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Abslract  

A conventional ALOHA satellite link uses a transponder which 
blindly echoes all up-channel trafficou the down-channel. An ALOHA 
cllanuel can never be fully utilized, so au intelligent satellile could sla- 
lislically multiplex the successful packets from several slotted ALOttA 
up-channels onto a single dowll-ehanuel to couserve baudwidlh, aud 
heuce reduce cost. We refer to this as a concentrated ALOHA systenl. 
Throughput, delay and slabilily effects are considered, varying tile 
number of up-cllauuels per down-chanuel and the satellite buffer size. 
Up- aud down-channel bandwidlhs are assigned independent linear 
costs, and all performance conlparisous are between conslan! cost sys- 
tems. It is shown thai tile nlarginal increase ill system perforulance 
drops off so quickly that a small number of up-chauuels maxiulizes 
throughput if up-channel bandwidth has a nun-zero cost. This small 
number is a function of tile buffer size aud the relative cost of up- to 
dowu-channel bandwidth. It is also shown that, eveu if satellite buffer 
space is free, a small buffer minimizes average delay for some previous- 
ly studied protocols of this type. A new protocol which improves perfor- 
mauce and allows a large buffer to be used effectively is introduced and 
analyzed. Solving for throughpu! and delay in concentrated ALOHA 
systems provides new analytic and uumeric results for the G/D/I queue 
with rest period equal to the service lime. 

1.  I n t r o d u c l i o n  

It is well known that message collisions limit the achievable 
throughput on a conventional ALOHA satellite link. Under the 
ALOHA protocol [ABRA 73], ground stations transmit without re- 
gard for other stations. Each new packet is sent as soon as it is gen- 
erated; a packet that is not acknowledged within some tirneout in- 
terval is assumed to have collided with another transmission. Lost 
packets are retransmitted after a further random delay (in order to 
reduce the risk of repeated collisions), and so on. One can easily 
show [ABRA 73, ROBE 72] that for an infinite population of 
sources, there is a fundarnental lin'tit to the channel utilization of 

! for unslotted ALOHA, and 1/e for slotted ALOHA. The prob- 
2e 
lem is, of course, that distributed ground stations are unable to ex- 
change control information that would allow them to coordinate 
their transmissions on the multi-access up-channel. However, the 
broadcast down-channel is used exclusively by the satellite. Colli- 
sions and unused slots need not be transponded by an intelligent 
satellite, so a down-charmel of lower capacity may be used. This 
saving in down-channel bandwidth can be used to increase the 
bandwidth of the up-channel, which is the bottleneck in this sys- 
tem. For this reason, a number of authors [SPAN 78, 
DERO 78a,b] have suggested building intelligent satellites which 
can handle n up- and m down-channels on the same logical link, 
and which can provide a buffer for packets in the satellite. 
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DeRosa [I)ERO 78a1 found the throughput and average de- 
lay in a system witll n slotted ALOtlA up-channels and a single 
down-channel, with the same capacity on all /t+l channels. The sa- 
tellite processor could identil3' error-free packets in the up-chanllel 
traffic and would repeal one error-Free packet on the broadcast 
down-charmel whenever at least one such packet arrived in a time 
slot. No buffering at the satellite was considered: if n`tore than one 
error-free packet arrived in a slot, all but one would be discarded. 
DeRosa et al [DERO 78b] later solved the state transition matrix 
numerically for the case of n up-challnels, one dowr>channel and a 
sn`tall satellite buffer. They derived expressions equivalent to Eqs 
(2) (for throughput) and (7) (for delay) given below, ir~dependerlt- 
ly of these authors, and showed tba! increasing either the nurnber 
oF up-channels or the size oF the satellite buffer would increase the 
down-channel utilization. Since they assumed that up-charmels are 
free, they concluded that a large nurnber of up-channels should be 
used. Below, we generalize their model, in`tprove the protocol, and 
provide analytic results. 

Spaniol [SPAN 78] modelled a less intelligent satellite, 
which could recognize idle and busy channels, but could not distin- 
guish between error-Dee packets and collisions. His n`todel includes 
multiple up- and down-channels and a buffer in the satellite. How- 
ever, he solved for throughput only for such simple cases as equal 
numbers of up- and down-channels (when no queue can form), and 
one less down- than up-channel (but only as a function of the 
buffer overflow probability, for which he gives no expression). He 
considered throughput and control of the system, but not delay. 
Throughput will always be lower than in DeRosa's model, since 
Spaniors satellite n`tay choose to accept a collision when an error- 
free packet is present. 

2 . T h e  M o d e l  

Let us define an ,-co,centrated ALOHA satellite link to be a 
single logical communications link composed of a set o f ,  identical 
multi-access up-channels connected to a single broadcast down- 
channel through a processing satellite. The satellite contains a 
store-and-forward buffer which may have infinite storage, or be 
limited to a maximum queue size of B>/0 packets, not including 
the packet currently being transponded. It is assumed that the sa- 
tellite can distinguish error-free packet transmissions from both 
empty slots'and collisions. Since the packets pass through the satel- 
lite buffer, the processor can perform error checking on each packet 
and immediately discard all packets that were not correctly received. 

The satellite broadcast down-channel is the most power- 
limited resource in the system, so we shall define the utilization of 
a satellite link to be the steady-state probability that each satellite 
broadcast slot contains an error-free packet. Slots are synchronized 
so that one period contains exactly n complete up-channel slots (one 
per up-channel) and one complete down-channel slot. Either 
FDMA or TDMA may be used to split the bandwidth for the up- 
channels, If FDMA is used, ground terminals must randomly select 
one of the n channels in the chosen time slot [DERO 78]. A set of 
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FDMA channels is equivalent to a bulk-server system with service 
time equal to one period. A set of TDMA channels is equivalent to 
a single high-speed channel running n times faster than the period. 
TDMA makes buffer management particularly easy, because a com- 
plete packet arrives at the satellite on one channel (and can be 
checked for errors) before another packet arrives on the next chan- 
nel. Ground stations maintain up-channel synchronization by using 
the satellite as a master clock at the period frequency. Hence, the 
satellite must broadcast "empty" packets whenever its buffer is ex- 
hausted. 

We assume that there is an infinite population of terminals 
generating Poisson traffic at a combined rate G packets per period 
and transmitting under the slotted ALOHA access scheme without 

capture. Terminals do not distinguish between the up-channels, I so 
that the load on each up-channel will be Gin packets per slot. In 
this case, the probability of a success reaching the satellite in any 
slot will be the probability that exactly one terminal chooses to 
transmit in that slot, which is 

G e_G/. s = - -  (1) 
It 

Since there are tt up-channels, and each up-channel slot indepen- 
dently carries a successful packet with probability s, up to n packets 
may arrive in a period. We view these successful packets as a bulk 
arrival process at the satellite, with a binomial distribution of bulk 
size, whether the up-channels are implemented as parallel FDMA 
channels (when there really would be a bulk arrival) or as sequen- 
tial TDMA channels. 

It is worth mentioning at this point that our analysis 
depends on the assumption of using slotted-ALOHA random access 
for the up-channels only through Eq. (1). It is equally valid for any 
other infinite population random access scheme which cannot 
achieve full use of the up-channel. Of course, a processing satellite 
will provide less improvement if some other, more efficient access 
scheme is used. 

Unlike previous work, we do not assume that the extra 
resources needed to support multiple up- and down-channels are 
free. In order to have a fair comparison with conventional slotted 
ALOHA links, we assign linear costs to bandwidth: we assume than 
an up-channel is X times as expensive as a down-channel of the 
same capacity, 0~< X < •. Both concentrated and conventional 
ALOHA satellite links require one satellite broadcast channel. How- 
ever, concentrated ALOHA uses n multi-access up-channels where 
conventional ALOHA uses only one. Performance comparisons are 
only made between constant cost systems. Hence, each channel in 

a concentrated ALOHA link will have a capacity that is only X+I 
nX+l 

times the channel capacity in a conventional ALOHA satellite link. 

3. The  G / D / 1  Queue  

We may view the satellite broadcast channel as a server and 
the store-and-forward buffer in the satellite as its queue. 
Throughput and delay on a concentrated ALOHA satellite link 
depend on the behavior of this queueing system: throughput 
depends on the probability of an empty buffer, and delay on the 
average queue size in the buffer. The arrival process in concentrat- 
ed ALOHA is the sum of n independent identically distributed Ber- 

i If the up-channels are TDMA and the satellite has a small buffer, 
a question of fairness arises. Since the buffer can never be full just 
after the satellite finishes transponding another packet, packets 
successfully arriving on the first TDMA channel can never be 
blocked, but there is a positive, increasing blocking probability on 
the following channels. Individual terminals will thus receive better 
service if they-disregard the randomization. The question of 
channel-dependent ~raffic will not be considered here. 

noulli trials, with probability of success governed by Eq. (1), giving 
a binomial distribution of the number of arrivals per service time. 
Below we solve the more general problem where the number of ar- 
rivals per service time has an arbitrary distribution. 

Consider the G/D/1  queue with constant rest period equal 
to the (constant) service time. The server is available only at slot 
boundaries; if no customer is waiting for service at such a boun- 
dary, the server 'takes a rest' until the next one. Erlich [ERLI 76] 
derived an expression for the z-transform for number in system for 
the G/D/1  queue with bulk service of up to m customers, constant 
rest period equal to the service time and infinite storage, but did 
not solve it to give the distribution, or any moments, of the 
number in system. In fact, her expression contained the unknown 
terms Po, • • . ,  p,,,_~ explicitly, and hence cannot be solved analyt- 
ically except for m = l .  Below we present a much simpler derivation, 
equivalent to her result for re=l ,  and, in particular, extend it to the 
finite storage case. We also find explicit expressions for the average 
queue length with infinite storage, and for {Pk} in some cases. 

Let us define pt, with z-transform P(z) ,  to be ihe equilibri- 
um probability of k customers in the queue (not including any cus- 

tomer in service) just after the start of a service period t, and 
analyze queue length as an imbedded Markov chain [KLEI 75a]. 
Note that ignoring customers in service simplifies the analysis by 
combining the two boundary equations for 0 or 1 in the system into 
a single, simpler boundary equation for 0 in the queue. Let us also 
assume an independent arrival process, where vk is the probability 
of k arrivals in a service time, V(z)  is its z-transform, and ~,is its 
expected value. Since the server will be idle for a service period 
only if the queue was empty at the previous imbedded point and 
there were no new arrivals, the utilization must be 

p = 1-PoVo (2) 

Let us begin with the i~.TBnite storage case. If we define the 
discrete convolution f o g  of two non-negative probability density 
functions to be the sequence whose n 'h term is 

it 

(f@g),, g ~J)g , , - j  
) = 0  

then the balance equations for {Pa} are simply 

P0 = (p@v)l + (p@v)0 (3a) 

Pa = (P@V)h+l k>~l (3b) 

Using the convolutional property of z-transforms [KLEI 75a], we 
see that 

P(z )  =. ~,  (p@v) ~ +]z~ + (p@v) o 
k = 0  

P(z )  V(z)  - (p@v) 0 
= F (P~V)o 

z 

(p@V)o(Z--1) 
z - V ( z )  

With one application of l'Hbpital's rule, we find 
(p~v)o 

P ( 1 ) = I  - - .  Thus, in the infinite storage case, p = ~  from 
1 -7  

Eq. (2) (and hence ~ must not exceed one for stability), and in 
equilibrium 

P(z )  (1-~)  ( z - l )  (4a) 
z - V ( z )  

Since we assume bulk arrivals at the end of each service period 
(i.e. FDMA channels), {p~} are valid for all time. 
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With finite storage limited to B in the queue, we must  add 
an additional boundary equation to account for blocking 'as  the 
queue overflows: 

B 

PB = (P~V)B+I--PB+IVo+~",P, 2 I~/ (3c) 
i=0  . / = B + 2 - i  

Since & AOVk>B,  we can include these redundant equations at 
will, as long as we are careful to subtract out the non-zero terms in 
the convolution (which were absorbed into the queue overflow pro- 
bability): 

B 

Pk = (P~V)k+l--~P,V,t+l-, = 0 k > B  (3d) 
i=O 

Eqs (3a) - (3d) define an infinite convolution with some boundary 
terms, so we can once again transform Eqs (3) to obtain 

P(z) = ~ (p@v)k+~zk+ (P@V)o+~P, ~ vi z~--z '+i-~ 
k = 0  ~=0 / =B+2 - i  ' 

B I" ] 

(P*V)o(z-1)+ ZP,  Z v, lz"+Lz'"l  
= ,=0 .i=B+2-, ' (4b) 

z - V ( z )  

Eq. (4b) is not in a useful form, however, since {&} are explicitly 
included. One could, of  course, apply boundary conditions to find 
these unknowns,  but that is tedious for large B. Since P(1)  A1,  
Eq. (4b) gives us the additional relation (after one application of 
l 'Hbpital 's rule) 

B 
1 -~  = (p~v)O+~p , 2 v/[B+l- i - j ]  

~=0 . /=B+2-~  

B [ B--t 1 

= p o v o + Z p , l B + l - i - - ~ - ~  v/[B+l-i-j][ 
~=0 t ' • j=O 

= 

~ = 0  . / = 0  " 

v0 v 0 
and we see that P0=l if B=O, and PO=l_~,  p l = l  - ~ if B=I .  

We present the following alternate method for finding {p~} directly 
from Eqs (3) in the finite buffer case by "unravelling" the convolu- 

tion. For convenience, let us define ~ A v° = ~ as the probability 

of no arrivals in a service time, conditioned on not having exactly 1 
arrival. 

Lemma 1: 
k 

Let Fk A ] ~ p ,  k > / O  
i=0 

then F~ = 1 - ~ v.j 4Fk-.J F, , 
i=2 v0 i=0 0 ] 

pro@ Substituting Eqs (3a) and (3b): 

vj 

£[p,_, _ zT0 ,_j 
By recursive substitution F~ may be expressed in terms of F0 and 
other lower order sums: 

F0 k-2 k-i v. F0 [ k v/ k-./ F, ] 
- E  6-'~__, "" F x - , - i -  6 ,  [1 . . . .  

: 0  
[] 

Except for the r ghtmost,  summat ion,  Lemma 1 expresses 
F k in terms of Fo and known quantities. However, this summat ion 
may be solved recursively: 

Lemma 2: 

Let A(k)  ~ ~0-f-~ ~ '  

k ~ k - j  
then A(k)  = k + l - ~  " 6 /~ .  A(i)  

i = 2  VO ~=0 

proof" (By direct substitution of Lemma 1) 

t V h W k--] 
A(k)  = '~  ~b'' F° 1 - E "' ~ b /A( i - j ) ]  = k + l - E  "' ' ~ ' E  A(i)  

,~:ff0 F0 4/ j=2 vo ] i=2 v0 ,=0 

[] 

The following result follows immediately from Lemmas  1 
and 2 and the observations that F B = 1, and p~ = Fh-F~_i: 

Theorem 1 : 

b e 
B 

1 - ~ ../ 4~/A(B_j ) 
./=2 V0 

& ~ P0 ~ vj 

[] 
Theorem 1 provides an efficient numerical procedure for finding 
{&}, given {vk}, n and B. Once A(.) has been calculated as a tri- 
angular set from Lemma 2, any of the p~'s can be computed in- 
dependently using only known quantities. 

4. T h r o u g h p u t  in n -Concentra ted  A L O H A  

Let S be the throughput in packets per period (i.e. the utili- 
zation of the satellite broadcast channel).  In general, S < G, the 
offered load, because some packets are lost in ALOHA collisions on 
the up-channels (see Eq. (1)) or blocked at the satellite when its 
buffer overflows. 

We may use the queueing results from the previous section 
to find P0 and hence S. In this case, the number  of  arrivals per ser- 
vice time has a binomial distribution with n trials, each with proba- 
bility of  success s given by Eq. (1). Thence V(z) = [l+s(z-l)]", 

= ns, and, for infinite storage, we have from Eq. (4a) that 

P (z) = 1 -  ns (5) 

and S =  min(1, Ge-~/"). When n=2,  we have a birth-death process 
(for the number  in queue but not for the number  in system); Eq. 
(5) can be easily inverted, and we can immediately write the equili- 
brium solution for n=2 and any buffer size as 

- I ~ - s l  
_[__.!_12~8+'~ 

2s [ 1 - s l  1 - 2 s  

1 f s ] 2~8÷1' = 1 -  f s ]2~s+l, 
- i ~ J  1 - ( i ~ J  

In the limit as B ~ c ~ ,  we see that S ~ 2 s  if s < ½  and S ~ l  if 
s )  ½. We also present closed form results for small systems in 
Table 1, using the results of  Theorem 1. 

Figures 1 and 2 show the throughput as a function of 
offered load for various buffer sizes. In Figure 1, it is assumed that 
up-channels are available at no cost. One can see that increasing ei- 
ther the number  of up-channels or the satellite buffer size improves 
the system performance at all values of  G. The speed with which 
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Table  1: T h r o u g h p u t  w i t h  a S m a l l  Buffer 

B S = 1 - p 0 ( 1 - s ) "  

0 1 i ( l - s ) "  

1 1 - $ . ( 1 - s ) "  

2 1 - ~2. ( l - s ) "  
1 t r i l l  s ' ~ 1 2  
- 12Jl-i-L-~l 

1 - ~3 .  ( l _ s ) , i  

3 1 2["lf s'@l 2 [nil s'@l 3 
- 12ll-i-~l - 13lL-i-z-~J 

.~,= I 
1.01 , , , , H , , , l  l / 7 1 ~ . . . . , . , , t A p - - 8 = ~ ,  , , . . . .  

~ 0.8 B=0 

g~ 

~ 0.4 

i I i i 
0.1 1.0 10.0 100.0 

Total TrafiSc G in Packets/Slot 

Figure 1: Mean Throughput, Free Uplinks 

these families of curves converge to their limiting values is 
significant. With B = 8, throughput is already close to 1.0 with only 
three up-channels; with five up-channels, throughput remains very 
close to 1.0 over a broad load range (in fact, for G < 1.0, 
throughput is approaching the limiting case of S=G with no 
ALOHA collisions and no blocking, i.e. n=oo, B=oo). Perfor- 
mance with three up-channels is most sensitive to buffer size, be- 
cause three slotted-ALOHA up-channels have barely enough capa- 
city to saturate the broadcast down-channel even with a large buffer 
to smooth the arrival rate. Two up-channels cannot supply packets 
fast enough to cause a serious backlog on the down-channel, while 
four or more up-channels have enough excess capacity to saturate 
the down-channel even without much buffer space. 

When the relative cost of bandwidth X exceeds zero, the 
capacity of each channel must be reduced as we add more up- 
channels (recall that slot synchronization within a period implies 
that all channels are of equal capacity). Since we are using n up- 
channels and one down-channel for a concentrated ALOHA link, 
but the total cost must be the same as a conventional ALOHA link 
that used only one of each, the capacity of each channel must be 

f X+I  reduced by a factor o - ~ - i - "  For Figure 2, we have assumed that 

X = 1 (i.e. up-channels are just as costly as down-channels). In this 
case, it is clear from the figures that only n=2,3 can maximize 

1 ,0  I I I I I I I I I  I I I I I I I I I  I I I I I I I 

0 . 3  

.=_ 0.6 

g 

A sufficient condition to maximize the total throughput is 
to maximize s, the expected traffic arriving on each up-channel: 
From Eq. (1), one can easily see that s takes on its maximum value 
of e -1 when G = n. For fixed values of s and (finite) B, S is a 
monotonically increasing function of n, asymptotic~ly approaching 
1 as n 4 0 0 .  However, the normalized throughput S of a constant 
cost system is approaching a decreasing limiting value, which is 0 as 
n 400 .  Because the total budget is fixed, at some point the margi- 
nal gain in throughput from an extra up-channel no longer offsets 
the resulting loss of capacity per channel, resulting in a net loss of 
normalized throughput. 

Let us fix s and B, and consider S = S ~'') as a function of n. 
The relative up-channel cost X = X t'') where the n + l "  channel 
gives a zero marginal gain in throughput is given by 

S(,,+n I+X S(,n ' I+X 
l + ( n + l ) X  l+nX 

. . . X  I ' )  = S ('~+I) _ s l n )  
(6 )  

( n + l ) . S ~ , , ) -  # l . S  (n+ l )  

( l )  ( ~ )  ( ~ + 1 1  If the up-channel cost is greater than X ' , then S, > S ' ; if it 
(n) ( n+ l )  is less than X , then S is greater. We lack general closed- 

form solutions for S, so X "') must be found numerically. Howev- 
er, certain limiting cases can easily be obtained. Since we do have 
closed form solutions for S when n= l ,  2, we can find X m explicit- 
ly for all buffer sizes: 

X(l) = (e--l)  2(B+l)- ( e - l )  
e--2 

The dividing line starts at e--1 with no buffer, increasing (approxi- 
mately exponentially for large B) to ¢o as B~oo.  If B=0, 
S = 1 - ( l - l / e ) " ,  and we see that 
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Xi,,iiH= ° = 1 

and X ~ ' n ~ O  as n ~ ,  approximately exponentially for large n. In 
the lin-fit as B ~ ,  S ~ m m ( l ,  n/e) ,  and we see that X u ~ o o ,  

X~?~ ~ e - 2  and X c ~ 0  for all n ) 3. So, for the infinite buffer 
6 -2e  

case, only two or three up-channels can maximize throughput (the 
dividing line being X ~ 1.275). Figure 3 shows the X-B plane di- 
vided into regions according to the number of up-channels that 
maximizes normalized throughput. One can see that n=2, 3 dom- 
inate as B increases, with the boundaries spreading exponentially as 
the buffer size increases. 

I0: I I I I I 

10 ~ 

~o° 

10-1 

10-3 

10-~ 

7 2 Uplinks 
Optimal 

a ~  

3 Uplinks 

I 2 3 4 5 6 7 8 

Satellite Buffer Size B 

10-s t i t  
0 

Figure 3: Number of Uplinks to Maxinlize Normalized Throughput 

5. Average Delay Analysis 

The retransmission of packets on the satellite broadcast 
channel provides an automatic positive acknowledgement to the 
sender in ALOHA. In the worst case, a transmitter must wait R 
periods for the round trip propagation delay, B periods for queueing 
aboard the satellite, and one period for transmission time in order 
to discover the loss of a packet. (Intuitively, one can see that a 
shorter timeout will actually increase the delay and decrease the 
throughput under heavy load. Whenever a station incorrectly as- 
sumes that its packet was lost when it did in fact successfully enter 
the satellite buffer, it may choose to transmit an (unnecessary) du- 
plicate packet. If this duplicate is involved in a collision, another 
packet may needlessly be lost; if it successfully reaches the satellite, 

it will delay all other packets arriving in its delay busy-period [KLEI 
76] (without adding to the throughput) and may cause a new packet 
to be lost unnecessarily if the satellite buffer overllows during that 
time.) 

Let us begin by analyzing file naive protocol, also tremed 
by DeRosa et al [DERO 78b], where the worst-case acknowledge- 
ment timeout of R + B + I  periods is always used. Let us assume 
that the probability of success for each attempt 1o send a packet is 

independent]. Each packet will be sent an average o.f ~ times, and 

the number of unsuccessful attempts per packet will be geonle[ri- 
G 

cally distributed, with mean 7 ~ 1. On each unsuccesslul ab 

tempt, a packet will be delayed by tile acknowledgenlent timeout of 

R + B + I  periods, plus an average of K-_ l periods for randomizifig 
2/ /  

the time of the next retry over the next K slots. On the successful 
attempt, the packet will be delayed by R+I  slots for propagation 
and transmission, plus the average tinle 14' spent que.ued hi Ihe sa- 
tellite buffer. Hence the average delay (measured in periods) from 
transmission of a packet to its successful reception is given by 

~, 
where W =  ~ l'rom Little's result. The expected queue length N,~ 

can always be found from tile sel {p~.} because these probabilities 
are valid for all time by our late bulk arrival assumption. In the 
infinite storage case, Eq. (4a) and the identity ,~ = P ' ( : ) I  -i gives 
us a closed form expression for W in the ( i / l ) / l  case: 

... W = J-It 2-Z- -ll 
2I ' 1-F 1 

f r  i . 
where C, = ~ _  Ls the coefficient of variation of the arrival bulk 

I' 
size. If we restrict ourselves to the binomml bulk size distribmiorh 

we find C, -~= l - s ,  F = n.s, and 
J1.'~ 

W -  s ( n - I )  (8) 
2 (1-ns )  

Figures 4 and 5 plot normalized delay as a function o1 nor- 
nlalized throughput ['or constant cost systems with two, three or 
five up-channels. Note that the transmission tinles and queueing 
delays (expressed in periods) must be scaled as n increases, but tlaat 
the round-trip propagation time to the satellite, R, is a constam, in- 
dependent of any access scheme. When up-channels are free, ad- 
ding extra up-channels improves performance at all throughput lev- 
els. If we must pay for the extra up-channels I'rom a fixed budget, 
adding extra up-channels is not necessarily a good idea. When all 
channel costs are equal, either n = 2 or n = 3 gives the best perfor- 
mance (although it is difficult to decide between those two). 

Equation (7) leads to the surprising conclusion that, even ~! 
s'atelliw buffer space i.s .#ee, a very large buffer is undesirable. 
Whenever there is a positive offered load G > 0 and a finite 
number of up-channels H < oo  there is a non-zero probability of 
losing packets in ALOHA collisions. Since the protocol always as- 
sumes the worst case queueing delay, no attempt to retransmit 

I Kleinrock and Lanl [KLEI 75b, LAM 75] distinguish between 
new and blocked packets in a more accurate model of the sloited 
ALOHA satellite channel. Their model explicitly introduces traffic 
dependence anaong the up-channel slots, and requires numerical 
solution. The independence assumption for up-channel traffic is 
basic to our analysis, so we shall use our simpler model. 
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Figure 4: Average Packet Delay, Free Uplinks Figure 5: Average Packet Delay, All Channels  of  Equal Cost 

these lost packets will occur within a finite time. Thus,  the average 
delay D is unbounded for an infinite buffer system! This protocol 
also performs poorly with small buffer sizes. Returning to Figures 
4 and 5, we see that B = 2  gives lower average delays than B = 8  
until, the systems approach their (lower) max imum throughput 
value. Figure 6 makes this even more clear by focusing on n = 3, 
the system most sensitive to buffer size. One can see that the delay 
curves cross as throughput increases, with the optimal buffer size 
increasing with throughput.  

For any given system, the opt imum buffer size is a compli- 
cated function of S and n which we only solved numerically. We 
offer the following insight into the optimal buffer size as a function 
of S for fixed n. Clearly, in the limit as S ~ 0 ,  B = 0  is optimal 
since there will be no contention for the broadcast channel. As S 
approaches its max imum (usually 1), we find W ~ B ,  and we may 
approximate Eq. (7) for high throughput by the following: 

~< 

Setting the derivative with respect to B equal to zero, we find an 
approximation to tile opt imum value of  B: 

BB - 0 =  ~ +  . R + B + I +  

Let us make the further approximation that G is not a func- 
tion of B, Although G is a function of n, S and B, W ~ B  only 
when S ~ I ;  we see from Figure 1 that S is insensitive to small 
changes in G and B near its m a x i m u m  value (such changes will 
only affect the rate at wffiich the buffer oyerflows). In this case, we 
find: 

S S2, R + B + I +  - ~ -  

dS dB 

"'" S K - 1  
B + R + I + - -  

2n 

where C is an arbitrary constant. Thus ,  it is clear that the optimal 
buffer size should grow no faster than linearly with the required 
throughput in a heavily utilized system. 

9 2  



200 

100 

80 

o 

~. 60 

< 

40 

213 I 
0.0 0.2 

I 

B~ 0 1 

3 Uplinks 
1 Downlink 

I I 
0.4 0,6 

Throughput S in Packets/Slot 

I 
0.8 1.0 

200 

100 

o 
80 

g 
~,, 60 

g 

< 

40 

B=8  

B=4 
3 U p l i n k s  

l D o w n l i n k  B=2 

B=0 

20 I I I I 
0.0 0.2 0.4 0,6 0.8 1.0 

Throughput S in Packets/Slot 

Figure 6: Optimizing Buffer Size for Minimum Delay Figure 7: Mean Delay, Packets Carry Time Stamp 

6. An Improved Protocol with Time Stamps on Packets 
In the previous section, it was shown that the average delay 

is minimized when the satellite buffer changes size as a function of 
throughput. The buffer will usually be empty when traffic is light, 
so a larger buffer only increases the delay between retries. Howev- 
er, a larger buffer is less likely to overflow, reducing the number of 
retries in heavy traffic. 

The following simple protocol change approximates this 
adaptive buffer size strategy and even outperforms it. Let each 
packet header carry its arrival time at the satellite, where the arrival 
time for an "empty packet" is defined to be its time of transmission 
on the broadcast channel. Although the satellite is the natural place 
to insert this time stamp, we can implement this protocol without 
forcing the satellite to do any additional processing. Each ground 
station must know its propagation time to the satellite to ensure 
that its transmissions reach the satellite within slot boundaries, so 
each ground station could fill in the time stamp in advance. The 
time stamp in "empty packets" is redundant, since the buffer must 
be empty by definition whenever an "empty packet" is transmitted. 

Since each ground station can calculate the time at which its 
packet should have reached the satellite, it will know that its packet 
was lost as soon as any packet with a later time stamp is retransmit- 
ted, assuming FCFS at the satellite. Ground stations receive a posi- 
tive or negative acknowledgement in the same average time, and 

the average (unnormalized) delay is reduced to 

D= Ie÷w+'l+ r K-'I 
I 2 h I  (9) 

Figure 7 shows the throughput and delay for the same set 
of systems as Figure 6, except for the protocol change. It is as- 
sumed that the overhead from adding an extra field to the packet 
header is insignificant. Comparing Eqs (7) and (9), we expect this 
protocol to reduce average delay by 7 ( B -  W) over the naive proto- 
col. This is a significant improvement over a broad load range, 
since 7 is large under heavy load, and B - W  is large under light 
load. Figure 7 shows a real improvement over Fig. 6: the individu- 
al curves from the new protocol show considerably better perfor- 
mance than the individual curves from the original protocol, and 
even show some improvement over the optimum performance en- 
velope obtained by varying the buffer size with the original proto- 
col. It is also clear from Figure 7 that we now have a more "nor- 
real" system in the sense that performance always improves as the 
satellite buffer size increases. Using the results for maximizing 
throughput, we see that, if up-channels are no more expensive than 
down-channels, three up-channels with a large buffer will give us 
the most cost effective system. If up-channels are significantly 
more expensive than down-channels, use two up-channels instead 
of three. 
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7. Siability and Flow Control 

Klcinrock and l.am [KLEI 75b, LAM 75] demonstrated the 
inherent instabilily llfa regular ALOttA channel. Two equilibriunl 
values exist for the average delay tit any feasible throughput, with a 
regiol~ (/1" inslabilily Ileginning tit the higher one. A slotted 
AI.OIIA charlnel will fail within a finite tirne because random load 
th]ctualions will drive the system into the unstable region with pro- 
hability one. The concept of "load lines" on tile S - N ,  plane is in- 
troduced to Mlow how tile average number of blocked ground sta- 
tions affects Ihe load on the system. Using a tluid approximation 
technique, they show that all irlfiriite population ALOHA systems 
arc urlstable, but a lirlite population ALOItA system will be stable 
if the load line does not touch the urlstable regiorl. 

W e  Call apply this same analysis to the protocol introduced 
in the previous section. Unlike the previous work, where N, was 
found fronl the steady state analysis of a Markov chain, we shall 
lind the average number of blocked ground statioris from Little's 
Resuh as 

K - 1  
N, = S . D  = G - ( R + W + I ) + T S - - -  

2n 

We shall use D instead of N, in the analysis, since the shapes of 
the two curves plotted agairlsl S tire about the sarrle. 
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Figure 8: Anomalous Behavior with Very Large Buffers 

Figure 7 showed little of the upper branches of the delay 
curves for this improved concentrated ALOHA protocol. However, 
it is clear that the delays for the up/mr branch of each curve are 
significantly reduced as well. Figure 8 increases the range of delay 
shown and also includes the B=32 ,  <~ curves. For very large 
buffer sizes, this protocol behaves in a most counter-intuitive way! 
As G approaches n from below (G = n maximizes throughput), the 
system behaves much like an M/M/I  queue, with delay growing 
without bound as S ~ I .  In this case, the systern is stable in the 
sense described by Kleinrock and Lain, because it automatically 
reduces the rate of blocked packet retries as load increases (reach- 
ing an infinite retransmission delay at S =  1), which is exactly how 
they propose to control an ALOHA channel. However, as G in- 
creases beyond n, the upper branch of the delay curve drops shar- 
ply, rapidly converging to the level of a system with little or no 
buffer space, and the system remains unstable until S ~ 0 .  We now 
see that this system has the peculiar property of being stable on!v 
for S = 0  and S =  1! 

This behavior results from ground stations using W, rather 
than G, to control their retransmission rate. After the satellite pro- 
cessor has removed all collisions from the data stream, ground sta- 
tions cannot tell whether W is less than B because the up-channels 
are idle (and W is a good measure of G), or full of collisions (when 
W is a ve#y bad measure of G). Since the upper branch of the delay 
curve represents the start of an unstable region, we would like to 
push the upper bran~zh of the delay curve to infinity; this system 
tries to resist this push, so other forms of direct dynamic flow con- 
trol are needed. 

8. Extensions 

Other useful information could be added to the packet 
header. For example, the number of attempts before each packet is 
successfully transmitted would be available if each ground station 
inserted an "attempt number" field into the packet header. The 
short-term average number of attempts per packet is a fair measure 
of G. Ground stations could adaptively change the length of their 
randomized delay interval based on this information. 

Another important issue worth considering is whether the 
data field of "empty packets" could be put to use. As LSI technology 
improves, one can imagine a satellite processor with the capacity to 
monitor the set of up-channels and distribute measurements and/or 
control information to the ground stations as the data in "empty 
packets". One important use could be to distribute an estimate of G 
based on the number of successes and collisions on the up- 
channels. 

The retransmission delay may be reduced to its absolute 
minimum by adding a field to the down-channel packet header that 
shows whether each up-channel slot in the previous period was idle, 
carried a successful transmission, or carried a collision. This 
change requires additional processing by the satellite, since no 
ground station can predict this information. However, each ground 
station knows which channel it used, so the identity of the sender 
need not be included. Such a system would be even less stable in 
the sense of Kleinrock and Lain, since the delays on both branches 
of the delay curve would be further reduced. 

Given the usage of each up-channel slot (i.e. idle, success 
or collision), ground stations have as much system status informa- 
tion as the satellite. Ground stations could estimate G, or perform 
any control function, as well as the satellite. There is no time ad- 
vantage in doing these calculations either in the satellite or on the 
ground: information originating in the satellite is used to make a 
decision needed on the ground, and both the data and the decision 
will be delayed by the same propagation time. The only function 
which can be performed efficiently only at the satellite appears to be 
a channel reservation policy such as CPODA [JACO 78], where 
central coordination is desirable. 
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9. Conclusions 

As expected, the extra resources used in a concentrated 
ALOHA system improve its performance over a conventional slot- 
ted ALOHA system. What is surprising, however, is how rapidly 
the marginal improvement  drops off as more resources are added. 

For example, when you must  pay for each extra up- 
channel, even if  the cost per up-channel is low compared to a 
down-channel, a small number  of up-channels provides max imum 
throughput. The optimal number  depends on both the relative cost 
of  an up-channel and the size of  the satellite buffer. If the satellite 
has an infinite buffer, three up-channels will be optimal as long as 
the relative cost of bandwidth X is less than about 1.275 (a reason- 
able assumption under current technology); if the relative cost of  
up-channel bandwidth X > 1.275, then two up-channels are op- 
timal. If both B and the relative cost of  an up-channel are small, 
more than three up-channels may be optimal. However, the 
min imum cost at which three up-channels is optimal approaches 
zero exponentially as B increases. 

If the retransmission t imeout includes the worst-case satel- 
lite queueing delay, a small buffer, whose size increases with S, 
minimizes the average delay for a fixed number  of  up-channels. 
This strategy suggests an improved protocol, based on adding the 
arrival time at the satellite to the packet header. A terminal knows 
its message was lost as soon as any newer packet is transponded, so 
the average queueing delay in the satellite controls the rate of  
blocked packet retries. This queueing delay provides a useful, posi- 
tive flow control mechanism while the short-term offered traffic is 
less than the system's  capacity, and a harmful negative flow control 
mechanism whenever the system becomes overloaded. For stabili- 
ty, some additional form of direct, dynamic flow control must  be 
imposed. Unlike previously studied forms of  concentrated 
ALOHA, this new protocol has the nice property that adding satel- 
lite buffer capacity always improves the system. 

By forcing the satellite to do more processing (and adding 
more information to the packet header) we can further reduce the 
average delay by having the satellite announce whether each up- 
channel slot was idle, in use, or had a collision. This is all the infor- 
mation that is available to the satellite itself, so that any additional 
processing could be done on the ground. 

An important unanswered question is the t rans ien t  behavior 
of  such systems under sudden load variations. From analytic 
resuhs, one would expect them to be stable as long as G approaches 
n smoothly from below (in fact, the system actually is stable at 
G=0  and G=n) ,  but unstable if G exceeds n. These improved pro- 
tocols show promise for satellite communicat ions and merit further 
research. 
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