
Controlling Spam E-mail at the Routers

Banit Agrawal Nitin Kumar Mart Molle

Department of Computer Science & Engineering
University of California, Riverside, CA, 92521, USA

email:
�
bagrawal, nkumar, mart � @cs.ucr.edu

Telephone: (+1) 909-787-7354
FAX: (+1) 909-787-4643

Abstract. Like it or not, unsolicited bulk commercial email (aka “spam”) has
become a regular menu item on the Internet information diet. To combat the daily
onslaught of spam clogging people’s email inboxes, much work is being done
on the development of effective spam control methods, most of which follow the
same basic theme of establishing a “front line” of defense at the end-user level.
However, dealing with spam is like fighting a battle against a large army; the most
effective approach is to employ multiple tactics. Thus, in this paper we propose
a method for blocking the supply lines. More specifically, since the daily replen-
ishment of all those in-boxes with new spam consumes a significant amount of
network resources, we describe a mechanism to allow network administrators to
impose rate controls on bulk email delivery. In our approach, we separate SMTP
email delivery traffic from other types of traffic at the router. We then apply a two-
step process to the email delivery traffic, which first identifies bulk email streams
by comparison with a cache of recently-seen emails, and then uses a Bayesian
classifier to decide whether or not a particular bulk emails stream is spam. If a
bulk email stream is classified as a spam, we then rate limit it (e.g., no more than
1 copy per minute).

Keywords: spam, bulk email, filtering, rate-limiting, bayesian, router

1 Introduction

The majority of work on controlling email spams is designed to identify spam after it
has already been delivered to the email inbox belonging to the intended recipient. Using
a variety of heuristics, these techniques are quite successful in identifying the bulk email
as spam, redirecting the email to a secondary “junk” mailbox, or even deleting the email
without human intervention [1–4]. However, even if these techniques are successful —
so the spammer’s email never reaches the target recipient’s eyeballs, nor occupies any
disk space on the recipient’s mail server — there is nothing to prevent the spammers
from wasting large amounts of other people’s network bandwidth while attempting to
deliver their email.

This network abuse by spammers comes in two different forms. First, the sheer
volume of spam email consumes a significant amount of bandwidth from all Inter-
net Service Providers. For example, a recent study by Excedent [2] found that 45%
of global email traffic is spam. They also found that major companies are spending

around 30 billion dollars per year in order to eliminate spam emails from their inter-
nal networks. Second, some spammers illegally use other people’s equipment to send
their bulk emails, rather than buying necessary the computers and network connectivity
for this purpose. In the past, this was often done by finding a poorly configured mail
server that was willing to act as an open mail relay, and sending it one copy of a bulk
email message together with instructions to deliver it to a long list of recipients. More
recently, however, they have switched to a new strategy of compromising the security of
other people’s Internet-connected computers, and converting them to remote-controlled
spam generators [5]. In both cases, the vast majority of the costs associated with send-
ing spam emails is borne by an innocent third party, rather than the spammer. Therefore,
the challenge here is to protect the network resources from abuse by spams, not just the
end users.

This paper proposes a mechanism to control spams at the router level. Our approach
utilizes the fact that spams are generally sent to multiple recipients with few alterations
to a common message content. Thus, our router segregates SMTP mail delivery traf-
fic from other traffic for further processing. This processing could be done within the
router, if it were provided with onboard computing resources (for example, by adding a
programmable network processor to the network interface line card), or by redirecting
the SMTP traffic for offboard processing on a nearby computer (for example, a Linux
PC). Whenever we detect email delivery traffic, we invoke the first phase of our al-
gorithm and attempt to match the content of the incoming message against a cache of
recently-seen candidate messages. If it succeeds in finding a match, we then invoke the
second phase of our algorithm, which consists of Bayesian classification of the bulk
message. If the message stream qualifies as spam, we rate-limit its delivery by resetting
the TCP session if the elapsed time between consecutive copies falls below our mini-
mum delay threshold. Therefore, this technique introduces the extra costs and burdens
to the spammer and minimizes the abuse of the rest of the Internet network traffic.

2 Related Work

Spam is a growing problem for email users, and many solutions have been proposed,
from a postage fee for email to Turing tests to simply not accepting email from people
you don’t know. Spam filtering is one way to reduce the impact of the problem on an
individual user (though it does nothing to reduce the effect of network traffic created by
spams). In its simplest form, Spam filtering is a mechanism to identify and filter spam
messages. Anti-relaying filters prevents the mail server from serving as a promiscuous
relay. It does not block incoming spams, but it prevents an authentic mail server from
spamming others.

Blocking by IP subnet or number, Blocking on the domain name, Blocking on un-
resolvable domain names, Header filtering triggered by invalid headers, Checking To:
address of the recipient in the header, are some of the common techniques used today.
These techniques completely block spam emails. Since the accuracy of these techniques
is not 100%, some rare legitimate mails are not delivered. TarProxy is a method for
throttling connections between the spammer and an SMTP server by slowing the rate
at which a spammer can send spam [6]. The spam filtering techniques based on the

content of the email utilizes the frequency of words, the sequence of words, the fre-
quency of the sequences, weighted values for particular words, weightings for various
features such as suspicious ”FROM” part, and many more features related to the mes-
sage headers. These widely used techniques include various forms of Bayesian filtering
techniques [1] such as Naive Bayesian classification, Memory-based approach, Markov
chains [3], and support vector machines (SVMs) [4]. Bayesian Spam classification tech-
nique claims an accuracy level of 99% [1], but it has a shortcoming of considering the
independence of features. Our approach is fairly a new idea of detecting and rate limit-
ing spams using an efficient content matching Algorithm based on tunable pattern size
and Bayesian classifier. This technique is employed at the router level, which effec-
tively utilizes the network bandwidth, never blocks the legitimate emails, and rate-limit
the spam emails.

3 Controlling E-mail spamming at Router

If one user (say “Alice”) wants to send an email message to another user (say “Bob”),
then Alice’s mail looks up the address for Bob’s mail server and opens a direct TCP
connection to port 25 on Bob’s server. At this point the two mail servers carry out
the email delivery transaction, according to RFC 2822 [7] and the Simple Mail Transfer
Protocol (SMTP), as specified in RFC 2821 [8]. Figure 1 illustrates the complete routing
process.

Edge
Router

Mail
Server

Mail
Server

Edge
Router

Edge
Router

Core
Router

E-mail spam
Rate-limiter

Spammer UCR Campus

UCI Campus

Fig. 1. Email packet Routing in Internet

During this email delivery transaction, the entire dialog between the two mail servers
is visible to all routers along the path between Alice and Bob. If any of those routers
wanted to block the transaction, it could simply force the TCP session to close by send-
ing a TCP reset segment to both parties. Thus, we have an opportunity for controlling
spam at the router level, by:

– monitoring all SMTP sessions passing through a router,
– classifying each SMTP session as (unappealing) spam or (wholesome) good, and

finally
– policing the spam traffic to limit its resource consumption.

Note that we are not advocating the policy of completely blocking the delivery of all
emails that our algorithm classifies as spam, which would be hard to defend and quite
possibly illegal. Instead, we suggest imposing a limit on the number of copies of bulk
emails we accept per unit time.

Any proposal to increase the amount of processing at an Internet router must in-
clude an assessment of the cost of supporting it. Fortunately, special-purpose network
processors are becoming commercially available for many high-speed networking ap-
plications, which offer router architects access to significant processing power, flexibil-
ity, and ease-of-use/reuse. Network processors can also be used to do the application
layer processing along with other lower layers processing for many diverse networking
applications such as content-based load balancing, md5, encryption, hashing etc. Many
vendors provide content-addressable memory (CAM) as the co-processors which can
be used with the network processor to accomplish high speed data search.

The email rate-limiting can be added to edge routers at low cost using any of the
powerful network processors and high-speed CAM co-processors, which provides the
flexibility and programmability to the router architects. As another alternative, we can
simply configure the router to forward SMTP traffic to an external computer for offline
processing, where we apply our rate-limiter algorithm and control the spam email. The
rest of the network traffic is undisturbed and sent through high-speed data path.

4 Content Matching Phase

In this first phase of identification process, we attempt to find a match between each
new incoming email message and a cache of previously-seen email messages. The goal
here is to correctly classify each message as containing either repeated or unique con-
tent, and without excessive computation or storage requirements. Clearly we can only
increase the probability of correctly identifying a repeated message by testing it against
more samples of known repeated content. However, pattern matching between two re-
peated messages is expensive because of variable-length header information that is spe-
cific to each recipient. Thus, we use sampling (described below) rather than a full text
comparison to detect a match, which can lead to a problem of increasing the number of
false positives if we test it against too many samples of unique content.

To minimize these problems, we use a two-level cache structure, which exploits
the “bulk delivery in a short time span” property of spam emails to bias the content
of our cache structure towards repeated messages. The primary message cache is used
to store one prototype for each of the � most-recently seen repeated message types in
LRU order, where � is the tunable primary window size. We also keep a time-stamp
of each messages stored in the primary message window to rate-limit the spam mails.
Conversely, the secondary message cache is used to store the � most-recently seen new
candidates for a repeated message type in FIFO order.

Algorithm 1 Content Matching Algorithm
1: match � 0;
2: count � 0;
3: patterns[] � divide incoming msg into fixed-size patterns;
4: for each element of k-size cache do
5: for each P in patterns[]; do
6: match � Look for P in the cache element; // Boyer Moore Algorithm
7: if match then
8: count ���������
	��� ;
9: end if

10: end for
11: if count � threshold count then
12: Do Spam Processing;
13: Return;
14: end if
15: count � 0;
16: end for
17: Do Other Processing;

These two caches are used in the following way. Whenever the router receives a new
email message, it is compared against all stored message prototypes in both caches. If
it matches an entry in either message cache, the new message is classified as repeated
content and passed to phase 2 for further processing. Thereafter, we transfer the cached
message prototype to the primary cache (if the matched entry was in the secondary
cache), and then update the LRU structure of the primary cache. If the new email mes-
sage does not match any stored message prototypes, it is classified as unique content
and avoids further spam processing. In addition, we save a copy of the message in the
secondary cache in case it is our first prototype for a new stream of repeated messages.
Thus, the secondary message cache acts as a filter before the primary message cache,
and new repeated message prototypes can only be added to the primary message cache
following a match in the secondary cache.

Our content matching algorithm is optimized for detecting spam messages, which
are generally sent in bulk to many different users on different networks with a little per-
sonalization to the common content. In order to detect this, we partition each new email
into multiple fixed-length substrings called patterns. (The pattern length is a tunable
parameter, which needs to be optimized.) The set of patterns is now tested against all
messages stored in the cache; if a sufficiently high percentage of its patterns match a
single cached message, then we declare it to contain repeated content.

Boyer Moore’s (BM) Algorithm. To find a small pattern in a big string, we em-
ploy Boyer Moore’s algorithm [9], which is much more efficient in complexity than
other brute force algorithms. The Boyer Moore algorithm solves the pattern matching
problem by repeatedly positioning the pattern over the text and attempting to match it.
For each positioning that occurs, the algorithm starts matching the pattern against the
text from the right end of the pattern. If no mismatch occurs, then the pattern has been
found, otherwise the algorithm takes a shift that is an amount by which the pattern will

be moved to the right until a new matching attempt is undertaken, where the first char-
acter of pattern and leading character in text matches. The complexity of this algorithm
is quite good [9]: the best time to find a pattern of length � embedded within a text of
length � is ���������
	 .

5 Bayesian Spam Classification Phase

In this section, we describe our spam classification method. We used Bayesian classifier
to identify spam emails. Bayesian is a simple, self learning and multi-lingual method
which takes entire message into account. In general, it consists of two phases - Training
and Testing.

Training phase: Each incoming email is reduced into a set of unique token1 to
assemble an initial list of tokens. The count of good and bad emails containing these
tokens is maintained in the initial-token-set. If an incoming email consists of a new
token which is not already present in the initial-token-set, then the new token is added
to the initial-token-set and the count is updated. This keeps our initial-token-set always
updated with the new words used by spammers. It helps making the algorithm more
robust against the new technique adopted by spammers.

Testing phase: A new email message is tokenized to convert it to a set of tokens����������
,.. � . Next, use each token

���
(which is present in the initial-token-set generated in

the training phase) to calculate a conditional probability that this message is spam, given
its inclusion of token

���
. New tokens, not already present in the initial-token-set are

added in the initial-token-set and their count is updated. Once the individual probability
of each token has been generated, we combine them using the Bayes Theorem [10] to
get an overall estimate of spamminess of an email message.

6 Testing

We implemented the complete algorithm as a set of user-level application programs.
The source code for the first phase was written in C and the second phase in Java on a
Linux platform. The operation of the algorithm within a router was represented by sim-
ulating the execution of the router’s task scheduler loop. Each time the task scheduler
receives another IP packet, it invokes our algorithm. We created a stream of IP packets
from publically available archives of spam and good emails.

In the router dispatch loop, we fetch a packet at each simulation step. Then we
feed it to the packet classifier. The classifier checks the source and destination port of
the packet and if it equals to 25, it send the packet to the SMTP parser. SMTP parser
determines whether this packet is a message packet or not. If this is a message packet, it
calls content matching algorithm to find if this message is a bulk message by comparing
it with messages stored in an email message window.

1 Token is a selected word from an email message. HTML tags, commonly used English words
(i.e articles, prepositions, conjunctions, etc) are not considered as tokens, since they are likely
to appear in both good and bad emails.

 0
 0.04
 0.08
 0.12

 10 15 20 25 30 35 40

F
al

se

 p
os

iti
ve

s
%

Primary cache size

 1

 3

 5

 7

 9

F
al

se

 n
eg

at
iv

es
 %

 94

 96

 98

 100

M
at

ch

 a
cc

ur
ac

y
%

Fig. 2. Tuning the primary message cache size

The training was done using a total of 1513 good and 2401 spam emails obtained
from [11] (October 2002). Testing was done using an entirely different set of 1000
emails(both good and spam emails)taken from the archive [12] and from [11](February
2003). The evaluation of the algorithm was based on: a) accuracy; b) percentage of false
positives; and c) percentage of false negatives. The Accuracy is defined by the following
formula: �����������	��
� �� � ���������������������������

�! � ��"$#%����"'&)(*� � �+�%�-,/.��0 ���1���+#�����"'&)(*� � ���
2 �%�-���'�������3�������4��� �5 � ��"76�89��(:�%�-,/.��0 �-�1�'�;6<89��(*� 	>=<?9@+@

(1)

6.1 Content Matching Phase

Our content-matching algorithm includes various control parameters, such as primary
message cache size, secondary message cache size, pattern size, rate-limiter rate, and
matching threshold to fine tune the performance of our content-matching algorithm.
The effects of altering these parameters are shown in Figures 2–5.

Varying the size of the message caches. The sensitivity of the three performance
metrics to the primary message cache size is shown in the figure 2 for a small corpo-
rate environment. We see that the Accuracy is generally quite high, and rises to a broad
maximum of approximately 99% for cache sizes between 25 and 35. At the same time,
we see that the percentage of false negatives drops significantly (from approximately
10% to almost zero) as we increase the size of primary message cache. However, this
improvement is counterbalanced by a much smaller increase in the percentage of false
positives (from almost zero to approximately 0.15%). Thus, keeping in mind that the
processing time for phase I increases linearly with size of the primary cache, we con-
clude that a moderate cache size of about 30 messages can be used for a small corporate
environment. In future, we are planning to deploy this technique in a real-life environ-

ment to assert more pragmatic findings. We see very little sensitivity to the size of the
secondary cache, which suggests that further testing using additional message traces
needs to be done before we can reach any conclusions.

Varying the pattern size. Figure 3 shows the sensitivity of our three performance
metrics to the pattern size used for content matching. Usually a spammer sends multiple
copies of a mail by making few alterations. The size of pattern is an important perfor-
mance parameter as the content of match for such mails depends upon the pattern size
chosen. Once again, we see that Accuracy is always very high, whereas the probability
of false positives is always extremely low while the probability of false negatives is
small but increasing.

Varying the matching threshold. The performance was calculated by varying the
match threshold. It is the lower bound of percentage of match obtained for an incoming
mail to be qualified as an email message. If we keep the threshold value very low,
then the chances of false positives increases. The plot of various metrics with varying
matching threshold is shown in figure 4.

Rate-limiting spam emails at edge router. The arrival rate of spam is rate lim-
ited to effectively utilize the network bandwidth. This parameter is an important factor
in measuring the performance. We plot the percentage of spam messages received at
the edge router and the percentage of the spam messages sent by the router. The plot
is shown in the figure 5. From the figure 5, we can see that the percentage of spam
messages is much less than the spam messages received by the router.

6.2 Bayesian Spam Classification Phase

A mail is declared as spam if the estimate of spamminess of the email is greater than a
threshold value; otherwise it is declared as a good email.

 0.02

 0.06

 4 6 8 10 12 14 16

F
al

se

 p
os

iti
ve

s
%

Pattern size in bytes

 2

 3

 4

F
al

se

 n
eg

at
iv

es
 %

 97

 98

 99

M
at

ch

 a
cc

ur
ac

y
%

Fig. 3. Tuning the message pattern size

 0.02

 0.06

 0.1

 65 70 75 80 85 90 95

F
al

se

 p
os

iti
ve

s
%

Matching Threshold

 2

 3

 4

F
al

se

 n
eg

at
iv

es
 %

 96

 97

 98

 99

M
at

ch

 a
cc

ur
ac

y
%

Fig. 4. Tuning the matching threshold

Varying the Number of Spam and Ham emails. The Accuracy was calculated
by varying the number of unseen spam and good emails and plotted in figure 7. The
accuracy is found to be 97% on an average.

Varying the threshold value. Threshold value is used for classification of an email
as a good or spam email based on the Indicator of spamminess. The figure 6 shows the
accuracy obtained by considering various threshold values. For this project a threshold
value of @�� � was considered.

Number of false positives and false negatives. We obtained almost negligible
false-positives by the Bayesian classifier. The detailed experimental results are provided
in table 1.

Table 1. Accuracy of Bayesian Algorithm

Case No of unseen No of unseen Accuracy No of False No of False

good emails spam emails Accuracy Positives Negatives

1 50 50 97.0% 0 0
2 100 100 97.0% 0 2
3 200 200 98.0% 1 6
4 400 400 97.5% 1 17
5 800 800 95.3% 0 71
6 1000 1000 95.8% 3 121

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40
%

 o
f t

ot
al

 e
m

ai
ls

Time in seconds (s)

spam emails arrived
spam emails sent

Fig. 5. Rate-limiting spam emails

 80

 85

 90

 95

 100

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

A
cc

ur
ac

y
in

 %

Threshold Values

Fig. 6. Accuracy observed on various
Threshold values

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

A
cc

ur
ac

y
in

 %

No of Good and Spam Emails

Fig. 7. Bayesian matching accuracy

7 Conclusion and Future Work

This work demonstrates that a significant amount of spam controlling can be success-
fully achieved at the router level. This approach not only protects the end-users from
excessive volumes of unsolicited mails, but also limits the network congestion caused
by spams. In this paper, we have implemented a two phase approach to detect spam at
the router level. First phase identifies the bulk mail by pattern-matching and the second
phase applies Bayesian classifier on the identified bulk mail to classify it as a spam.
The experiment conducted on various spams collected from different sources gave an
average accuracy level of 97%. The method was most effective with respect to ”False
Positives”. The number of ”False Positives” were almost negligible (Table 1). This can
be implemented by using any network processors tailored for high-speed networking
applications, which provides the programmability, flexibility, and good efficiency. Our
approach forces extra costs and burdens for spammers to send spams and controls the
further abuse of the Internet traffic.

Nevertheless, there is still plenty of scope for the improvement. For example, we
can improve our spam classifier by supplementing it with a dictionary-based approach
to identify spam emails. It can be tricky to handle multi-lingual emails and other emails
which might have some spelling mistakes done intentionally by spammer. Although,
most of the spam emails contains some of the English dictionary words and others are
just the words that are random strings of characters. We can also add some features at
the routers to notify the end-users of identified spam emails that was rate-limited at the
router.

References

1. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A Bayesian Approach to Filtering Junk
E-mail. In: Learning for Text Categorization: Papers from the 1998 Workshop, Madison,
Wisconsin, AAAI Technical Report WS-98-05 (1998)

2. Excedent’s White Paper: Spam DNA Filtering Version 2.00 (2003)
www.excedent.com/white-papers/Spam-Filtering.pdf.

3. Yerazunis, B.: The Spam Filtering Plateau at 99.9% Accuracy and How to Get Past It. In:
MIT Spam Conference. (2004)

4. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In Nédellec, C., Rouveirol, C., eds.: Proceedings of ECML-98, 10th European
Conference on Machine Learning, Chemnitz, DE, Springer Verlag, Heidelberg, DE (1998)
137–142

5. Federal Trade Commission Consumer Alert: Who’s Spamming Who? Could it be You?
(2004) http://www.ftc.gov/bcp/conline/pubs/alerts/whospamalrt.htm.

6. Lamb, M.: TarProxy: a Statistically-Driven SMTP Tarpit. In: MIT Spam Conference. (2004)
7. Resnick, P.: Internet Message Format, RFC 2822 (April 2001)
8. Klensin, J.: Simple Mail Transfer Protocol (SMTP), RFC 2821 (April 2001)
9. Boyer, R., Moore, J.: A fast string searching algorithm. In: Communications of the ACM.,

20(10). (1977) 762–772
10. Bayes, T.: An Essay towards solving a Problem in the Doctrine of Chances. In: Philosophical

Transactions of the Royal Society of London, 53. (1763)
11. Spamassassin.org: Spam Mails Archive (2002-2003) http://spamassassin.org/publiccorpus/.
12. SpamArchive.org: Spam Mails Archive (2004) http://www.spamarchive.org/.

