use z* as 
our observation point instead of some fixed point z with- 
out affecting our measurements of I or U.  

Returning now to  the derivation of E:'*) [ V 1, we  now 
show that the key property of the independence from the 
idle cone holds when the weight assigned to  the  obser- 
vation at Zi ,  is given by g ( Zi) / G ,  the pdf for  the nor- 
malized load intensity function. To see  this,  we  take  the 
idle cone  as  our  frame  of  reference  and condition of the 
position of the first transmitter XI to  obtain 

1 

E t [ V ( X ,  = x', FI = s Z E W N  d ?  [ax, -Lzl g(?)/G. 

Unconditioning on XI, we  have 
II II 

* [ax, - f,,I g(z')/G. (29) 
But sincef,, = -&, (29) simplifies to (21). Thus, if the 
measurements of V at the positions of each transmitter are 
weighted in proportion to their  load generation rate,  we 
see that the resulting estimate of Et [ VI  is always equal to 
a ,  independent of the  frame of reference.  Thus, even if 
without the steady-state distribution of the idle cone 
(which we usually cannot find, anyway),  we know that 

At this point,  the reader .may recall that in the worst- 
case "star" analysis without collision detection,  the  av- 
erage  duration of a  cycle  is  either 1 / G + a + 1 if it is 
successful (with probability e-"), or 1 /G + a + Tu + 
1 if it is a  collision, [3]. The term 

- 

Ej'*'[V] = a. 

- A  1 Y, = 
1 - e-'' o 

( a  - y )  Ge-YG  dy 

is the expectation of the difference between the starting 
times of the first and  last transmitters in a  collision, which 
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depends on both the  total traffic G and the end-to-end 
propagation time, a.  In  the  case of general loading in N- 
space,  we  have now shown  that  the average duration of a 
cycle (with respect to the generalized observation point, 
z*,  defined above) is  either 1 / G  + Z + 1 if it is success- 
ful  (for which the probability is  at  least e-"), or 1 / G  + 
Z + E$'*) [F] if it is  a  collision.  Thus, we see that if the 
inequality 

Ejz* ) [F]  I 1 + 7; 
were to hold, then we could obtain a  lower bound to the 
throughput as  a function of g (  ) in the general case by 
replacing the worst case propagation time a by its "av- 
erage" value a and then simply pretending that we have 
a "star" network. Unfortunately, as tempting as it is to 
jump to this conclusion, we are not so lucky. This is be- 
cause F depends on the worst of the interfering stations if 
there is more than one, and hence on the distribution of 
traffic as a function of distance from the first transmitter 

on the separation between the interfering transmitters 
(if there is more than one), on our  frame of reference, and 
on the observation point. Furthermore, in the  l-dimen- 
sional symmetric two-station case  (for which we have an 
exact solution available [7]), we have found that the ex- 
pected length of a busy period is given by i / G  + a 1 2  + 
1 + P [  collision] a / 2 ,  from which it follows that E:' ' [ F ]  
= 1 + a / 2 .  But since < a / 2  for  all finite values of 
G, we have found a  case where the conjectured inequality 
in (30) does not hold. 'Thus, the use of this heuristic sub- 
stitution is questionable,  even in the  case of l-dimen- 
sional networks! (However, it is interesting to note that 
although (30) is not satisfied in the two station case,  the 
heuristic substitution does appear to give a  lower bound 
on S, presumably due to its underestimation of 
P [success] .) 

Before returning to  the problem of finding E, [ F 1, we 

? 

(30) 

O r a 

Fig. 7.  The timing of events in a  cycle  in the two station case, letting f = 
0 at the idle  point, r. 

end of the bus for xi and xk and  the rest of the  time we 
will pick opposite ends, which yields ajk = 0 and ajk = 
a ,  respectively. To find E:'*)[ V I ,  we  first condition on 
the idle point being at position r on the  bus,  for some 0 
I r 5 a ,  and then take  the  average of the measurements 
of V'at  the two endpoints of the bus for the two equally 
likely cases, namely X ,  = 0 and X ,  = a.  Thus, we have 

which, of course, is independent of r. E:'*) [ F ] can be 
obtained in  a  similar  way, except the probability that X ,  
= 0 given that a collision  occurred is given by 

P [ collision I xI = 01 
P [ collision 1 X ,  = 01 + P [ collision I x1 = a ]  

and not by 1 /2. Thus 

E!'* ) [F]  = 1 + (1  - e-'")[. - r - 1 /G]  + (1  - )[r - 1/GI 
(1 - e-") + (1 - e-(o-r)G ) 

note that as  a consequence of Theorem 1,  the expected 
duration of a  cycle must be independent of the observation 
point. And thus,  since Z and U are constant, the sum Et [ VI 
+ E, [ F 3 must also be independent of the observation 
point. We  note, however, that in order  to find these ex- 
pectations with respect to some specific observation point, 
we  must in general find the steady state distribution gov- 
erning the geometry of the idle cone (so we can take ex- 
pectations with respect to it). Unfortunately, we have 
found that even  for 1-dimensional networks, it is difficult 
to find the steady-state distribution of the idle point. Fur- 
thermore, as shown by the following example,  the  fact 
that Et('*) [ VI  is independent of the  idle point does not 
imply that this same independence also holds for 
E:'*) [ F 1. 

Consider a  cycle in the symmetric two station case,  as 
shown in  Fig.  7. Clearly we have from (21) that a = a / 2  
in this case,  since half the  time  we will choose  the  same 

which is clearly not independent of I?. Thus, Theorem 1 
is of little help to  us,  and  the estimation of F must be done 
using other means. 

Because of the special structure of 1-dimensional net- 
works, we can make further progress in the estimation of 
E, [ F 1, and hence S. We now briefly outline two methods 
that appear in [7]. First,  in the' partitioning  method, we 
find upper and lower bounds to El [ F ] by partitioning the 
vulnerable area V into  two components V' and V " ,  as 
shown in Fig. 8.  If we assume that all transmissions are 
of constant length equal to unity, then we have a direct 
relation between the regions V' and F. That is, in the event 
that no transmissions originate from within the region V' , 
we can use a simple geometrical argument to establish an 
upper bound on E:') [ F I no transmissions in V' 3 for any 
observation point z. But since  a ready station would be 
forbidden from transmitting in V' if it sensed carrier from 
another transmission that originated within region V" , it 
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Y 

TIME 

I 

Fig. 8. The partitioning of V into  regions V‘ and V ” ,  from which  we can 
bound F. 

is easy  to  see that 

must hold, and  hence how to upper  bound E:z)  [ F ] .  To 
find a matching  lower  bound, we note that the probability 
that at least one transmission occurs in region V’ given 
that a collision has  occurred may be viewed as the  union 
of two events A and B where A is  the  event that at least 
one transmission occurs in region V‘ and  none  occur in 
region V ” ,  and B is  the  event that at least one transmission 
occurs in region V’ and at least one  occurs in region V” . 
Since P [ A  U B ]  L P [ A ] ,  we’have that 

P [  no tqnsmissions in Vr ] s exp (- y g ( x )  dx d t )  

from  which the lower  bound  on E:‘) [ F ] follows. 
The bounds  on F obtained with the partitioning method 

may be  sharpened using the layering method, as  shown in 
Fig. 9. In this case,  we  use the idle cone  to partition the 
vulnerable volume V into successive “layers” VI and V, 
where  layer Vl’. terminates when the second transmission 
in the cycle is encountered. ‘(Recall that XI has, already 
been defined to  mean  the first transmitter to break the idle 
period.) If  XI and X, are  on opposite sides of I?, then we 
know from  Lemma 3 that these  two transmitters are suf- 
ficient to define F, whether or not any  more transmissions 
take.place‘ in this cycle.  Thus  the interesting case  is when 
X1 and X, are  on the same  side of r, as  shown in the 
figure. First,  we note that in the region V2 n B;, no fur- 

TIME 

I 

Fig. 9. The layering method  applied  to  a cycle where  a collision has oc- 
curred. 

ther transmissions can possibly arise  because  the stations 
would already ‘have sensed  the tqtnsmissibn from X,: 
Thus,  to bound F we need  only  examine  the  remainder  of 
V2 for  furiher transmissions. If there  are  none, then XI and 
X, define F. Otherwise,  we  can  bound F by dividing this 
regiqn into two’parts, V.. and Vi, and  applying  the parti- 
tioning method. 

VI. DISCUSSION AND CONCLUSIONS 
The  methods outlined here have  heen successfully ap- 

plied to linear. (bw-like) networks [6 ] - [8 ]  where  we  have 
obtained bounds  on the throughput  for nonpersistent 
CSMA with  and  without collision detection in the case of 
general intensity functions. A sampling of these results 
are shown in Figs. 10 and 11.  . . 

In Fig. 10, we consider nonpersistent CSMA without 
collision detection,  while in Fig. 1 1 ,  we  assume that there 
is collision detection with a jam time of c = 2a. In all 
cases,  we  have  assumed a moderately large value for the 
normalized  propagation  time,  namely Q = 0 . 1 ,  which is 
quite appropriate for cable-based LAN’s operating at high 
data rates. Furthermore,  to illustrate the role of the load 
intensity function on  performance,  we  have included re- 
sults for three different ones, ‘namely a) g* ( x )  = 6 i  ( 1 .  - 
x ) ,  which concentrates the load near  the  middle of the 
bus, .giving ii = 9a/3,5; b) g* ( x )  = 1,  which distributes 
the load uniformly  over the bus, giving = a/3;  and c) 
g* ( x )  = 12 ( x  - 1 / 2 ) , ,  which concentrates the load near 
the two  ends of the bus, giving if = ‘ 3 h / 7 .  The corre- 
sponding results under the worst case “star” topology as- 
sumption  and  for the slotted version of the protocol are 
also included. Notice that in all  cases, the performance of 
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(c) 
Fig.  10. The  effect of the load  intensity  function on throughput for  asyn- 

chronous  nonpersistent  CSMA  (without  collision  detection)  on  a bus net- 
work ( a  = 0.1). (a) g*(x)  = 6x(  1 - x), ii = 9a/35.  (b) g*(x) = 1 ,  
ii = n/3.  (c) &?*(x) = 12(x - 1/2)*, Ti = 3 a / 7 .  

I the asynchronous protocol on a bus network is grossly 
underestimated by the worst case  “star” topology as- 
sumption, as  one might expect. What is more interesting, 
however, is that the results for  the slotted protocol also 
underestimate its throughput-even though it has been 
widely believed since  the discovery of slotted Aloha [5] 
that slotting improves the efficiency of a random access 
protocol. 

Our efforts to extend this approach to a more general 
setting, where we allow stations (with inhomogeneous 
traffic generation rates) to be placed arbitrarily within a 
region in N-space, have met with limited success. We 
have been able to determine some of the properties of such 
a  LAN, including a  lower bound on the probability of suc- 
cess. However,  we found the problem of bounding the 
throughput as  a function of load and topology in the gen- 
eral case to be  intractable.  The main reason for this was 
the complexity of the geometry of collisions in higher di- 
mensions, which is partially due to the correlations be- 
tween the actions of the stations that result from carrier 
sensing. As a  result,  the problem of estimating the  ex- 
pected duration of a  collision,  as it would be measured by 
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Fig.  11. The  effect of the  load  intensity  function  on throughput for  asyn- 
chronous  nonpersistent CSMA/CD (with collision detection)  on  a bus 
network ( a  = 0 . 1 ) .  (a) g*(x) = 6x( 1 - x),  ii = 9a /35 .  (b) g*(x) = 
1 ,  si = a /3 .  ( c )  g*(x) = 12(x - 1/2)*,  ii = 3a/7.  

an observer positioned somewhere within the network, 
~ was found to be intractable in  the general case. 

Although we were unable to generalize the results on 
throughput from one dimension to the general case, we 
wish to point out that this limitation is not as severe as it 
might first appear.  First,  we note that unlike the  linear 
case (where the medium could be a  cable that supports 
very high data rates),  planar and 3-dimensional LAN’s 
are typically packet radio networks [2] that must operate 
in an environment where bandwidth is a  scarce resource. 
Thus, we expect the worst case normalized propagation 
time a to be much smaller  in 2- and 3-dimensional space 
than it is for 1-space. Since  the  details of the topology are 
of little consequence when a << 1, we expect little dif- 
ference in the performance predictions for  a packet radio 
network between a worst case  “star” approximation and 
a more elaborate two- or three-dimensional model. Sec- 
ond, we note that even if the density of traffic per unit 
area/volume remains constant while we increase the  di- 
mensionality of the network, the difference between the 
average case and worst case separation between stations 
decreases rapidly. 
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