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Virtual Time CSMA: Why Two Clocks Are  Better 
than One 

MART L. MOLLE, MEMBER, IEEE, AND LEONARD  KLEINROCK, FELLOW, IEEE 

Abstract-A new  carrier sense multiple access (CShiA) algorithm, 
called virtual time CSMA, is described and analyzed. This algorithm uses 
a novel approach to granting access to the shared broadcast channel  based 
on variable-rate clocks.  Unlike other CSMA  algorithms, the operation of 
virtual time CSMA reduces to the ideal case in the zero propagation time 
limit: a work-conserving, first-come first-served M/G/1 queueing system. 
The algorithm does  not appear to be difficult to implement, but offers 
better throughput-delay performance than existing CSMA algorithms. A 
simple closed  form technique for estimating the mean message delay is 
presented. This technique is of independent interest because of its 
applicability to certain “sliding window” tree conflict resolution al- 
gorithms. Extensive numerical results for the algorithm are presented, 
including comparisons with simulation and  with other CSMA algorithms. 

I. INTRODUCTION 

0 NE simple way to design a communications network is to 
allow the stations to exchange messages over a shared 

broadcast channel. The channel is monitored by all the 
stations, providing a direct communications path between 
every pair of stations in the network. However, no more than 
one message at a time can be transmitted successfully over 
the channel. Whenever the reception of several messages 
overlap at a station, we say that a collision has occurred and 
assume that none of the transmissions are received correctly 
by the station. Thus, for the network to operate successfully, 
the stations must abide hy a common set of rules governing 
access rights to the channel, called a multiple access 
protocol. 

The difficulty in designing a good multiple access protocol 
arises from the spatial distribution of the stations. Since no 
additional communication paths are provided between the 
stations, there can be no observable network-wide queue. 
Thus, no protocol can arrange a perfect schedule for the 
message transmissions. Instead, the actions of a protocol 
simply specify a mapping from the time axis  into (possibly 
empty) subsets from the set of all possible waiting messages. 
A message is transmitted whenever the protocol specifies a 
subset to which it belongs. Only those subsets may be 
specified for which each station can determine whether or not 
it has a message belonging to that subset. Thus, for example, 
either the oldest remaining message at station N o r  the set of 
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I Here we  assume  that stations may observe the  outcome  of  past 
transmission  attempts at  no  cost, but  that  no other  “free” information 
exchange is provided. This model corresponds to networks  sharing  a 
transponding satellite channel  and  to local networks in  which all stations 
monitor  the  channel  to  detect idle periods  and collisions. 

messages generated between times 71 and 7 2  could be 
specified, but not the oldest remaining message in the entire 
netwmk. In particular, subset selection can depend on 
p@busly selected subsets through observation of the 
history of activity on  the  channel. 

If the network were  to contain few stations (or be very 
heavily loaded), such fixed scheduling algorithms as round- 
robin TDMA would work well. Successively inviting each 
station to transmit any single message clearly could not cause 
collisions. It would also avoid long idle periods in +e 
presence of waiting messages because there are few stations 
to examine. Below, however, we consider protocols for 
networks with very large numbers of stations, each of which 
rarely generates a message. Here  it becomes difficult to find 
individual stations having a message to transmit, so random 
access protocols that grant access to the channel on a demand 
basis are more efficient. ALOHA [l] is perhaps the simplest 
possible random access protocol. Here stations are permitted 
to transmit new messages at will (or  at the start of any slot in 
the synchronous, or “slotted” version [22] ) .  Should a 
collision occur, each affected station waits for a random time 
interval and then blindly retransmits its message, and so on. 

In this paper, we introduce a new carrier sense multiple 
access (CSMA) protocol that offers better performance than 
existing CSMA protocols. CSMA protocols are extensions of 
ALOHA that take advantage of how short the propagation 
time across a local network is, compared to a message 
transmission time. Here stations monitoring the channel can 
determine whether or not the channel is idle through carrier 
sensing (and thus can defer to other stations’ transmissions 
when it is busy, preventing an inevitable collision). Some- 
times it is also possible for stations to determine whether 
ongoing transmissions are colliding (so that the duration of 
collisions can be reduced) through collision detection-see 
1161. 

The operation of CSMA protocols can be either asyn- 
chronous (unslotted) or synchronous (slotted). In asynchron- 
ous protocols, each station runs its local copy of the protocol 
independently, using local observations of the evolution of 
the channel state.  In synchronous protocols, all stations run 
their local copies of the protocol in lock-step. Time is divided 
into a sequence of slots. Transmissions are not allowed to 
cross slot boundaries: stations can only begin transmitting at 
the start of a slot; the start of next slot takes place only when 
it  is  clear that the reception of all those transmissions (if any) 
must be complete at every station. 

We model collision detection, when it  is available, in the 
following way. Shortly after the start of the first interfering 
transmission reaches a transmitting station, that station 
recognizes that a collision is taking place. Thereafter,  the 
station stops transmitting the remainder of its message, 
briefly “jams” the channel (by transmitting a strong burst of 
noise) to  ensure  that  all stations consistently recognize the 
collision, and then remains silent until the channel becomes 
idle once again. In the asynchronous algorithm, we must 
follow the model described above exactly: the duration of 
each colliding transmission is the sum of the transmission 
time up to the arrival of the first interfering transmission and 
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the collision recovery time, c ,  a constant that includes the 
times for collision recognition and jamming the channel. In 
the synchronous algorithm, we simply choose the duration of 
slots where collisions take place so that they can handle the 
worst cast, namely, where the duration of each colliding 
transmission is some fraction b of the message transmission 
time. 

At present,  there  are  three well-known CSMA protocols 
[lo]. In nonpersistent CSMA, only those messages that 
arrive when the channel is sensed idle are transmitted. This 
transmission takes place immediately in the asynchronous 
version, and at the start of the next slot in the synchronous 
version. All other messages are immediately rescheduled as 
if a collision had occurred. In the I-persistent CSMA 
protocol,  all messages are transmitted as soon as possible. In 
the asynchronous version, messages are transmitted immedi- 
ately if  they arrive when the channel is idle, or as soon as the 
channel becomes idle otherwise. In the synchronous version, 
messages are transmitted at the start of the next slot. The p -  
persistent CSMA protocol is  a generalization of 1-persistent 
CSMA, in which a message that arrives when the channel is 
busy is transmitted only if the length of the next idle period 
exceeds a geometrically distributed random value with 
parameter p .  

11. WHY NOT AN INFERENCE  SEEKING TREE ALGORITHM? 
Before launching into the details of our new CSMA 

protocol,  it may be helpful to explain why CSMA protocols 
in general are of interest for local networks. Two general 
classes of random access protocols can be found by examin- 
ing the reaction of the protocols to the history of events on 
the channel.  We call the  first class “inference avoiding” 
protocols because they try to operate as if the past history of 
events on the channel did not matter. This class includes the 
ALOHA protocol [ 11 and various CSMA protocols [ 101-see 
[26] for  a  survey.  The basic idea here is to simplify the 
problem by modeling inference avoiding protocols as two 
separate algorithms: channel access and retransmission feed- 
back. A channel  access algorithm selects the subsets for 
transmission as if the distribution of the number of messages 
in those subsets depends only on the subset specified (e.g., 
the particular range of generation times), independent of the 
previous channel history.  Typically, the performance of such 
channel access algorithms is found under the assumption that 
the total traffic, and hence the distribution of messages in 
each selected subset, is Poisson. Should some subset selec- 
tion result in a  collision, the channel access algorithm carries 
on as if the affected messages were lost. If the network.is not 
a loss system,*  a retransmission feedback algorithm 
(sometimes called a “backoff algorithm”) is invoked follow- 
ing each collision to  select, independently and at random, a 
new “generation  time”  for each of the affected messages. 
Care must be taken in designing a retransmission feedback 
algorithm or an inference avoiding protocol may become 
unstable [13], 141, [3],  [28]. 

We call the second class of random access protocols 
“inference  seeking” protocols (or  “tree conflict resolution 
algorithms,”  as they are usually called-see [7], [2], 1273). 
These protocols apply various statistical inference techniques 
to the channel history information to improve the subset 
selection process. (The name “tree conflict resolution 
algorithm”  arose because these protocols can be modeled as 
decision trees. ) 

It is well known that inference seeking protocols offer 
some important advantages over inference avoiding proto- 

In  some applications, such as packetized  voice, it makes sense to drop 
colliding  packets, because  the  systems are more tolerant of the loss of some 
packets  than of either  unordered delivery of packets or long  and  variable 
Dacket delavs. 

cols in a friendly environment. First, inference seelung 
protocols can be made inherently stable without the imposi- 
tion of controls on the feedback of collisions. Second, 
inference seeking protocols can use the channel more 
efficiently than can inference avoiding protocols, because 
they exploit rather than ignore the channel history informa- 
tion in their scheduling decisions. This advantage is most 
apparent when the channel history information is only made 
available to the stations after some delay (as is the case in a 
satellite channel), and declines significantly in local net- 
works where rapid idle- and/or collision-detection is 
possible-see [ 171. 

In  a more hostile environment, such as a mobile packet 
radio network [8], the behavior of the channel is far from 
ideal. The capture effect allows some stations to correctly 
receive a strong signal even when it is colliding with a 
weaker signal. Since signal strength decays with distance, 
relative signal strength (and, hence, the channel history) is 
position dependent. A packet radio network may also be 
partitioned from time to time because the stations are mobile 
and could pass through a  tunnel,  say.  Finally, atmospheric 
effects occasionally may render the history information 
incorrect at some or all of the stations. 

Inference seeking protocols can suffer  two kinds of failure 
when the channel history information is unreliable. First, 
Massey [5] has shown that consistent  but incorrect informa- 
tion can cause deadlocks when certain inferences are at- 
tempted. In his example,  a noisy channel made an idle period 
appear to be a collision-thereby sending the protocol on an 
endless search for some nonexistent messages. However, this 
same “missing message” deadlock condition could also 
occur whenever messages are lost after they have been 
involved in a collision. Such message loss could clearly 
happen when a station leaves the network (possibly due  to 
failure of the station or through disruption of the channel). 
However,  a more serious cause of this deadlock is the 
interaction of various protocol layers. After some prear- 
ranged “timeout” period has elapsed,  it is common for 
higher level protocols to stop trying to transmit a message. 

The performance of inference seeking protocols also 
suffers when there  are inconsistent data at the different 
stations. If the stations are not aware of this situation, 
coordination among the stations is lost, degrading the 
performance. If the stations are  aware of this situation (say, 
when a new station is trying to  join an operating network, or 
when a station is trying to rejoin after  a channel disruption), 
those stations that do not know the “correct” state of the 
protocol may be forbidden from accessing the channel until 
they can determine it, which could take some time. 

It should be clear from the discussion above that CSMA 
protocols are useful for certain typeq  of local networks (such 
as packet radio networks) because they are inference 
avoiding and,  thus, potentially more robust when faced with 
misleading, incorrect, or inconsistent channel history infor- 
mation. The study of CSMA protocols is also of importance 
because of their use in actual networks, such as the Ethernet 
[16] coaxial cable network and the Department of Defense 
PRnet packet radio network [8]. 

111. DESCRIPTION OF THE VIRTUAL TIME CSMA CHANNEL 
ACCESS ALGORITHM 

In virtual time CSMA, messages are assigned transmis- 
sion times through a 1-1 mapping that compresses the entire 
“real” time axis (including the arrival times for  all mes- 
sages) until it fits onto a  “virtual” time axis consisting of the 
union of all idle periods on the channel. To understand how 
this is done,  it  is best to start with an example-see Fig. 1. In 
the initial state of the algorithm (before the first channel 
busy-time is observed), the transmission time for  a message 
is the same as its  arrival time. Eventually the first transmis- 
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Fig. 1. Compressing  the  time axis onto the  channel  idle periods. 

sion(s) occur,  and thereafter the stations sense the channel 
busy over some interval, say from B,(’) to 4(z) at the jth 
station.3 Because of carrier sensing, the algorithm must 
suspend further transmissions during that busy interval, even 
though new messages continue to arrive. When transmissions 
resume at Z(2), the backlog (i.e.,  the amount by which 
transmissions have fallen behind arrivals) has grown to - 
l?(l). Thus, as the algorithm begins “clearing” this backlog 
(by transmitting any messages in the network chronologi- 
cally, starting with those that arrived at Et(’)), the transmis- 
sion time for a message has become the sum of its arrival 
time and the backlog at Z o .  Obviously, something must be 
done to reduce this backlog over time. Otherwise messages 
arriving  after Zck+ I)  would be delayed by at least X f= (Ifi+ l)  
- which grows without bound as k + 00. To prevent 
this, whenever the algorithm is trying to clear a backlog, it 
compresses the time axis by a factor of q ,  q > 1 .  In this 
case, two distinct points on the time axis, say 7 1  and 7 2 ,  will 
be mapped into distinct transmission times, 7 1  ’ (during the 
j th channel idle period) and 7 2  ’ (during the kth channel idle 
period), respectively, such that 

Should the algorithm ever clear the backlog completely, it 
returns to its initial state.  Thus, messages are always 
transmitted when the algorithm has cleared the backlog (if 
any) up to their arfival times. Note that 1-persistent behavior 
can be obtained by choosing q = 00. For finite q ,  the backlog 
is a nonnegative random walk which increases at a rate of 
unity while the channel is busy, and decreases at a rate of q 
- 1 while the channel is idle. 

The virtual time CSMA channel access algorithm is simple 
to implement, even though, in general, the transmission time 
for a message can depend on channel activity that takes place 
both before and after its arrival. Assume that each station is 
equipped with two “clocks,” measuring the passage of 
“real” time and “virtual”  time, respectively. Without loss 
of generality, both clocks are initialized to  zero.  Thereafter, 
the real-time clock runs continuously at constant rate, while 
the virtual-time clock runs as follows. When the channel is 

In general, because  signal  propagation is not instantaneous,  these  times 
(and  even their  difference in  the case of collisions)  will  vary from station to 
station. However, their dependence  on  the  identity  of  the  station is 
unimportant for  our example. 

sensed busy, the virtual clock stops (retaining its current 
reading); when the channel is sensed idIe, the virtual clock  is 
allowed to run (in the manner described below). In the 
asynchronous (unslotted) version, the virtual clock runs 
contiauomly at a constant rate,  either q times faster than the 
real-tim.clock if it  has fallen behind the real-time clock, or 
in l o c k - s i  otherwise. In the synchronous (slotted) version, 
all virtual clocks advance by one  “step”  at the beginning of 
each Each step advances their readings by the mini- 
mum of the current backlog, Q, and the constant w P aq, so 
that idle periods, consisting of slots of duration a, are 
compressed by a factor of q when there  is a backlog. Once we 
set the clocks operating,  the  rule  for transmitting messages 
becomes obvious. Each message is tagged with the reading of 

.,&e real-time clock when it  arrives, and is transmitted when 
the virtual clock reading passes the tagged value-see Fig. 2. 
(Were we to observe the stations in virtual time-i.e., only 
when the virtual clocks are allowed to run-we would 
conclude that they were following the ALOHA protocol.) It 
should be clear that the clocks need  not be synchronized 
between stations. In  fact,  “real  time” can advance at a 
d i f f i t  rate  at every station without affecting the algorithm, 
as long as the same clock speed ratio is maintained. (The 
algorithm will still operate if the clock speed ratios vary from 
one station to  inother, but stations with higher clock speed 
ratios will receive higher priority.) 

Virtual time CSMA can also be described in terms of a 
collection of concurrent processes 1121. Assume that each 
station has available a single “real-time” clock and a 
programmable interrupt  timer; the virtual-time clock is 
simulated by remembering the most recent value of virtual 
time and the (real) time at which it was last updated. Stations 
must also maintain a sorted transmit queue, and record the 
current state of the channel. The channel monitor process 
runs whenever the state of the channel changes. Whenever 
the transition from busy to idle channel takes place, the 
current virtual time reading is marked up to date (since it 
must have remained stopped since the last update) and a timer 
interrupt is set to take effect when the first message in the 
queue would be sent if no other channel activity were 
observed in the mean time. (It is set to infinity if the transmit 
queue is empty.) Whenever the transition from idle to busy 
channel takes place, the virtual clock reading is updated, 
reflecting the fact that it has been running since the last 
update. If the transition to busy channel occurred before the 
timer interrupt (because of some other station’s transmis- 
sion), the timer interrupt  is cancelled. The transmitter 
process transmits the message at the head of the transmit 
queue whenever a timer interrupt occurs. The scheduler 
process runs each time a new message arrives or a colliding 
message must be rescheduled. Each message is tagged with 
the current value of real time (plus the retransmission delay 
in the case of collisions) and inserted into the sorted 
transmission queue. If the channel is idle and the insertion 
took place at the head of the transmission queue, the timer 
interrupt is set to take effect when the newly inserted 
message should,be transmitted. If there is collision detection, 
a collision process is run whenever the station discovers that 
its current transmission is  part of a collision. This process 
cancels the transmission of the remainder of the message and 
then jams the channel for a collision recovery time [16]. 

Virtual time CSMA offers several advantages over  other 
versions of CSMA. Unlike nonpersistent CSMA, every 

In its synchronous  version,  our  “virtual clock” abstraction is equivalent 
to the “sliding window”  abstraction  described in the tree algorithms of 
Gallager [5] and  Tsybakov  and  Mikhailov [29]. However,  the virtual clock 
idea can be generalized to asynchronous operation. (Indeed, in [18] we 
showed how to construct asynchronous tree algorithms from  “virtual  clock” 
descriptions of their  operation.) 
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Fig. 2. The mapping from arrival times to transmission  times. 

arriving message will be transmitted. Unlike p-persistent 
CSMA, these transmission times are assigned in first-come 
first-served (FCFS)  order. Unlike both 1-persistent and p-  
persistent CSMA, it is fair in the sense that when a message 
is transmitted, its probability of success does not depend on 
its arrival  time.  In  addition, virtual time CSMA is a closer 
approximation to the “ideal” channel access algorithm, 
where only an unbroken train of successful message trans- 
missions take place while there  are undelivered messages in 
the network (i.e., work-conserving FCFS single-server M /  
GI1 queueing system). Obviously, this ideal behavior is not 
realizable because the stations are distributed in space: even 
though each station is quite capable of managing its own 
queue of messages, finding the status of the queues at other 
stations requires both time (making the information out  of 
date when it arrives) and channel bandwidth (adding over- 
head to the system). However, in the limit as a + 0, the 
overhead due to spatial distribution vanishes. Here it should 
be possible to attain ideal behavior with a channel access 
algorithm. For the other CSMA protocols described above, 
this is known  not to be the case [24]. For virtual time CSMA, 
we attain ideal behavior when we let q --+ a as a + 0 such 
that aq + 0. Assume that the aggregate arrival of messages 
to  all stations in the network is Poisson with intensity G per 
unit time, 0 < G < 00. Then the average channel idle time 
between transmissions is l/qG when there is a backlog 
(which vanishes as q ---* a), while the probability that the 
first transmission after an idle period is successful is at least 
aqGe-aqG/( 1 - e - O q C )  in the synchronous version and e - O q G  

in the asynchronous version (both of  which converge to 
unity). Thus,  as a -+ 0, the normalized throughput S 
converges to min { G ,  1 } . 

Iv .  DERIVATION OF THE THROUGHPUT EQUATIONS 

To find the throughput equations for virtual time CSMA, 
we follow the standard assumption that the total traffic 
(including new message arrivals and retransmissions) can be 
approximated by a Poisson process with intensity G per unit 
time.  Furthermore, we make the pessimistic assumption that 
the number of stations is infinite: all messages are certain to 
be queued at different stations, and hence, stations cannot 

prevent any collisions by the scheduling of their own 
transmissions. 

We  view virtual time ’ CSMA as having two modes of 
operation. We say that the algorithm is “backlogged” when 
the virtual clock is allowed to run at rate q. and “caught up” 
when  the virtual clock is allowed to run at rate unity. When 
the virtual clock is stopped, the mode is determined by the 
rate from the last time the virtual clock was allowed to run. 
Thus,  to find the throughput equation, we  need  only find the 
conditional throughput equations for each mode separately 
and then average them in proportion to the time spent in each 
mode. 

It is impossible for an observer who is  only permitted to 
monitor the channel when a single mode of operation is in 
effect (say, corresponding to virtual clock rate r)  to distin- 
guish virtual time CSMA  with traffic intensity G from 
nonpersistent CMSA protocol with traffic intensity rG. Both 
protocols disable new transmissions when the channel is busy 
(either by blocking messages in nonpersistent CSMA or 
delaying them in virtual time CSMA). Both protocols enable 
new transmissions to take place when the channel is idle, and 
the time until the next transmission begins is exponential with 
parameter rG. Thus, the conditional throughput equations 
can be found in the same manner as for nonpersistent CSMA 

Under synchronous (slotted) operation, the throughput S 
[lo]. 
can be expressed as 

s = ErHsI/E[LI, (2) 
the ratio of the expected amount of useful work (i.e., the 
number of successful transmissions) performed in a random 
slot to the expected duration of a random slot, respectively. 
Because stations monitor the channel during each slot, the 
duration of a slot depends on the channel activity in that slot. 
Idle slots last for the end-to-end propagation time a, so that 
all stations can be certain that it is idle. In addition to the 
propagation time, busy slots must also allow for some 
transmission(s) to take place. Recall that the transmission 
time for messages is unity. However, because of collision 
detection, we define the transmission time for colliding 
messages to be 6, b I 1, the fraction of each message that 
gets sent before the collision is detected (if at all).  Thus, each 
busy slot lasts for  either  1 + a if it contains a successful 
transmission or b + a if it contains a collision. 

Because of our Poisson total traffic assumption, the 
number of messages transmitted in each slot is Poisson. By 
neglecting the boundary effect described above, the mean  of 
this distribution must be either aG or aqG, say with 
equilibrium probabilities T O  and T I ,  respectively. Clearly, 

E[H,IrG] = arGe-ad (3) 

and 

EIL,IrG]=ae-a~+( l+a)arGe-ad  

+ (b  + a)[ 1 - (1 + arG)e -“&I (4) 

for r E { 1, 7). Thus,  to find the throughput in equilibrium, 
it remains to find { T ; }  so that E[WJ and E[L,] can be 
determined. Assume that the value of q is large enough for 
the backlog to remain finite with probability one. (Otherwise 
?rl = 1 and message delays would  be infinite.) In this  case, 

Actually,  a  boundary  effect can occur as the virtual clocks  catch up  to real 
time.  In the synchronous  algorithm  the clocks could  advance  by  an 
intermediate  value at a step, while  in  the  asynchronous  version the clocks 
could  slow  down to rate  unity during the  vulnerable period for some 
transmission. The probability  of  success for messages  transmitted at such  a 
boundary  will be between the values of the  two separate modes. It can be 
shown  that ignoring this  boundary  effect is pessimistic. 
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{q} can be found by equating the average duration of a slot 
(i.e., E[L,]) with the  average advance of the virtual clock pe-f 
slot, namely ?r@ + alaq. Since T I  = 1 - T O ,  we find 

min (0, E[L,lrlGl - m )  
E[L,lrlGl-~rl-H~,IGl+a * 

T o  = ( 5 )  

Fig. 3 shows the throughputs as a function of total traffic 
for synchronous virtual time CSMA with q = 3, slotted 
nonpersistent CSMA, and slotted 1-persistent CSMA. (We 
assume that a = b = 0.2, which corresponds to a 10 km long 
Ethernet-like local area network where the data rate  is  10 
Mbitds, the propagation speed is  200 m / p ,  and all packets 
are 256 bits long [24].) Notice that the curve  for virtual time 
CSMA dominates the curve  for 1-persistent CSMA, and tlqt 
the throughput curve  for nonpersistent CSMA also representg ’’ 
the conditional throughput for virtual time CSMA, given 
that q = 1.  Both curves attain the same maximum through- 
put, but with q = 3 the peak occurs  at one-third the traffic 
intensity. It should also  be  clear that as G increases,, we can 
always decrease q to  ensure that the product qG is  invariant, 
and thus attain the same maximum throughput. Although this 
would result in unbounded message delays in steady state, 
dynamic adjustments to the virtual clock rate are a “natural‘“ 
way to control the algorithm under transient overloads. 

Under asynchronous (unslotted) operation, the through- 
put can be expressed as 

the ratio of the expected amount of useful work performed in 
a random “transmission cycle” (described below) to the 
expected duration of a random transmission cycle, respec- 
tively. Recall that with asynchronous operation, each station 
runs its copy of the algorithm independently using local 
observations of the channel state. Thus, the performance of 
the algorithm is sensitive to such characteristics of the 
network as  ‘the normalized propagation time between each 
pair of stations, {ai j} ,  and the traffic matrix. Here we follow 
[lo] in assuming aij = a, the worst case,  for all stations. 
(This assumption correctly models a “star” topology, e.g., 
[21].) The details of the traffic matrix are unimportant, as 
long as we can neglect the probability that a single station 
transmits several messages in rapid succession. (Recall that 
we have already made the assumption that the total traffic is 
Poisson with intensity G.)  

We shall describe the operation of the asynchronous 
algorithm as a sequence of transmission cycles. The jth 
transmission cycle runs from I(’) until I ( ]+  I), consisting of the 
jth channel idle period followed by the j th channel busy 
period. Since in continuous time the exact channel history 
depends on the observation point, we shall always monitor 
these state transitions from the “hub” of  ‘the star. 

A key step in the throughput calculation is illustrated in 
Fig. 4. By neglecting the boundary effect as the backlog is 
cleared, we can partition the time axis into two virtual time 
axes, corresponding to virtual clock rates q and unity, 
respectively. By separately modeling operation of the al- 
gorithm over the two virtual time axes, we face a simpler 
task. Were we to model the operation of the algorithm over 
real time, we would have had to analyze “multimode” 
transmission cycles where the virtual clock rate  drops  from q 
to unity part way through an idle period. But  by following the 
operation of the algorithm over the virtual time axis at a time, 
we need consider only “single-mode’’ transmission cycles 
where the virtual clocks run only at some fixed rate r, say, 
during each idle period.  This decomposition does not affect 
the observed behavior of the algorithm over a transmission 
cycle because of the memoryless property of Poisson 
arrivals. 

I h  PERFECT UTILIZATION OF SLOTS 

“t I 
VIRTUAL TIME CSMA 

(DYNAMIC CLOCK RATE) 

NON-PERSISTENT CSMA 

.VIRTUAL TIME CSMA 

1-PERSISTENT  CSMA 

0 2 4 6 S 

TOTAL  TRAFFIC (G) 

Fig. 3. Throughput curves for synchronous CSMA algorithmns on an 
Ethernet-like network. 

1 2  3 4  5 

ARRIVAL TIME 

Fig. 4. Partitioning channel activity into two virtual time axes. 

In Fig. 4, we have redrawn Fig. 2 to show how the two 
virtual time axes corresponding to clock rates q and unity, 
respectively, are interleaved on the real time axis, and how each 
virtual  time axis can be divided  into a sequence  of  “single- 
mode” transmission cycles. In the r = 1 virtual time axis, 
each transmission cycle consists of a single connected 
component in real time that begins when the backlog is 
cleared part way through some idle period and lasts through 
the following channel busy time (e.g., messages 1 and 5) .  In 
the r = q virtual time axis, transmission cycles could be split 
into several components by transmission cycles from the r = 
1 axis (e.g., 5’s transmission cycle separates the beginning of 
the last r = q transmission cycle from the rest of that cycle). 
Note that a transmission cycle on the r = q virtual time axis 



924 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985 

always includes one complete transmission cycle on the real 
time axis, and possibly also the beginnings of some earlier 
channel idle periods up to the point were the backlog was 
cleared. 

Consider a single-mode cycle with virtual clock rate r. At 
some time t, the cycle begins as the channel changes state 
from busy to idle. At time t + a/2 ,  all stations that had  not 
just been transmitting sense this same state change. Thereaf- 
ter, the channel remains idle everywhere for an exponential 
interarrival time (with mean l/rG) until the next transmission 
begins. Following the start of this first transmission, a 
further time of a/2 elapses before we observe the transition 
from idle to busy at the hub. Note that this first transmission 
will be successful (and hence, one unit of useful work will be 
accomplished in this cycle) if no other station subsequently 
decides to transmit a message before it detects the start of the 
first transmission. Because of our worst-case star topology, 
each of the other stations has the opportunity to cause a 
collision for time a, so that 

E[N,(rG] =e-ufi. (7) 

If this cycle contains a successful transmission, the channel 
will remain busy for one time unit, so that EILclrG, success] 
= 1 + a + l/rG. If this cycle contains a collision, the 
length of the busy period (and, hence, of the cycle) depends 
on whether or not the stations can detect collisions, but the 
expected length of the idle period is still l / rG + a. 

If collision detection is not available, the channel remains 
busy for the union of the busy periods due  to each colliding 
transmission. Thus, the average busy period duration given 
that a collision occurred is simply 1 + E[ y1, where 

a-(1 - e - 9 / r G  
1 - e-aG 

is the average time between the beginnings of the first and the 
last colliding transmissions. If collision detection is availa- 
ble, we assume that it  operates instantaneously, and thereaf- 
ter the station stops transmitting the remainder of the 
message, jams  the channel for  a  collision recovery time,  c, 
and then remains quiet until the busy period ends. Once again 
the busy period at the hub begins a /2  time units after the first 
station to  start begins transmitting, and ends a /2  time units 
after the last station to stop ends transmitting. However, for 
the star  topology,  it can be shown [ 121 that the first station to 
begin transmitting is the last to detect the collision (a time 
units after the second station starts transmitting; all  other 
stations detect the collision a time units after the first station 
starts transmitting) and,  thus,  also the last station to  stop 
transmitting. Note that the third and subsequent transmis- 
sions (if any) have no effect on the duration of a collision 
busy period.  In  this  case, the average busy period duration 
given  that a collision occurred is a + E[ Y'] + c, where 

represents the average time between the beginnings of the 
first and the second colliding transmissions. It follows that 

E[L,(rG]=1+2a+e-uG/rG (8) 

if collision detection is not available, and 

E [ L , I r G ] = ~ + 2 a + ( 2 - e - ~ ~ ) / r G + e - ~ ~ [ l - 2 a - c ]  (9) 

if collision detection is available. 

To complete the throughput calculation, we must deter- 
mine E[W,] and E[L,I. Let ?ro and ?rl be the equilibrium 
probabilities that r = 1 and r = 7, respectively, for a single- 
mode cycle chosen at random. A virtual clock situated at the 
hub  would run (at rate r) whenever the channel was sensed 
idle. Since the average idle time in a cycle is l / rG + a, the 
average advance of the virtual clock per cycle is 1/G + ?r@ 

+ *lag. Equating this with the average duration of a 
transmission cycle, namely E&], and recalling that al = 1 
- TO, we find 

min (0 ,  EILcIvG] - av - 1/G\ 

v. EVALUATION OF CAPACITY 
Having now derived the throughput equations for virtual 

time CSMA, it remains to show how to find its capacity as a 
function of the network parameters a, b, and c and the 
algorithm parameter 7. (Because of the Poisson total traffic 
assumption, we can ignore the effect of the retransmission 
feedback algorithm on capacity.) 

By the capacity of a channel access algorithm, we mean 
the supremum over  all attainable values of throughput for 
which the expected message delay is finite. It is common 
practice in CSMA to assume that the retransmission feedback 
algorithm only delays messages for  a finite time between 
transmissions, and,  thus, that the capacity of the algorithm is 
simply the supremum over  G of the throughput equation. 
With virtual time CSMA,  however,  there is also  another 
constraint limiting its capacity, namely, that the backlog 
remain finite with probability 1. Thus, to find the capacity of 
virtual time CSMA, we  must restrict G  to those values for 
which ?rl < 1. 

Fig. 5 shows capacity for synchronous virtual-time CSMA 
as  a function of the virtual clock rate 7, when a = 0.01 and 
there is no collision detection. The maximum capacity of 
0.8655 occurs at 7 = 13.5, but the capacity remains within 1 
percent of this maximum for 10 I 7 5 20. Note also that as 
7 + 100, the capacity approaches 0.53, which is well known 
to be the capacity of slotted 1-persistent CSMA [lo]. Of 
course, this is to be expected, since for 7 2 1 + a, 
synchronous virtual time CSMA simply enables all the 
arrivals  during the previous slot-which is exactly how 
slotted 1-persistent CSMA operates. 

In Section IV, the throughput of virtual time CSMA with 
virtual clock rate 7 for any G was shown to be a convex 
combination of the throughput for nonpersistent CSMA 
evaluated at  G and at 7G. Thus,  it should be clear that for  a 
given set of network parameters, the capacity of virtual time 
CSMA can never exceed the capacity of nonpersistent 
CSMA. However,  it is also easy to show that there is an 
optimal value of 7, say r]*, for which the capacity of virtual 
time CSMA is the same as the capacity of nonpersistent 
CSMA (which is the best possible for inference-avoiding 
protocols under the Poisson total traffic model-see [17]). To 
see  this, we assume that for the given system, nonpersistent 
CSMA attains its capacity as G -+ Go, namely So = 
E[HI Go]/EIL I Go]. But whenever qG = Go, the conditional 
throughput for virtual time CSMA, given that the algorithm 
is backlogged, will also be So.  Thus, we are done if  we can 
find r]*, satisfying both < 1  for  all  G < GO/q* and ?rl = 
1  for G = Go/y*,  Le., virtual time CSMA with virtual clock 
rate T,I* attains its capacity (of So) as G approaches G* = Go/ 
v*. Using (5) and (lo), it is easy to  see that this critical value 
is 

v*=E[L,IGO]/a (1 1) 

for the synchronous algorithm, and 
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Fig. 5 .  Capacity as a  function of clock rate. 
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Fig. 6.  Sensitivity  of  capacity to propagation  time. 

for  the asynchronous algorithm. Fig. 6 shows capacity as a 
function of the propagation time, a, for ALOHA and the 
various CSMA algorithIfis. 

VI. ESTIMATION OF DELAY 
Here we use the standard equilibrium random access delay 

model [1 11 to estimate the mean message delay T. Thus, we 

Our curves  for slotted ALOHA, slotted nonpersistent CSMA, and slotted 
p-persistent CSMA differ slightly from the corresponding curves in [lo]. This 
is because in slotted ALOHA, they  neglected  to  include  the  propagation  time 
in  the  slot length, and in the two CSMA algorithms, the  throughput  equations 
were not evaluated  precisely at the  points  where  maximum  throughput is 
attained-see [ 171. 

assume that 

925 

where To is the initial delay from the arrival of a new 
message until the start of its first transmission attempt (or 
until the decision is made not to transmit the message in 
nonpersistent CSMA), T, is the retransmission deiay from 
the start of one unsuccessful attempt to transmit a message 
until the start  of its next transmission attempt, and the term 1 
+ (I represents the transmission time and propagation delay 
for the message during  its  final, successful attempt. 
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The characteristics of To differ substantially between 
virtual time CSMA and other CSMA protocols (where To is 
little more than the residual life of the current slot) because 
the operation of the virtual clocks causes the tilessages to 
queue for access to the channel. Thus,  to estimate T, we  must 
first understand how this queueing affects To. Fortunately, as 
will become clear below, performance predictions for vir- 
tual time CSMA  based on this simple model are surprisingly 
accurate (and seem much better than the comparable results 
for the other CSMA protocols). This is because the major 
cause of the inaccuracy in the model is in the accounting for 
delay caused by retransmissions, and  with virtual time 
CSMA the expected number of retransmissions per message 
is small. Thus, unlike other CSMA protocols (where the 
initial delay is only a small part of the message delay), To is 
the dominant part of the message delay in virtual time 
CSMA,  and we shall see below that good estimates for TO can 
be found. 

Recall that in the limit as a + 0, the performance of 
virtual time CSMA approaches the ideal case, namely, a 
nonpreemptive single-server FCFS M/G/1 queue. Thus, our 
starting point for estimating TO will be the well-known M / G /  
1 queue [9] .  For any queueing system, we can find the 
unfinished work at time t ,   U(t) ,  as the sum of the remaining 
service times of all customers in the system at time t .  
Assuming that the system is work-conserving, the server 
performs useful service  at the rate of one second of work per 
second of real time, so that V( t )  will tend to decrease towards 
zero  at rate unity.  However, each time a new customer 
arrives, he brings with him a quantity of work equal to his 
service  time, so that U(t) exhibits discontinuities as cus- 
tomers arrive.  Hence, the server is busy whenever U(t) > 0 
and idle whenever V(t) = 0, and ’if no further customers 
were to  arrive, the server would become idle at t + V(t).  
Note that U is sometimes called the “virtual waiting time,” 
because a customer arriving  at time t would wait for exactly 
U(t) before entering  service, assuming nonpreemptive FCFS 
scheduling. 

In virtual time CSMA, we make use of a generalized 
definition of unfinished work. Here we  say that the unfin- 
ished work at time t is the time required to completely clear 
the backlog present in the system at t ,  assuming no further 
customers  arrive  after t .  Note that here we define “cus- 
tomer”  to mean a set of one or more messages that are 
transmitted concurrently (creating a continuous period of 
channel activity); the arrival time of a customer is the arrival 
time of the leading  message in the set. (The arrival times for 
any other messages are simply ignored.) We further define 
the “work” that must be expended on such a  customer, X ,  to 
consist of two  components, namely a resting component X,, 
during which the virtual clocks remain stopped because the 
channel is busy, and a scanning component Xs,  during which 
the virtual clocks are running at  a rate of 7 in an  effort to 
regain the time lost while they were resting. In the asyn- 
chronous case, the virtual clocks are stopped for exactly the 
time that the channel is sensed busy, so that XR is simply 
equal to the transmission time for the message(s). To find XR 
in the synchronous case, we refer  to Fig. 7. At the beginning 
of a busy slot, the virtual clocks make an initial advance of w 
that triggers the start of the transmission(s), which we shall 
account for by defining the first a time units of each slot as 
scan time. Since the virtual clocks never advance in the 
middle of a  slot,  the remainder of the slot must be resting 
time. Hence, X R  = L, - a. But the duration of each slot 
always exceeds the transmission time for any message(s) 
transmitted in that slot by a ,  to account for the propagation 
time.  Thus, we have once again that X ,  is equal to the 
transmission time.  In  either  case, the virtual clocks must 
regain this lost time of X R  during the scan time.  It is easy to 
see that whenever the virtual clocks are running at rate 9, the 

CHANNEL 
ACTIVITY 

t 
COMPONENTS OF 

SERVICE TIME 

WORK CLEARED 

\ t 

INITIAL  ADVANCE l a  

I WORK BEGINS I 

Fig. 7. The work associated with a transmission in synchronous  virtual-time 
CSMA. 

backlog must be decreasing at the rate of 7 - 1, so that 

X R  X ,=-  
11-1 

and. hence, that 

In Fig. 8, we illustrate the evolution of unfinished work in 
virtual time CSMA. A new busy period begins at t(’) with the 
arrival of the first  “customer,” and the unfinished work 
increases by XR(’) + XS(’). Because the system is empty 
initially, this customer enters  service immediately. The 
resting (i.e., transmission) component of his service will be 
completed at t(’)  + XR(’);  one propagation time later, the 
corresponding messages either  leave the network if  they were 
transmitted successfully, or else begin their retransmission 
delay. If no further  arrivals were to take place, the scanning 
component of his service would be completed at t(’)  + X,(’) 
+ XS(’), ending the busy period. Suppose, however, that a 
second customer arrives at t@).  Because the virtual clocks 
start running again at t(’)  + XR(’) (and in virtual time CSMA, 
this message will be transmitted when virtual time reaches 
t(Z)),  the resting component of the second customer’s service 
will preempt part of the scanning component of the first 
customer’s service. In Fig. 8, for example, the second 
customer begins his resting component of service approxi- 
mately halfway through the scanning component of the first 
customer’s service, while the third customer begins his 
resting component of service near the end of the scanning 
component of the second customer’s service. 

Define the synthetic queueing problem to be an ordinary 
nonpreemptive FCFS queueing system that is given the 
identical sequence of customer arrival times and service 
times (including both resting and scanning components) as 
our virtual time CSMA system. It should be clear from Figs. 
8 and 9 that the unfinished work in both systems is identical 
over  all  time, and hence, that the virtual time CSMA system 
and the synthetic queueing problem will have an identical 
sequence of busy periods. Below  we make some key 
observations about the relation between the waiting times in 
the synthetic queueing problem and TO in our virtual time 
CSMA system. 

Consider the times 7 ( j )  and f ( j ) ,  measured with respect to 
the start of a busy period,  at which the jth customer enters 
service in the synthetic queueing problem and the virtual 
time CSMA system, respectively. In the synthetic queueing 
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to @, a little less t h p  that required for the virtual clocks to 
tu). Thus, being careful ,not to omit the resting 

components of  service  for any of  the customers 1,  * * * , j - 
1, we see that 

TRANSMISSION 
TIME 

1 2  3 

MESSAGE  ARRIVALS 

Fig. 8. A busy period in virtuat-time CSMA (note how preempts part 
of X,(']). 

UNFINISHED 
WORK 

4 
b- BUSY PERIOD-+ 

1 2  3 

CUSTOMER ARRIVALS 

Fig. 9. The corresponding busy pericd in ,&e synthetic queueing system. 

problem customers are served donpreemptively in FCFS 
order, so that 

i = l  . I -1  

~n the virtual time CSMA system, t h e m  customer must still 
wait until the resting component of, service  for customers 1, - - a ,  j - 1 is completed, but he will preempt some scan time 
because his ttansmission begins as sobd as fhe virtual c locb 
advance to  his arrival time. Thug,. assuming that he arrived 
t ( j )  after  the  start of the busy period,  he will have preempted 
enough scan time to advance the virtual clocks from tu) to 
7 ( j ) ,  namely 

It remains to  derive a more usable expression for Zu). 
Suppose we find that 7 ( j )  < tu) s l), for some 1 5 i ,  < 

j .  Then we know frbm the way that the sphthetic queueing 
problem was congt~cted that, in addition to the sum of the 
resting components of service fot customers 1, 2, - * - , i, T ( ~ )  

also includes enough scan time to advance the virtual clocks 

Similarly, we have 

It should now be clear that 

k-I+ I 

and, indeed, we could  get  the exact result for Z(j)  by 
accounting for  the time to scari across the residual service 
time for customer i at  customFrj's  arrival.  The final step is  to 
obaer+e that since  these results relating the waiting times in 
each system hold for each dustomer taken individually, the 
same results'must also hold for  the average waiting time in 
the two systems. Thus, the average waiting time in the 
virtual time CSMA system, W, is obtained from the average 
waiting time in the synthetic queueing probleni, W, by 
subtradting off E[q, where 2 is the sum of the scan times for 
every customer in queue on its arrival plus the time to scan 
across the residual service time of the customer in service. 

Now suppose that the synthetic queueing problem were of 
type M/G/  1. Then the mean waiting time W is given by the 
well-knowa Pollaczek-Khinchin mean value formula. Using 
Little's result, the number in queue, Nq,. can also be 
expressed in terms of Was Nq = wp/X. Similarly, it is well 
known [9] for  ihe M/G/l queue that W = Wo/(l - p ) ,  
where WO is the mean residual service time for the customer 
(if any) found in service by  a  new arrival. Recalling that any 
customers found in queue by  a  new arrival  to an M/G/l 
queue will have ordinaty  service time requirements; we see 
that if the synthetic queueing problem were of type M/G/l,  
then the waiting time in the virtual time CSMA system would 
be given by 

1 1 
rv= w-- tl (WO+N&= w-- B (W(1 - p ) +  Wp) 

= w - .  $ - 1  

9 

It  is interesting to, note the symmetry in this last result: W is 
obtained by in f rating the transmission time for each message 
by a factor of q/ (q  - 1) to account for the scan time 
overhead, aid then defiatirtg the tesnlting waiting time 
estimate by the reciprocal of that factor to account for the 
premption of Some of that scan time by subsequent 
transnilissions. To use this result, it remains to show how'to 
map ihe syn,thetic queueing problem onto an M/G/1 queue. 

Far synchronous (slotted) viitual time CSMA, we find TO 
fr0.m the discrete  time M/G/l queu&, with (3 as its 
elementary time unit. Here we restiict all state changes to a 
sequence of equally spaced arrivdpoints 0, w ,  2w,  30, * * . 
At each ai-rival point, either no customer or exactly one 
customer arrives, independently and with probabilities (1 - 
p )  and p ,  respectively. Service times are independent with 
mean 8 w  and squared coefficient of vatiation Cb2, and each 
one  is a multiple of o (so that departures can only occur at 0, 
w ,  20, 3w,  - .). It can be shown [17] that the mean waiting 
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time in a  discrete time M/G/1 queueing system with 
utilization p = p X  is given by 

The estimate for obtained from (18) and (19) can be 
made exact, given the Poisson total traffic assumption, in  the 
following case.  First, we assume that all service times (as 
inflated to account for the scan time overhead) are evenly 
divisible by the window size w .  Second, we impose the 
following modification to the protocol. Whenever the back- 
log Q is less than w at the beginning of a slot, we shall insert a 
“rest  period” equal to w - Q so that the virtual clocks 
advance by exactly w at every step (or, equivalently, that all 
windows are forced to be the same size in a sliding window 
tree  algorithm). Obviously, this constant advance restriction 
can only increase the delay compared to the original system, 
because messages arriving when the backlog is small must 
now wait for  it  to grow to w before being transmitted. 
However, this modification drastically simplifies the analysis 
by ensuring that both the arrival process and the service times 
are independent of the state of the algorithm. In this case, an 
arrival point occurs  once every w time units, a nonempty set 
of messages may arrive at each such arrival point with 
probability p = 1 - e -  wc, and if so, the service time (in 
units of w )  for that set of messages is independently chosen to 
be either  l/(w - a) with probability wGe-wG/(l - e-“G) 
(representing a success) or b / ( w  - a) with probability 1 - 
wGe-wG/(l - e-oG) (representing a collision). Thus, recall- 
ing that a message must wait w/2 on average from its actual 
arrival time to the next arrival point, we find that To for this 
modified version of synchronous virtual-time CSMA is given 
by 

To=-+ w=-+ w - w W(q-1)  
2 2 rl 

where W is given by (19). 
Without collision detection,  it is no more difficult to find 

To for the ordinary version of the algorithm, in which the 
virtual clocks advance by  min { w ,  Q} at the beginning of 
each slot. To  see  this, we observe that without the constant 
advance restriction, collisions would be less likely to occur in 
the first slot of each busy period than in the rest. But without 
collision detection, the service time for the first customer in 
each busy period is no different from the rest, since the 
length of every busy slot is always 1 + a.  Thus, the 
requirement of i.i.d.  service times in the M/G/l  model is 
satisfied. Furthermore, it is clear that once a busy period has 
begun, the virtual clocks always advance by exactly w at each 
slot for the remainder of the busy period. In other words,  for 
a the busy period beginning at t l ,  we see that the arrival 
points that are included within that  busy period occur at t l ,  
tl + w ,  t l  + 2 w ,  . * e .  Thus, W can be found using exactly 
the same discrete M/G/1 model as before. However, the 
virtual clocks now scan each idle period in steps of a once 
every a time units, instead of  in steps of w once every w time 
units, reducing the average waiting time until the next arrival 
point is reached from w / 2  to a/2  for messages that arrived 
during  an idle period. Since such messages make up a 
fraction 1 - p of the total, TO for ordinary synchronous 
virtual time CSMA without collision detection is given by 

where W is given by (18) and (19), assuming b = 1. 
Note that these simple results were only achieved because 

we deliberately defined service times in the synthetic 

queueing problem to include scan times. Had we instead let 
each slot (idle or not) be a  “customer” who requires one 
slot’s worth of service, then we  would have been forced to 
use a instead of w as the elementary time unit because the 
service time for an idle slot is clearly a.  It follows that euen 
with the  constant advance modification, we would still 
have been faced with analyzing a system where periodic 
customer arrivals occur once every q elementary time units, 
rather than a system with memoryless arrivals-which is a 
far more difficult task. 

For asynchronous (unslotted) virtual time CSMA, we can 
estimate 7‘0 using the results for the continuous time M/G/1 
queue. Recall that in our throughput analysis, we have 
already assumed that the total traffic is Poisson, that the 
number of stations is large, and that the network topology is 
the worst possible (i.e., the propagation time between all 
pairs of stations is the same). Unfortunately, even for this 
case we cannot use (18) without making some further 
approximations, because the customer arrival process in the 
synthetic queueing problem is not Poisson. First,  “gaps” 
occur in the customer arrival process. Recall that during a 
transmission cycle where the virtual clock rate is r ,  the 
virtual clocks at almost all the stations advance by the same 
amount,’ namely, the sum of an exponential interarrival time 
with  mean 1/G, which advances the virtual clocks to the 
arrival time of leading message, and the “vulnerable period” 
for that message, ar. Any messages that arrive  during the 
vulnerable period do not become customers in the synthetic 
queueing problem. They simply collide with the leading 
message, possibly changing his service  time. Second, when- 
ever the backlog is cleared, the virtual clock rate (and, 
hence, the duration of the vulnerable period) is reduced. 
Thus, we see a dependence between the state of the algorithm 
and the arrival  process, since both the mean time between 
customer arrivals  (i.e., 1/G + ar) and their service times 
depend on r. 

To make use of (18), we shall approximate the arrival 
process to the synthetic queueing problem by a Poisson 
process even though the “gaps”  occur. Because the gaps are 
small, few messages fail to become customers in the 
synthetic queueing problem because of this approximation. 
Furthermore,  our model of the arrival process in the virtual 
time CSMA system is already an approximation (because we 
said that the total traffic, including retransmissions, is 
Poisson), so the additional error from assuming Poisson 
arrivals in the synthetic queueing problem does not seem 
significant. To handle the state dependence in the mean 
interarrival times, we form upper and lower bounds on W by 
assuming that the mean interarrival time is state independent 
and given by 1/G + a and 1/G + qa, respectively. Recalling 
that the shorter value for the mean interarrival time should be 
used between the first and second customer arrivals in a busy 
period, and that the longer value should be used between 
each of the subsequent arrivals in the busy period, we expect 
the actual waiting to approach the upper bound under light 
traffic (since few busy periods contain more than two 
customers) and the lower bound under heavy traffic (since 
customers initiate new busy period%). Together, these two 
approximations allow us to bound W at any value of G ,  by 
solving the Pollaczek-Khinchin mean value formula [9] at 
utilizations of pu = x G / ( l  + aG) and p L  = XG/(l + 
aqG), respectively, i.e., 

’ The only exception is at  the  transmitting  stations  during  a collision. 
However,  this is unimportant  in  the  calculation of To because  we  have 
assumed  that  the  number of stations is large  and,  thus,  that  these  same  stations 
are  unlikely to transmit  more messages in the  same busy period. 
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Since an arriving message need not wait for the next arrival 
point in asynchronous virtual time CSMA, To satisfies 
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We have now found expressions  for To, Ilamely, (20) and 
(21) for the synchronous case and (23) for  the asynchronous 
case. The throughput S was shown in Section IV to be E[mI 
E[L] . Thus, to find the mean delay T from (1 3), it remains to 
find an expression for TR. 

Recall that T R  is composed of an unsuccessful transmission. 
of duration 

[ b + a  synchronous case 
TF= 1 + E [ y I  asynchronous without  collision detect 

(24) 
a + E[ Y’]  + c asynchronous with collision detect 

followed by the time it takes for the virtual clocks to advance 
by the scheduled retransmission delay. We assume that the 
retransmission feedback algorithm operates by adding a 
random delay to the current value of the arrival time “tag” 
for each colliding message (which clearly must have been 
equal to the current value of virtual time), .and that these 
random delays are independently drawn from a common 
distribution with mean R. 
To calculate the mean time for the virtual clock to advance 

by R, we make use of the fact that R s l/(q - 1) must  hold 
for the Poisson total traffic assumption to be reasonable. In 
this case, we can assume that this advance is distributed over 
each virtual time axis in proportion to their relative lengths, 
and it follows immediately from the discussions leading up to 
(5 )  and (10) that 

if the queueing delay due to the virtuai clocks is finite (i.e., 
?ro > 0); otherwise we have 

TF+ 
R m s l r l a  

synchronous case 

if ?ro = 0. 

VI1 . NUMERICAL RESULTS 

Mean message delays as a function of throughput were 
found humerically for both the synchronous and asynchron- 
ous versions of the protocol. In each case, we have compared 
the results of our analysis with simulations where we have 
relaxed many of the assumptions used in the analysis. The 
results show that in spite of its simplicity, our analytical 
model is remarkably accurate. 

For the synchronous protocol, we set the parameters in 
our model to be compatible with the well-known reiults of 
Tobagi and Kleinrock [lo]. Thus, we assume that messages 
are of constant length, that the transmission time for a 
message is unity, that the end-to-end propagation time a is 
0.01, and that there is no collision detection (i.e., b = 1). 

In Fig. 10, we compare simulation results with the 
estimated delay from (13),  (21), and (26). Following [25, ch. 
61, the simulation consists of 50 identical stations, eaqh with 
geometric message interarrival times with  mean’ a/o and 
geometric retransmission delays with mean a / v .  Three 
values for Y, namely 0.0003, 0.001, and 0.003, and a fixed 
virtual clock rate of q = 12 were used in this experiment. 
Each point is based on a run length of 500 OOO slots. Because 

a= 0.01 

n= 12 
b- 1.0 

0.0 0.2 0.4  0.6 0.8 1.0 

THROUGHPUT (S) 

Fig. 10. Comparison of simulatioh with analytic results for synchronous 
virtual-time CSMA. 

we needed the assumption in our analysis that the total resting 
and scanning times for each customer, q / (q  - 1) from (15), 
is evenly divisible by the advance ,of the tirtual clocks in one 
step, namely qa, we used q = 12.1 in the analytical curves so 
that I/(@ - a) = 9. 

The agreement between each set of simulation points and 
the correspondihg analytical curve is quite remarkable, 
considering the simplicity of the analytical model. Indeed, 
the only noticeable discrepancy is that the simulation points 
for the highet.retransmission rates (i.e., Y = 0.001,  0.003) 
lie above the corresponding analytical curve, near the 
“knee” of the delay curve.  This appears to be the result of 
comparing analytical curves in which we made the Poisson 
total ttaffic assumption, with simulation results where we 
used a nonadaptive retransmission feedback algorithm. 
When the mean retransmission delay is large, we see 
excellent agreement over  the  entire throughput versus delay 
curve. However, when the mean retransmission delay is 
small, the feedback of colliding messages in the simulation 
model becomes significant, so that our analytical model 
underestimates G during the busy periods and, hence, 
overestimates the probability of success at each transmission 
attempt. 

In Fig. 11, we compare the simulation points for Y = 
0.003 and Y = 0.001 with some equilibrium throughput- 
delay curves  for a model of slotted nonpersistent CSMA that 
was first studied by Tobagi [25]. However, where Tobagi 
relied on the numerical solution of matrix equations, in the 
Appendix we solve for the equilibrium solution to the 
embedded Markov chain as a triangular set of equations, and 
obtain closed-form expressions for the remaining quantities 
of interest. This  has allowed us to produce more complete 
performance curves  for the comparison. Comparing the 
simulation points for virtual time CSMA with the equilib- 
rium curves  for nonpersistent CSMA in Fig. 1 1, it  is evident 
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Fig. 11. Comparison of simulation  with  numerical  curves for slotted 
nonpersistent  CSMA.  (Simulation of virtual-time  CSMA uses u = 0.001 
and Y = 0.003; 9 = 12.) 

that virtual time CSMA with fixed values of virtual clock 
speed and retransmission delay (i.e., q = 12, Y = 0.003) 
attains the lower envelope of the curves for nonpersistent 
CSMA optimized over  all values of the retransmission 
delay. 

It is worth pointing out that slotted nonpersistent CSMA 
has an unfair advantage in this comparison because it 
assumes unbuffered stations: if a station generates a new 
message before  an  earlier message is transmitted success- 
fully, the newly generated message is simply dropped 
without penalty. However, the simulation of synchronous 
virtual time CSMA assumes stations have infinite  buffers: 
all messages are queued at the station until the virtual clocks 
reakh their generation times.* Since queueing messages, 
rather than dropping them without pendty, can only increase 
the mean delay for the messages that are not dropped, we 
expect virtual time CSMA to outperform buffered nonpersis- 
tent CSMA. 

Before leaving Fig. 1 1, it is worth remarkirig that with 50 
unbuffered stations, the average number in system, IiJ, can 
never exceed 50. It follows from Little’s result [14] that it is 
impossible for  the delay curve’s for nonpersistent CSMA to 
enter the region bounded below by the curve 

To simplify  the  simulation,  a few messages  are  still  lost  because  no  station 
is allowed to transmit  more  than  one  message  in  the  same slot. This could 
happen if one message  suffered so many collisions that  it  was still  in  the 
system at  the  next message’s scheduled  transmission  time. To prevent  this,  the 
new  message is dropped without  penalty.  Such  dropped  packets  are  rare, 
however, because  the  average  number of slots  between the first  transmissions 
of two successive messages at  the  same station is 50/(oS). In  this  example,  we 
have o = 0.12 and S s 0.86, so that even at  capacity  these  transmissions  are 
separated  by  about 475 slots on average. 

It is interesting to note that  with nonpersistent CSMA, the 
delay curves for all values of Y actually seem to terminate at 
some point on  this boundary, rather than approaching it 
asymptotically as T * 00. Furthermore, each of these limit 
points represents the capacity of the protocol with infinite 
buffering, given that each station with a nonempty buffer 
transmits the message at the head of its buffer with 
probability Y in each slot. To find the capacity of such a 
buffered protocol, we can use the results of Tsybakov for 
slotted ALOHA [28] to show that the M-dimensional 
(embedded) Markov chain representing the queue lengths at 
each station is ergodic only  if the queue at a single station is 
ergodic, assuming the worst-case behavior at every other 
station, namely, that their buffms never empty. To see that 
the throughput of the unbuffered protocol approaches the 
capacity of the corresponding buffered protocol as its delay 
approaches the limit point, we‘note that even for relatively 
small values of u, say u 2 0.01, it  is very unlikely that a 
station will remain in the thinking state through an  entire 
transmission cycle (where it will have had more than 100 
opportunities to  generate.a new message). Thus,  there will 
usually be 50 messages in the system, and the channel 
activity is close  to that of the corresponding buffered 
protocol. The only difference between the buffered and 
unbuffered protocols occurs after successful transmissions, 
where the channel load is different because one station is 
transmitting with probability u instead of Y. However, this 
difference in load is not significant as long as 49v p u, which 
was the case in all the above examples. 

Figs. 12 and 13 show how our analytical delay model for 
asynchronous virtual time CSMA compares with simulation 
data.9 Both simulations consist of 20 stations on a “star” 
network, each with buffer size 15. The  arrival of new 
messages at  all stations is Poisson with identical rates. In Fig. 
12 we assume that a = 0.01, that the virtual clock rate 
depends on G through the relation q = 9.45/G (since 
maximum conditional throughput occurs  at q G  = 9.49, that 
retransmission delay is geometric with a mean of 3, and there 
is no collision detection [12, Fig. 6.11. In Fig. 13 we assume 
that a = 0.01, that the virtual clock rate is fixed at 10, that 
there, is co l l i s ion  detection with col l i s ion   recovery  time 
0.001, and that one of three widely varying retransmission 
feedback algorithms is used [19, Fig. 51. Since only the 
random geometric feedback algorithm was simple enough to 
have an obvious mean, it was used to determine R for the 
analytical curves. 

In both figures we find that the simulation results approach 
the upper bound to delay at light traffic and the lower bound 
to delay under heavy traffic, as we expected. Furthermore, 
the simulation points generally fall between, the analytical 
bounds with two exceptions. First,  Fig. 12 shows the same 
behavior as Fig. 10, where the simulated delays exceed the 
upper bound near the knee of the curve because of the 
Poisson traffic assumption. (The fact that the simulation 
results for binary exponential backoff and the asynchronous 
stack fall below the  lower bound in Fig. 13 is not significant, 
because the given value of R only applies to the random 
geometric . feedback algorithm.) Second, the simulations 
attain slightly higher throughput near saturation, where 
buffer overflow begins to occur.  The expianation for  this 
discrepancy lies in the fact that the simulation has a finite 
number of stations, each with a limited buffer capacity. The 
inevitable buffer overflow that occurs at saturation interacts 
with the virtual clock mechanism in an interesting way. 
Suppose that all stations’ buffers are full between times 7 1  

Many  additional  simulation  experiments  involving  asynchronous  virtual 
time CSMA, including  comparisons  between  different  retransmission feed- 
back  algorithms  and  detailed  comparisons  with  Ethernet-like  algorithms  on  a 
“bus” topology, can be found in [12], [lo1 
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Fig. 12. Comparison of simulation  with  analytic  bounds for asynchronous 
virtual-time  CSMA  without  collision  detection. 
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Fig. 13. Comparison of simulation  with analytic bounds for asynchronous 
virtual-time CSMA with  collision detection. 
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and r2. Then all new messages arriving in this interval are 
lost. When the next successful transmission occurs, say by ’ 

station j ,  only station j can accept a newly generated 
message. Thus,  later on as the virtual ‘clocks are sweeping 
past rP\only station j will come upon a new message to  send, 
and $is more likely to be able to transmit it successfully than 
one ‘would expect from  the Poisson total traffic model. P 

VIII. CONCLUSIONS 
We.have introduced the virtual time CSMA channel access 

algorithm. It  is quite different from existing CSMA al- 
gorithms, and offers some significant advantages. It is the 
only CSMA algorithm that reduces to ideal M / G /  1 behavior 
in the limit as a -+ 0. It  is  fair in the sense that at each 
transmission attempt, stations are granted the opportunity to 
transmit their messages in FCFS  order.  Its capacity is at least 
as the other CSMA algorithms, and its delay characteristics 
are very good. Its virtual clock mechanism is equivalent to 
the “sliding window” mechanism used in some tree conflict 
resolution algorithms, but also generalizes to asynchronous 
(unslotted) operation. 

This analysis has also brought to light several items of 
independent interest.  A classification scheme for random 
access protocols was given, indicating some of the reasons 
why CSMA protocols are still important in spite of the 
invention of tree conflict resolution algorithms. The through- 
put ‘calculation uses a novel decomposition of the time axis 
into an interleaved set of “virtual” time axes. The method of 
calculating the mean delay by transforming the system into a 
synthetic queueing problem and then transforming the results 
back to the original system has recently been  used to find the 
exact throughput-delay curve  for certain “sliding window” 
tree conflict resolution algorithms [20]. We extended Toba- 
gi’s analysis of unbuffered slotted nonpersistent CSMA to 
investigate its behavior at saturation. Finally, we showed 
how buffer overflow can improve the heavy traffic perform- 
ance of virtual time CSMA. 

CSMA channel access algorithms can be viewed as 
scheduling algorithms in the sense that they coordinate the 
use of some common resource (the channel) by a set of 
competing users (the stations). (Channel access is actually a 
more difficult problem than scheduling, since the algorithms 
must operate in a distributed manner, with each station 
running its own copy of the algorithm without complete 
information about the demands for service by the other 
stations.) Sevcik [23] has observed that the difficulty in 
analyzing a scheduling algorithm seems inversely propor- 
tional to the goodness of that scheduling algorithm. Our 
experiences with virtual time CSMA add to the supporting 
evidence to this conjecture. ’ Where existing CSMA al- 
gorithms are based on ad hoc scheduling rules, virtual time 
CSMA is  a  “fuzzy” (because of the nonzero propagation 
times) approximation to the ideal case-an FCFS M/G/I  
queueing system. And unlike other CSMA algorithms, which 
have resisted attempts at finding simple analytical models 
capable of explaining their behavior (e.g., [6]), we were able 
to find simple closed-form expressions for bounding the 
delay in virtnal time CSMA. 

APPENDIX 
Here we  wish to  solve the model for slotted nonpersistent 

CSMA with geometric retransmissions discussed in Section 
VII. The system operates in discrete time, with arrival points 
occurring once every a time units. Each station can be 
“thinking” (trying to generate a new message), “transmit- 
ting,”  or “blocked” (waiting to transmit a message); state 
transitions can occur  at each arrival  ,point. Each thinking 
station generates  a new message with probability (I and either 
begins transmitting it, if the channel is  idle,  or  enters the 
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blocked state otherwise. Each transmitting station remains in 
that state for one transmission time (i.e., l la + 1 arrival 
points), then enters the thinking state, if its transmission was 
successful, or the blocked state otherwise. If the channel is 
idle, each blocked station begins transmitting its message 
with probability v. 

Since the time spent in the “transmitting” state is 
deterministic, the number of stations in each state at each 
arrival point exhibits memory. However, an embedded 
Markov chain can be found by examining the state of the 
system at the start of each transmission cycle [25]. The jth 
transmission cycle consists of the jth channel idle interval 
followed by the jth channel busy interval. Since no stations 
are transmitting when the channel is idle, the state of the 
system at each embedding point is simply the number of 
messages in the system (or, equivalently, the number of 
stations in the blocked state), which has {T ; }  as its steady- 
state distribution. Let 

u(k)P1-( l -u)k  (A. 1) 

be the probability that a thinking station generates a new 
message within k arrival points. Then 

is the probability that when j stations are blocked, i thinking 
stations generate new messages ,within a period of k arrival 
points, and 

g ( j ,  i )=( -! )  ~ ~ ( 1 - v ) j - l  O s i s j  (A.3) 

is the probability that when the channel is idle and j stations 
are blocked, i of them transmit in the same arrival point. It is 
easy to  see that the j ,  kth element of the transition matrix for 
the embedded Markov chain satisfies 

+f~(j, O)s(j, l l f d j ,  k - j +  1 )  

+f~(j, 0)[1 - g U  0) - g ( j ,  l)Ih~Ai, k - j )  

+flu, 1 ) [ 1  - g ( j ,  O)lfI/,(j+ 1 ,  k - j -  1 )  

k - j  

+ x fl ( j ,  i ) h / a ( j  + i ,  k - j  - i )  ) (A.4) 
i = 2  

for k = j - 1 ,  j ,  * * - , M .  It follows that we can find { r j }  up 
to a multiplicative constant using the recurrence relation 

j - 2  

rj-1(1-Pj-l , j-1)-x  riP;,j-1 
7rj = i = O  j = 1 ,  2 ,  *.. 

Pj,j - 1 

64.5) 
and an initial estimate for TO. (For numerical stability, it is 
best to adjust this constant dynamically to reduce the risk of 
underflows and  overflows.) 

Having found { r j } ,  -we can express the average number of 
messages in system, N ,  as 

M 
7rfljLco’) 

N = j = O  
M (A.6) 

where N j  is averaged over  all transmission cycles that began 
with j blocked stations, and Lc(j)  is the average duration of 
such transmission cycles. It can be shown [25] that 

To find N j ,  we must account for the messages that are 
generated part way through a channel busy interval. Let ei(t) 
be the average number of messages in the system during t 
arrival points, given that there are i such messages initially 
and no transitions to the thinking state take place. Then 

= M -  ( M -  i)(l  - ( 1  - u)’)( l -  u) 
tu (A.  8) 

Thus, if k messages were in the system at the start of a 
channel busy interval, the average number of messages in the 
system over  the remainder of that channel busy interval is 
given by 9k(l/a). But 

is the probability of there being k messages in the system at 
the start of a channel busy interval, given that we were in 
state j at the start of the transmission cycle. Thus, 

where 2 = (1 - a)( 1 - (1 - u)’Iu)/u. 
To find the steady-state throughput S, it remains to find 

He(’), the expected number of successful transmissions per 
transmission cycle, given that we were in state j at the start of 
the transmission cycle. But this is clearly 

so that the throughput may be expressed as 
M x 7r,HCU) 

s = j = O  (A. 12) 

7rjLco’) 

x lrj4.Lc(f)  

M 

j=O 

and, using Little’s result, the mean delay T is given by 
M 

T=J=O 
M 

(A.  13) 
~jH,o’)  

j =O 
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