NH,
o

ELSEVIER

Computer Networks 31 (1999) 79-88

COMPUTER
NETWORKS

An improved topology discovery algorithm for networks with
wormhole routing and directed links

Ying-Yi Huang, Mart L. Molle *

Department of Computer Science and Engineering, University of California, Riverside, CA 925251, USA

Abstract

We propose a new parallel topology discovery algorithm for irregular, mesh-connected networks with unidirectional links
and wormhole routing. An agorithm of this type was developed for the ATOMIC high speed local area network to avoid the
need for manually updating routing tables. Similar needs may arise in wireless networks where channels may be
unidirectional because of limited transmission power, multipath, and similar effects. Like the ATOMIC topology discovery
algorithm, our agorithm accumulates a map of the network at a distinguished node called the Address Consultant. However,
our algorithm is much faster. In addition, our algorithm is more general, because it can correctly resolve topologies that
contain multiple links between the same nodes. We implemented both algorithms in a concurrent simulation environment,
and tested them on a variety of topologies. © 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Wormhole routing; Non-symmetric networks; Topology discovery; Distributed agorithms

1. Introduction

The ATOMIC network [1] is a novel high-speed
LAN that was developed by USC/ISI. ATOMIC
differs from traditional LANs (Ethernet, Token Ring,
etc.) because it alows arbitrary mesh-connected
topologies, and supports parallel transmission of dis-
tinct messages over digoint paths. ATOMIC differs
from traditional LANs because it does not support
broadcast delivery to al nodes at the physical layer.
Conversely, ATOMIC differs from ATM LANS by
alowing variable length messages (i.e., normal Eth-
ernet frames, where the lengths may vary by a factor
of 20) and in distributing its medium access control

* Corresponding author. E-mail: mart@cs.ucr.edu.

functions among the end stations instead of centraliz-
ing those functions at an intelligent switch controller.
Each node in an ATOMIC network is a Mosaic chip
[4], which was originally designed as the processing
dement for a fine-grain, message-passing, mas-
sively-parallel computer system. In effect, ATOMIC
takes a massively-paralel Mosaic computer, dis-
tributes its processors around a building, and pro-
grams its nodes to act as a high-speed LAN that
supports variable-length messages.

Because of the design of the Mosaic processor,
and the manner in which they can be connected in
ATOMIC, an ATOMIC network can exhibit some
unusua graph-theoretic properties. First, the commu-
nication links are fundamentally unidirectional, so
that network links will in general form a directed
graph. We say that a network is symmetric if every

1389-1286,/99/$ - see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.

Pll: S0169-7552(98)00231-1



80 Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88

Ex=n=n:l

Symmetric and Consistent

yE=Eui

NON-Symmetric, Consistent

Symmetric, NON-Consistent

Fig. 1. Possible network configurations.

link from node A to node B has a matching reverse
link from B to A (i.e., the network is an undirected
graph); otherwise, it is non-symmetric. For example,
the upper and lower-right network configurations in
Fig. 1 are symmetric, but the lower-left network
configuration is non-symmetric. In general, non-
symmetric ATOMIC networks can arise either from
link failures or from an intentiona decision to con-
nect cables in a non-symmetric pattern.
Non-symmetric links may aso be a consideration
for other applications. For example, small VSAT
terminals generally do not have enough power to
transmit on the satellite uplink at anywhere close to
the same rate as the downlink [5], and in some recent
consumer-oriented systems [6] the return link uses a
digoint path through the telephone network. Similar
hybrid network topologies have also been proposed
for utilizing the cable television system. In addition,
mobile computers connected to a narrow band

Msg. will arrive at Node 6.

ground-radio system (such as [3]) may be unable to
transmit data back to all the stations from which they
can receive data from because of power limitations
(if one station is a mobile battery powered device
and the other is a permanent base station), localized
sources of background noise, and multipath interfer-
ence.

In addition to non-symmetric links, the ATOMIC
network is aso unusual because wormhole routing is
used. Thus, the routing agorithm must identify which
port (and not just which node) is the starting point
and ending point for a given link. In particular,
wormhole routing is basically combination of source
routing and cut-through switching, except that mes-
sages are not normally buffered at an intermediate
node. Each message begins with a routing tag that
might say: ‘*Go n, steps in the X direction, then
turn left and go another n, stepsin the Y direction.”
As the head of a message arrives at some intermedi-
ate node, the first element of its routing tag, n,, is
decremented. If the new value is zero, the message
may require extra handling such as a change of
direction, or perhaps delivery to the node processor.
However, if the first element in the routing tag is still
non-zero, then the message is immediately forwarded
one more hop in the opposite direction from which it
arrived without any involvement of the nodal pro-
cessor. In particular, the Mosaic chip has four input
and four output ports, labelled North, South, East
and West; if a message arrives on the East input port,

Msg. will arrive at Node 4.

Fig. 2. Finding the input direction from node 1 to node 2.



Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88 81

say, with n; > 1, it will immediately be sent out the
West output port. We say that alink is consistent if
the input and output ports to which it is connected
have opposite labels, i.e., alink that leaves one node
from its North output port should arrive at the desti-
nation node at its South input port. It is important to
note, however, that there is no intrinsic reason why
links must be consistent. For example, Fig. 2 shows
that a link that starts from the outgoing East port of
node 1 may in general arrive to any of the input
ports at node 2.

Taking advantage of consistency is very important
for minimizing the latency and processing overhead
associated with the delivery of each message under
wormhole routing. This is because continuing some
extra steps in the same direction always has a very
low cost, whereas changing directions may require
the entire message to be buffered at that node, which
adds the latency of a store-and-delay and creates a
bottleneck to the nodal throughput due to the speed
of the Mosaic memory. * Thus, for proper routing
decisions the routing algorithm must know the input
and output labels for each link and not just the
identities of its starting and ending nodes.

2. The topology discovery problem

The first step in the routing algorithm in ATOMIC
is for one distinguished node called the ‘* Address
Consultant’” (AC) to invoke an adgorithm that allows
it to gather topology information about the network,
which includes finding all of its nodes, and identify-
ing the source and destination nodes along with the
associated input and output direction labels for all
links. The topology discovery problem in ATOMIC
is further complicated by the fact that the Mosaic
processors do not have a built-in unique hardware
address, so the AC must assign a unique label to

Y In ATOMIC, minimum latency routing is almost equivalent to
minimizing the number of elementsin the routing tag. However, it
is interesting to note that, because the Mosaic chip was designed
to support a specific row-column routing algorithm for regular
two-dimensional grid networks, there is no cost penalty for chang-
ing from the X direction to the Y direction. This feature encour-
ages designers of ATOMIC networks to include Y — X inconsis-
tencies to reduce the number of store-and-forward delays in a
path.

each node as it is found. Once the algorithm termi-
nates, the AC has a complete map of the network
topology and can determine the routes from any
node to any other node. Moreover, during the execu-
tion of the algorithm, al of the other nodes will learn
the route to the AC, which they consult as a name
server whenever they need to determine a route to
another node.

To increase fault tolerance, any host may become
an AC if it cannot find one in the network. In alarge
network, it may make sense for multiple ACs to be
running in different parts of the network so that
reguests from hosts need not travel large distances to
get to an AC, and to reduce the computational
complexity and storage requirements at each AC.
However, in this paper we examine the case where
there is only one AC in the network.

2.1. The ATOMIC algorithm

The topology discovery algorithm currently used
by the ATOMIC network is shown in Table 1. In the
first phase, all nodes cooperate with the AC to flood
al the links in the network with Probe messages,
travelling one hop at a time away from the AC. Each
Probe message accumulates the path it followed
after leaving the AC, encoded as the sequence of
output labels it has traversed so far. Eventually, these
Probe messages intersect a previously-probed part of
the network (initially just the AC itself) where they
are held as L oop messages until they can be returned
to the AC.

In the second phase, the AC examines the stored
routes in the incoming Loop messages to identify
new path fragments, which are used to expand its
map of the network. The basic idea here is that the
routing tag in each Loop message contains the path
by which some Probe message travelled from the
AC aong a sequence of previously unprobed links to

—

A B C D

Fig. 3. In order to find the input direction of the A,B link, node A
must send a 3-hop probe message through B to node D.



82 Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88

A B C

Fig. 4. The input direction of AB cannot be found.

a previously-probed node (possibly the AC itself).
Since the flooding algorithm creates branching paths,
the start of this path may have already been revealed
to the AC by earlier Loop messages. However, at
least one link at the end of the path must be unique
to this path. If the new path fragment contains more
than one link, then each of the intermediate nodes
will be new to the AC unless they are an intersection
point for some earlier path. Thus, the AC must query
each of the intermediate nodes in the new path
fragment to determine its identity.

Initidly, the AC labels itself as node 0, and
thereafter, each time a new L oop message arrives the
AC identifies the new path fragment and queries the
intermediate nodes. More precisely, the AC sends a
Label message to each node along the new path
fragment in sequence, which offers to assign the next
unused node label to that node if it is currently
unlabelled, and gives it a return path to the AC. The
destination node sends back a Respond message to
the AC to indicate that the node accepts the new
node label or to tell the AC what is its existing node
label. Using this information, the AC updates its map
to include the starting node label, ending node label
and output direction for the each link in the newly
discovered path fragment.

The third phase of the algorithm is used to deter-
mine the input direction by which each link arrives
at its destination node. First each newly-labelled
node, N, sends a message to its one-hop neighborsin
all directions, giving its own node label and the
outgoing direction taken by this one-hop message.
For example, with reference to Fig. 2, such a mes-
sage would inform node 4 that it is the West neigh-
bor of node 2. (Note that these messages are not
returned to the AC, which already learned this infor-
mation through a Label /Respond transaction in
phase 2.) Thereafter, node N uses wormhole routing
to deliver a two-hop Direction Probe message to
each of its two-hop neighbors in a fixed direction
(i.e., no ““turns’’ in the route). Each of the recipient
nodes, R, holds its message until it has been labelled

by the AC, a which point R sends a Direction
message to the AC that contains the source node
label, N, the original outgoing direction, and its own
node label, R. Using this information, the AC is now
able to determine the incoming direction of the link
from N to R. Given the starting node, N, and the
original outgoing direction, the AC can use its map
from phase 2 to determine the intermediate node |
through which the Direction Probe message must
have travelled to reach R. Thus, since messages
passing through an intermediate node come and go
from opposite ports under wormhole routing, the AC
concludes that the input direction from node N to
node | must be the output to the output direction
from node | to node R, which is given in the phase
2 map. Fig. 2 shows how this direction handler
works. For example, if the two-hop Direction Probe
message sent from node 1 through node 2 ends up at
node 3, and node 3 is the East neighbor of node 2,
then the link from node 1 must have arrived at node
2 from the West.

2.2. Some weaknesses with the ATOMIC algorithm

The ATOMIC topology discovery algorithm has
two major wesaknesses. First, it is very slow because
much of the algorithm is sequentially executed by
the AC. Indeed, only the initial distribution of Probe
messages involves any significant parallelism: a node
can only advance from the Probed state to the Con-
nected state through a Label /Respond transaction,
and these transactions are executed sequentially as
the AC checks each link in a newly discovered path
fragment. That is, the AC sends a Label message
containing a unique node label to a specific node on
the new path fragment, and then waits for the node
to return a Respond message before issuing the next
Label message. This is done so the nodes can al be
assigned unique labels during the topology discovery
process, since the AC does not know whether or not
the target node of a particular Label message will
accept the new node label until it receives its Re-
spond message. Worse dtill, these sequentia la

A B f——c]

Fig. 5. The input direction of AB can be found.




Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88 83

(a8 }—c

Fig. 6. The input direction of AB can be distinguished by our
algorithm, but not the ATOMIC agorithm.

belling transactions must actually cover every edge
in the graph once, and not just every node once, so
the running time of the algorithm is at least O(E).

The second problem involves the inability of the
input direction finding agorithm to handle multiple
links connecting the same pair of nodes. To see this,
consider the example shown in Fig. 3, where mes-
sages sent through the North output port from node
A reach node B after one hop, and reach node C
after two hops. Since nodes B and C are multiply
connected, i.e., node C is both the North and East
neighbor to node B, we cannot determine from the
given information if the input direction to node B
from node A was from the West or South. Fortu-
nately, the ambiguity in this case can easily be
resolved if we naotice that a three-hop message sent
by node A through its North output port reaches
node D. Since D is the East neighbor of C, the
continuation of the path from node A to node B
must include the link from node B that reaches C
from the West.

2.3. A new parallel algorithm

The new parallel topology discovery algorithm is
shown in Table 2. This algorithm is dramatically
faster, and uses significantly fewer messages, than
the ATOMIC agorithm. These performance im-
provements come about because of the following
observations.

First, the nodes can label themselves during the
link flooding procedure in phase I. That is, since the
output ports on each node are distinguishable (as
North, South, East and West, or perhaps as First,
Second, Third, etc.), each routing tag relative to the
given AC uniquely identifies the destination node. In
other words, a node can choose the routing tag it
finds in any incoming phase | message as its node
label, and still be assured that no other node in the
network can choose the same label. Thus, in our
algorithm each node labels itself with the routing tag

of the first message to arrive in phase |, so we
‘‘promote’’ the phase | message type to become a
L abel message.

The second observation is that the nodes don't
need to inform the AC of their choice of node labels,
since the AC can deduce this information at no cost
by examining the incoming Label messages from
phase | and returned L oop messages from phase I1.
This is true because the outbound wave of Label
messages in phase | stops as soon as it intersects a
previously-labelled node, at which point the mes-
sages are held until they can be returned to the AC
as Loop messages in phase Il. Thus, during phase |
every Label message that gets forwarded by a given
node must contain its own node label as a prefix of
the outgoing routing tag, and hence that every prefix
of the routing tag for a Label message that either:
- returns on its own to the AC during phase I; or
- is being held at an intermediate node as a L oop

message until phase |1
must be the chosen node label of the corresponding
node. In other words, the set of routing tags gener-
ated in thisway is consistent in the sense that the set
of links where the source node label is a prefix of the
destination node label forms an outbound spanning
tree rooted at the AC. Moreover, each of the remain-
ing links in the network appears as the *‘final hop’’
in some Loop message.

At the moment when each L abel message returns
to the AC during phase |, we can identify a new
cycle in the graph, using its routing tag, in which
each node knows its own node label, and the AC
now knows all of their node labels. However, none
of these nodes yet knows the return path to the AC,
and the AC knows nothing about the subordinate
loops for which the routing tags are being held as
L oop messages at one of these nodes. Thus, our new
parallel algorithm also requires second phasein which
the AC tells each node about a return path to the AC.
However, our phase Il is done in paralel, using

Fig. 7. The input direction of AB cannot be distinguished by any
algorithm.



Table 1

State machine description of the ATOMIC topology discovery algorithm (Because of wormhole routing, we ignore all messages passing through the current node on their way to

another destination)

Current state Arriving message Action Next state
Address consultant state machine
Initial (none) - Send Probe msg with null routing tag on Mapping
all outgoing links
- Send 2-hop Direction Probe msg on all outgoing links
Mapping Probe or Loop - For each new path segment, send a Label Mapping
msg to each node aong the segment
Respond - Check map for correct node Label and link info
Direction, or Direction - Make sure there is a direction handler
Probe sent to AC process for this link, and pass it the msg
Ordinary node state machine
Initial Probe - For each output link, append the output Probed
direction to the current routing tag and send a Probe msg
Probed Probe - Store it asa Loop msg Probed
Direction Probe - Store it as a Direction msg
Label - Accept the node Label and store Return Path to AC Connected
- Send a positive Respond msg to the AC
- Send a 2-hop Direction Probe msg to al outgoing links
- Send all saved Loop and Direction msgsto AC
Connected Probe - Convert to Loop msg and forward it to the AC Connected
Direction Probe - Convert to Direction msg and forward it to AC
Label - Send a negative Respond msg, including your existing

node Label, tothe AC

88-6/ (666T) TE S{IOMBN OINdwoD /30N “T'Al ‘BuenH "A-A



Table 2

State machine description of the parallel topology discovery algorithm (Messages in transit to other nodes are ignored, due to wormhole routing)

Current state Arriving message Action Next state
Address consultant state machine
Initial (none) - Send Label msg with a one-hop routing tag on all outgoing links Mapping
- Send 2-hop Direction Probe msg on al outgoing links
Mapping Label or Loop - For each new path segment with L new links separated by L —1 Mapping
new nodes, add them to map
- If L> 0, send a Return Path msg with node count L —1 to the
first new node
Direction, or Direction - Make sure there is a direction handler process for thislink,
Probe sent to AC and pass it the msg
Ordinary node state machine
Initial Label - Accept this routing tag as the node Label Labelled
- For each output link, append the output direction to current
routing tag and send the Label msg
- Send a 2-hop Direction Probe msg to al outgoing links
Label - Store it asa Loop msg Labelled
Direction Probe - Storeit as a Direction msg
Return Path - Store the Return Path to AC Connected
- Decrement node count and discard msg if zero
- Otherwise, remove the first step in the Return Path and send
msg one hop in that direction
- Send all saved Loop and Direction msgsto AC
Connected Label - Convert to Direction msg and forward it to the AC Connected
Direction Probe - Convert to Direction msg and forward it to AC
Notice - Increment hop count for the associated link and send a Direction

Probe msg the extra distance

88-6/ (666T) TE S{IOMBN OINdwoD /30N “T'Al ‘BuenH "A-A

a8



86 Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88

piggybacked messages, based on a third observation
about the problem dynamics, namely that the new
information contained in each Label or Loop mes-
sage that returns to the AC is a single path fragment
of known length. In other words:
in the first-to-return Label message, the entire
path is a new path fragment; and
- in each subsequent Label or Loop message, the
remainder of the path, starting from the point
where it diverges from previously mapped paths
and ending at the point where it either returns to
the AC or is held as a Loop message, is a new
path fragment.
Thus, unlike the ATOMIC algorithm, which uses a
series of individual Label /Respond transactions to
check each newly discovered link, our new parallel
algorithm sends a single piggybacked Return Path
message over the new path fragment. The message is
initialized to contain the return path to the AC
relative to the first node on the new path fragment,
together with a count of the number new nodes in
the path fragment, and is then sent directly to the
first node on the new path fragment via wormhole
routing. Thereafter, as the Return Path message
reaches each of the new nodes along this new frag-
ment, it saves the complete return path for its own
use, decrements the node count and throws the mes-
sage away if it reaches zero, and finally deletes the
first step from the return path and uses it to select the
outgoing link on which to forward the message to
the next node. Once the Return Path message has
been taken care of, the node then sends any saved
Loop messages directly to the AC via wormhole
routing.

2.4. Handling multiply connected links

The remainder of the agorithm involves finding
input directions. Input directions are important under
wormhole routing, since messages can be sent ‘‘di-
rectly’” to a destination n hops away in the same
direction without store-and-forward packet switching
delays at the intermediate nodes. Thus, it is impor-
tant to know if the path from node A to node C
looks like Fig. 4, where wormhole routing cannot be
used, or like Fig. 5, where it can. Fortunately, both
the ATOMIC agorithm and our new paralel ago-
rithm can find the input direction in Fig. 5, where it

is needed by the AC to decide that a wormhole path
exists from node A to node C.

As described above, the normal case is handled
by sending two-hop Direction Probe messages out
each port, which eventually get forwarded to the AC
by the recipient as Direction messages. However,
unlike the ATOMIC agorithm, in our case the nodes
can send the Direction Probe messages right after
they send the Label messages in phase I, since they
aready have their node labels. In addition, our algo-
rithm handles multiply connected nodes using the
technique described in Section 2.2, where the AC
resolves the ambiguity by sending a Notice message
to the source node, requesting it to send another
Direction Probe message with the target set one
more hop away. Thus, our agorithm can resolve the
input direction at node B in Fig. 6, whereas the
ATOMIC agorithm cannot. (Moreover, neither algo-
rithm can handle the case in Fig. 7 — athough the
answer is unimportant since there is no way to use
wormhole routing any further than node D anyway.)
In general, our algorithm can resolve the input direc-
tion if there exists an n-hop path, n> 2, in which
the last hop is singly connected. In this case, the
source node will eventually receive a Notice mes-
sage that triggers an n-hop Direction Probe mes-
sage, which alows the AC to resolve the input
direction at the last hop, from which the other input
directions are found by backtracking.

It is worth mentioning at this point that the only
difference in the final result of executing our new
parallel topology discovery algorithm instead of the
ATOMIC algorithm is in the node labels, which are
fixed-length consecutive integers in the ATOMIC
algorithm, and variable-length routing tags in our
algorithm. For example, since the ATOMIC network
has 4 outputs per node, we could encode the ad-
dresses as bit strings, using two bits per hop. How-
ever, ATOMIC-style consecutive integer node labels
are easy to put into our algorithm without using any
additional messages. Recall that the AC already
knows the exact number of new nodes and their
respective self-assigned node labels on each new
path fragment as soon as it receives the correspond-
ing Label or Loop message. Thus, the AC could
reserve the required number of new node labels for
that path fragment and inform each node of its new
label via an additional field in the Return Path



Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88 87

message. The AC simply initializes the field to the
new node label for the first node on the path frag-
ment, and thereafter, each new node increments the
field before passing it one more hop along the path.

3. Experimental results

Both topology discovery algorithms were tested
using a detailed simulation model, which was con-
structed using the SMURPH network simulation en-
vironment [2]. The SMURPH environment is opti-
mized for simulating network protocols by emulating
the physical transmission of data over various links
between independently executing hosts. Thus, our
SMURPH model involves defining the network
topology and programming each host to follow the
protocols given in Tables 1 and 2. The correctness of
the simulation was ensured by adding various
sanity-check assertions about the global state of the
system into the code. In addition, a separate program
was developed to verify the output to make sure that
network map produced by the AC, including the
nodes, edges and input/output directions, matches
the actual topology of the network.

Using the simulation model, various experiments
were conducted for three kinds of graph:

Grid graphs. This is a regular 4-connected graph

similar to the original Mosaic topology. Graphs

from twenty nodes to two hundred nodes were
tested.

- Random sparse graphs. We make one pass through
the set of all ports, arbitrarily selecting pairs of

7000 T T T

6000

5000

time

4000

3000 [

2000
0

50 100 150 200
node number

Fig. 8. Mean running time for new algorithm on dense graphs.

200000

150000 -

100000 -

time

50000 |

0

. . \
0 50 100 150 200
node number

Fig. 9. Mean running time for ATOMIC agorithm on dense
graphs.

ports (consisting of one input port and one output

port) under the restriction that both ports cannot

belong to the same node. Then we connect them
to form a link with probability 0.5. Graphs from
twenty nodes to two hundred nodes were tested.

For each node size, six graphs were generated,

and the mean execution time is shown.

Random dense graphs. Same as above but each

link is connected with probability 0.75.

In each test, both algorithms were run on exactly
the same set of graphs, and for each graph the
elapsed simulation time (assuming it takes one time
unit for a packet to travel one hop), the total number
of messages generated by the protocol, and the total
number of hops travelled by al messages were
recorded. We found that the major difference be-

10000

8000 -

time

6000 -

4000

2000 . . L
0 50 100 150 200

node number

Fig. 10. Mean running time for new algorithm on dense graphs.



88 Y.-Y. Huang, M.L. Molle / Computer Networks 31 (1999) 79-88

200000

150000 +

100000 -

time

50000 F

0

0 50 100 150 200
node number

Fig. 11. Mean running time for ATOMIC algorithm on dense
graphs.

tween the two agorithms was speed, with our new
parallel algorithm running at least ten times faster
than the ATOMIC algorithm. This improvement was
expected, because the new algorithm eliminates the
serialization bottleneck in the ATOMIC algorithm
due to the Label /Respond transactions (see Sections
2.2 and 2.3). This speed advantage is even more
remarkable when you consider that the timing for
our algorithm also included the relatively-expensive
additional steps for handling multiply connected
nodes (Figs. 8-11).

4, Conclusion

We have presented a new paralel topology dis-
covery agorithm for directed networks with worm-
hole routing. Our algorithm is much faster than the
one developed for the ATOMIC project, mostly be-
cause our improvements eliminate an obvious serial-
ization bottleneck that is present in their agorithm.
In addition, our algorithm includes a number of more
subtle refinements, such as piggybacked delivery of
information from the AC to a sequence of nodes,
early transmission of direction Probe messages, and
the generalization of the direction finding algorithm
to properly handle nodes with multiple connections.

It is interesting to note the significance of the
seemingly minor decision to use routing tags as node
labels. Even if we ignore the serialization bottleneck,
this change reduces the time until a node is labelled

by an entire round-trip delay (i.e., the time for the
Probe or Loop message to return to the AC, fol-
lowed by the time for the AC to send a Return Path
message back to the node). Similarly, because of the
change the AC does not need the Label /Respond
transaction to identify (and possibly assign a label
to) the nodes on a newly discovered path fragment.
Of course, sequential integer node labels are more
convenient than variable length routing tags, but we
can easily add that type of node label to the algo-
rithm without any additional messages.

Although we believe that our parallel topology
discovery agorithm is quite efficient, there are till
some interesting extensions possible that we plan to
explore. As the size of the network becomes very
large, centralizing the routing functions in a single
AC may become unmanageable. Moreover, if more
than one AC is used, having each one map the entire
network is very inefficient. Thus, we plan to investi-
gate methods for partitioning the topology discovery
problem amongst multiple ACs. In addition, since
network topology changes may occur from time to
time, we plan to study efficient techniques for incre-
mentally re-mapping the network in response to
topology changes.

Acknowledgements

The project is partially supported by a Computer
Science research fellowship from the University of
Cdlifornia, Riverside.

References

[1] R. Felderman, A. DeSchon, D. Cohen, G. Finn, ATOMIC: A
high-speed local communication architecture, Journal of High
Speed Networks 3 (1) (1994) 1-30.

[2] P. Gburzynski, Protocol Design for Local and Metropolitan
Area Networks, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[3] Metricom, Inc., The Ricochet Wireless Network Overview,
http: / /www.ricochet.net /ricochet / netoverview.html.

[4] C.I. Seitz, N. Boden, J. Seizovic, W. Su, The design of the
Caltech Mosaic C multicomputer, in: Proc. Washington Symp.
on Integrated Systems, Seattle, WA, 1993.

[5] W. Stallings, Data and Computer Communications, 5th ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

[6] WebTV Home Page, http: / /www.webtv.net /wtvnet.html.



