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Abstract

Since Gallager, Humblet and Spira first wntro-
duced the distributed Minimum Spanning Tree prob-
lem, many authors have suggested ways to enhance
thewr basic algorithm to tmprove its performance. Most
of these tmproved algorithms have even been shown to
be very efficient in terms of reducing their worst-case
communications and/or time complezity measures. In
this paper, however, we take a different approach,
basing our comparisons on measurements of the ac-
tual running times, numbers of messages sent, etc.,
when vartous algorithms are run on large numbers of
test networks. We also propose the Distributed In-
formation idea, that yields several new techniques for
performance improvement. Simulation results show
that contrary to the theoretical analysis, some of the
techniques in the literature degrade the performance.
Moreover, a simple technique that we propose seems to
achicve the best time and message complexity among
several algorithms tested.

1 Introduction

Given a weighted undirected graph G, with N
nodes and E edges, we define a minimum spanning
tree (denoted by MST for the rest of this paper) as
a connected subgraph of G for which the combined
weight of all the included edges is minimized. We as-
sume that each node acts as a processor and each edge
as a bidirectional and error-free communication chan-
nel. In the distributed MST problem, we want to de-
fine an algorithm that involves only nearest-neighbor
message exchanges between adjacent nodes, and even-
tually labels every edge in GG as either a branch of
the MST or rejected. Initially, all nodes are assumed
to be “awake” and ready to begin executing the dis-
tributed algorithm. However, none of them has any
special status nor is aware of any network topology
except for its adjacent edges. Thus, we cannot simply
send all the information to one node and solve a cen-
tralized problem, because this would involve a Leader
Election problem which turns out to be compara-
bly difficult [Awe87]. Fortunately, finding distributed
MST algorithms is straightforward because the cen-
tralized MST problem can be easily solved by greedy
algorithms. A distributed algorithm was proposed by
Gallager et al [GHS83] requiring O(F + N log(N))
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messages and O(N log(N)) time units. We refer to
this algorithm as the basic algorithm, and we out-
line it in the next section. The interesting question
is: how efficient can we make a distributed MST algo-
rithm?

For the rest of this paper, we will overload the
expression “efficient complexity” to mean O(F +
Nlog(N)) messages, and O(N) time units. For the
general graph, the distributed MST problem requires
at least Q(F + N log(N)) messages, where we count
the transmission of one message across one edge as
our unit of “cost” (2 denotes the lower bound). So
the basic algorithm is message efficient. For the time
complexity, it was proven [SB95] that a tighter bound
of the basic algorithm is O((Dprst +d) -log(N)) units,
where Dprgr is the diameter of the resulting MST
and d is the maximum degree of the nodes. Fol-
lowing [GHS83], various authors have proposed en-
hancements to the basic algorithm to achieve effi-
cient time and message complexity [CT85], [Gaf85],
[Awe87], [FM95] and [Fal95]. As 1t will become ap-
parent later, there is a trade-off between termination
time and messages.

The first contribution of this paper is the intro-
duction of further refinements to the basic algorithm,
which are based on a novel approach called Distributed
Information. The motivation for our approach is the
observation that all nodes can easily keep track of cer-
tain types of information about the network by exam-
ining the contents of the exchanged messages. Namely,
this information is a summary of the state of parts of
the network. This way, the algorithm can make de-
cisions by consulting this information without having
to relay messages anew to these parts of the network.
The gain in messages and time is apparent. Note that
this additional information is simple, so the cost of
these techniques is just a trivial increase in the mes-
sage length, and in the storage requirements at each
node.

The second contribution of this paper is an exper-
imental study of the performance of the above algo-
rithms on large numbers of sample graphs. For our
simulations, we constructed a faithful representation
of each test network at the interface between layers
2 and 3 of the OSI model using a special purpose
network simulation package, with the code for the



MST algorithm implemented as an independent pro-
cess executing at each node. Our experiments cover
several families of graphs, each parameterized by dif-
ferent network sizes, and density. As we will see the
results favour strongly algorithms with non-efficient
worst case complexity, and especially an algorithm
based on the Distributed Information approach.

The rest of this paper is organized as follows. In
Section 2, we describe the basic algorithm of [GHS83],
along with the path graph example that demonstrates
its non optimal time complexity. We then list, in
section 3, the innovations introduced by previous au-
thors. Section 4 presents some new techniques and
algorithms based on Distributed Information, and de-
scribes a methodology for creating optimal algorithm
using non optimal ones. Finally, section 5 presents our
experimental results.

2 The Basic Algorithm

In their pioneering paper [GHS83], Gallager, Hum-
blet and Spira introduced the distributed MST prob-
lem and presented an algorithm that has formed the
basis of much subsequent work in the area, including
[CT85], [Gaf85], [Awe87], [Fal95], and [FM95].

In this basic algorithm, each node is initially the
root of its own fragment (a trivial connected sub-
graph of the MST) and all the edges are Unlabeled.
Thereafter, adjacent fragments join to form larger
fragments by labeling their intermediate edge as a
Branch of the MST. The new branch is chosen by
the root of one (or possibly both) of the fragments,
as the minimum outgoing edge (or MOE) for the
entire fragment. This fragment MOE is determined
by broadcasting an initiate message to all nodes in
the fragment, asking them to send a report message
with their local MOE to the root (Finding proce-
dure). Each node determines its local MOE by testing
(test message) its Unlabeled edges, minimum weight
first, until it finds one that leads to another fragment
(Testing procedure). Any edges that are found to
connect to nodes in the same fragment are labeled as
Rejected, and are subsequently ignored. Each node
gathers the reports of his children and reports the min-
imum of all reported MOEs (Reporting procedure).
Finally, the root selects the MOE of the fragment and
sends a change Root message to the node adjacent to
that MOE, appointing it as the leader of the frag-
ment. The leader sends a connect message along that
edge and joins with the other fragment. Note that the
leader 1s a “temporary root”; it makes the decisions
for its fragment and its role ends when an initiate
message from a root arrives.

Even the basic algorithm presented in [GHS83] con-
tains several subtleties. First, each fragment has a
level, L, in addition to its unique fragment identifier
F, denoted as a pair (F, L) for the rest of the paper.
The fragment levels are used to make fragment joining
less symmetric, so that certain types of “one-sided”
joins can be permitted without the risk of forming
cycles. If two adjacent fragments discover that they
share a common MOE and wish to label that edge as a
branch, then it is clear that the resulting “two-sided”
join can be permitted because the combined fragment

will still be a subgraph of the MST. However, since
fragments operate asynchronously (and edge testing,
MOE selection and joining are neither instantaneous
nor atomic), “one-sided” joins create the risk of form-
ing a cycle as one fragment tries to label its MOE as
a Branch while the adjacent fragment tries to label
another edge as a Branch, and so on.

Rather than reducing parallelism by delaying each
join until it becomes “two-sided” (a situation we refer
to as an equi-join), the algorithm allows small-level
fragments to be absorbed by higher-level fragments (a
situation we refer to as a submission). All fragment
levels are initialized to zero, and thereafter at each
join the higher level replaces the lower one in a sub-
mission while both sides increase their level by one in
an equi-join. Thus, the maximum level that can
be reached is log(N).

Another noteworthy feature involves reducing the
required number of messages by having a low-level
node delay its response to any test message arriving
from a high-level fragment, since the high-level frag-
ment can not equi-join with or submit to a low-level
fragment (see [GHS83] for more details).

2.1 A Bad Case Example

et MOE of F, MOEof £ MOEof F,

Figure 1: Bad case example.

An intuitive feeling of how the time complexity can
“go bad” can be obtained by the following pathological
test case that we refer to as the bad case example.
Consider a chain of fragments F1, ..., F. (as shown in
Fig.1) with respective levels Ly < Ly < ... < Ly, and
r >> 1. Furthermore, assume that these fragments
are connected with their MOE edges in such a way
that F; submits to Fy, Fy submits to F53 and so on
without the previous (in line) fragment participating
in the Finding procedure of the following one. We can
assume that F, is of a greater level and absorbs all
the F; fragments, or that it equi-joins with F,._q. It
is evident that it will take a long time for an initiate
message from F,. to arrive at Fy.

Now suppose that an outgoing edge of a fragment
(F, L) connects to the fragment (Fy, L), and that
L > L,. Because of this level difference, F; delays
its answer to the test message from F'. Thus, F' waits
for a “very long” time (in the worst case until all nodes
of the chain of fragments are traversed) before it can
complete its Finding procedure. If F joins finally with
the chain, then it will get a great level increase and
it will be compensated for the delay. However, this



is not guaranteed, since F' could end up joining with
some other fragment F, and get a very small level in-
crease. In other words, the join of fragments F, Fy, can
be “greatly” delayed by F; and the chain that does not
participate in the join.

3 Previous Techniques

Various enhancements have been proposed to im-
prove the performance of the basic algorithm in situ-
ations like the previously described bad case example.
In the subsequent sections, we will describe the new
features introduced in the later algorithms, without
repeating features that do not change.

3.1 Size Estimation

The technique that we will call Root Size! (or RS)
was introduced in [CT85] [Gaf85]. The authors rec-
ognized that, although any fragment of level L in the
basic algorithm obviously must have at least 2 nodes,
it may be much larger than that if it has accepted a
lot of submissions. By modifying the algorithm to en-
sure that the fragment level is a better estimate of the
true fragment size, they would enable other fragments
waiting to submit to do so earlier. Thus, the RS mod-
ification demands that the size of fragment (F, L) is

bounded: 2L < Size(F) < 2E+!. The nodes can be
counted in the Reporting procedure, by having each
father report the number of each descendants. At the
root, the level of the fragment is compared with the
reported size of the fragment. If Size(F) > 2L+ then
the fragment level is increased, and the Finding proce-
dure is rerun at the new level (no joining takes place).

The RS technique can be further improved by
changing the Joining policy, to make better use
of the size estimating procedure. With these two
changes, the time complexity is upper bounded by
O(N log™(N)), where log"(z) is the number of times
that the log function must be applied to z before the
result is no larger than unity. Intuitively, we can ob-
serve that the Joining policy expects small size frag-
ments to submit to bigger ones. Keeping the level of
the fragment closely related to its size, helps in the
enforcement of this policy. Notice that the communi-
cation complexity remains O(F + N log N).

3.2 Estimating the Distance

The basic idea behind the RS technique — namely
triggering level increases whenever the current frag-
ment size exceeds the next power of 2 — was carried
further in [Awe87], where two additional techniques
were introduced?. These techniques were further re-
fined in [FM95] after some problems were discovered
in the original paper.

The Root Distance (or RD) technique (originally
called Root Update in [Awe87]) dominates the RS

technique described above; it ensures that the root

INotice that our two word names for the techniques follow
a pattern where the first word denotes who is carrying out the
procedure and the second one what it is estimating. We think
that this convention makes things much clearer than simply
preserving the arbitrary names chosen by the original authors.

2This algorithm also introduced a more complex multi-phase
structure, which will be discussed in the next section.

of a level L fragment will never be blocked for longer
than O(25+1), waiting for the Finding and Reporting
procedures to complete. When an initiate message
visits a node whose distance from the root is greater
than 2511 edges, the message “returns” to the root.
The root then increases the level of the fragment and
performs a Finding procedure at the new level (see
[Awe87] [FM95] for more details).

The other technique, which we call Leader Dis-
tance (or LD), works similarly, but is invoked by the
leader of a submitted fragment. The leader sends a
test Distance message towards the root, and if the dis-
tance is large enough (2£12), the leader increases the
level of its fragment. The procedure is repeated until
the leader receives a message from the root. With this
technique, a submitted fragment is able to increase its
level in a timely manner, even if it is far away from
the new root. The symmetry of the concept of the two
procedures is apparent; they explore the same path
from different ends. However, several issues have to be
taken care of in order to guarantee the efficiency and
the correctness of the resulting algorithm (see [FM95]
for details).

It is easy to see that the LD technique improves
the time performance in our bad case example. Be-
cause of the LD procedure, fragment F; will reach L
“faster”, and thus fragment F' will have an answer to
its test message sooner. In particular, the LD proce-
dure guarantees an upper bound on the delay of the
Report procedures. Therefore, all nodes reach level L
in O(2F) time, and hence a termination time of O(N).
Note that for the time analysis, the number of hops of
a path corresponds to the same number of time units
when traversed.

Unfortunately, the LD technique can increase the
communication complexity to O(E + N?). The prob-
lem appears when a large number of distinct fragments
submit and activate LD procedures. For a detailed ex-
planation see [FM95] [Fal95].

3.3 Multiple Phase Operation

The basic algorithm, together with any of the en-
hancements except LD, is message efficient but not
time efficient, whereas LD makes the algorithm time
efficient but sacrifices the message complexity. This
difficulty was overcome by Awerbuch [Awe87], who
suggested an innovative three-phase algorithmic struc-
ture that switches from one sub-efficient version of
the algorithm to another part way the execution,
and thereby achieves efficiency in terms of both mes-
sage and time complexity. To elaborate, in the first
Counting phase, the algorithm simply determines N.
The actual MST is constructed in the two remaining
phases, which represent a tradeoff between the de-
mands of the initial and the final part of the MST
problem. The second small fragment phase involves
large numbers of small fragments, where limiting the
number of messages is most critical. The third large
fragment phase involves small numbers of large frag-
ments, where limiting the execution time is most crit-
ical. Each fragment switches from the small fragment
MST phase to the large MST phase as soon as its size



reaches %. For more details see [Awe87] [FM95]
[Fal95].

4 Using Distributed Information

In this section, we introduce several techniques that
use stored information at each node to improve the
performance of the algorithms. That is, nodes are ex-
pected to exchange, store and use summary of infor-
mation concerning other parts of the network to pro-
vide quicker answers to certain questions. Two types
of stored information are considered. The first type of
information concerns the previously reported MOEs,
which 1s used to accelerate the Reporting procedure.
The second type of information is some measure of the
distance from the root, which is used to accelerate the
level increases of submitted fragments. We call this
approach Distributed Information, and the interested
reader can find a more detailed analysis of the new
techniques in [Fal95].

4.1 Storing Edge-MOE Information

As we saw, the main question for every fragment is
to find its MOE. Thus, it makes sense to keep track
of the MOE of previous Reporting procedures, and
avoid repeating parts of the procedure when the result
can be predicted. For this, we require each node to
remember the most recent edge-MOF wvalue for each
of its branches. Namely, for each node, we want the
edge-MOE for each of its edges to be the weight of
the smallest outgoing edge reachable in that direction.
For example, this value is equal to the weight of the
edge, if the edge is currently Unlabeled.

These edge-MOEs are updated by including the
most up-to-date information in every message. In
more detail, each time a node receives any message
from edge e;, it overwrites the edge-MOE of e; with
the new value. Similarly, each time a node transmits
any message on edge ¢;, it sets the edge-MOE field
in the message to the minimum known outgoing edge
value over all its edges except e;. It is important to
notice that the edge-MOE values may not be com-
pletely up-to-date. However, under the Joining pol-
icy introduced in [GHS83], the weight of the current
MOE reachable via a branch can only increase over
time. In other words, edge-MOFEs are non-decreasing
i time, and thus each edge-MOE 1is always a lower
bound to the current MOE reachable in the same di-
rection. These two observations are fundamental for
the correctness of this approach.

4.2 Fast Report using Pruning

The Fast Report technique (or FR) uses this
edge-MOE information to accelerate the Report pro-
cedure. Namely, we see the problem of MOE selection
by each fragment as equivalent to searching some kind
of game tree, where we do not always need all the an-
swers in order to make the correct decision. For this,
FR allows the node to complete its Reporting proce-
dure before all of 1ts children have responded, if it can
be guaranteed that the unreported MOEs cannot be
better than the current candidate MOE. For example,
assume that branch a reports an MOE of weight W
and the edge-MOE of b is greater than W. We know
that the new MOE from b will be at least as large

as W, and thus, we do not need to wait for a report
from branch 6. Recall that, in the basic algorithm,
each node must receive the report messages from all
its children before reporting to its parent node.

This idea can be further applied to the Finding pro-
cedure, where we can skip all sub-trees whose last re-
port indicated a MOE of infinite weight, since it is
clear that the fragment MOE will not be found in that
direction. Although this observation sounds trivial, in
practice it results in a substantial speed-up by short-
ening the final (and most time consuming!) executions
of the Finding procedure.

The FR technique is compatible with the basic al-
gorithm in [GHS83], and hence can be added to most
of the algorithms described in the previous section.
However, FR may interfere with the node counting
procedure in RS, since FR may complete the Report-
ing procedure before the counting is completed. Ob-
viously, adding FR to the basic algorithm does not
affect its worst case time and message complexity.

4.3 The Fast Joining Improvement

The fundamental idea behind Fast Report can also
be applied to the final selection of the fragment MOE
by the root, producing an even greater speedup; some-
times a non-root node knows which is the fragment
MOE. More precisely, if any node sees that the MOE
value for its report message is less than the edge-MOE
value for the edge towards its father, it is clear that
its MOE must be the fragment MOE. The selection
of the MOE can be made at that point, and we can
avoid an unnecessary forwarding of the information to
the root. Thus, under the Fast Joining technique
(or FJ), we give the authority to the first node that
can determine the fragment MOE to relieve the old
root of its duties and to nominate the leader that will
proceed to join.

Note that in the best case, the FJ allows the new
leader to appoint itself, whereas in the worst case, the
decision is not made until all the information reaches
the current root. Thus, the FJ technique can take
advantage of a “good” configuration, but in the worst
case 1t does not do better than the basic algorithm.

Although the FJ technique is compatible with the
basic algorithm in [GHS83], the addition of FJ re-
sults in a qualitatively different type of operation. The
nodes have greater autonomy, which introduces some
asynchronism in the way the algorithm handles a sin-
gle fragment, i.e., the strict “scatter/gather” waves of
the basic algorithm’s Find-Report-Join cycle are re-
placed by a more aggressive “join when you can” ap-
proach. Note that the FJ technique is not compatible
with those others that demand centralised decisions,
such as RS and RD. However, FJ is compatible with
FR, a combination that we call the autonoMST al-
gorithm.

4.4 Distributed Distance Estimation

We already saw in the Leader Distance procedure
that it is important for submitted fragments to de-
tect their distance from the root. Extending the Dis-
tributed Information idea, in the Leader Size tech-
nique (or LS) we make each node store a distance met-
ric instead of having the leader try to figure it out by
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Figure 2: Size-distance and simple distance.

sending a probe message along the path to the root.
The distance information is updated by the initiate
messages, which are issued anyway whenever the iden-
tity of the root changes. This way, when a fragment
submits, it becomes aware of the distance information
towards the new root right away.

Moreover, instead of just measuring the length of
the path to the root node, we can maintain an estimate
of the total number of nodes that can be found in the
direction of the path between a subfragment and the
root. What we measure has a meaning between size
and distance and we will refer to it as size-distance.
For example in Fig.2, after F; submits to Fy and Fs
submits to Fj, the size-distance estimate of v; must
be equal to Size(Fy) + Size(F3), where Size() indi-
cates the number of nodes of a fragment; however, the
simple distance is just d(vq, v3) = 2.

There are two reasons why we prefer size-distance
to simple distance. First, size-distance only increases
during the tenure of a given leader, while distance can
decrease too. Second, size-distance is an upper bound
of the distance, and thus we may have faster level
increases.

We can examine the procedure through an exam-
ple (see Fig.2). When fragment F; submits to Fa, the
leader of Fy, v1, will broadcast the size-distance from
the root of Fy. If Fy submits to F3, v9 will broadcast
the change to all F5 nodes and v1. Then, as in Leader
Distance, v; will decide whether the size-distance is
large enough to justify a level increase for its submit-
ted fragment.

It is easy to see that the LS technique is equivalent
to the earlier Leader Distance technique that we saw
before, and leads to efficient time (O(N)) and non
efficient communication (O(E + N?%)) (see [Fal95] for
more details). We find the combination of techniques
Fast Report, Root Distance, Root Size and Leader
Size in a single algorithm to be quite attractive, and
denote it by the name optiMST .3

4.5 Grouping the Techniques

So far we have seen a number of different techniques
that can be incorporated in [GHS83] and give rise to
new algorithms. We can now group these techniques
according to their performance characteristics.

3 The name comes from the fact that these techniques are able
to exploit “favourable” configurations. Having an optiMSTic
attitude, we hope to come across such configurations.

The Communication Efficient techniques re-
quiring O(E + N log(N)) messages are:

1. Root Size ([CT85] [Gaf85])

2. Fast Report (Fast Report algorithm)
3. Local Decision to Join (autonoMST)
4. Root Distance ([FM95] [Awe87])

The communication efficient algorithms are: [GHS83],
[CT85], [Gaf85], Fast Report and autonoMST.

The Time Efficient techniques requiring O(N)
time units are:

1. Leader Distance ([Awe87] with the corrections in

[FM95])
2. Leader Size (optiMST)

The time efficient algorithms are: the algorithm of the
third phase in [FM95], and optiMST.

Clearly, this plethora of choices raises the issue of
which techniques should be used in practice. Atten-
tion i1s needed, since the above time efficient techniques
need the support of the communication efficient ones.
The former alone can not guarantee optimal time
and they may also create cycles (or more details see
[Fal95] [FM95]). Furthermore, we can create a number
of efficient algorithms by combining the above tech-
niques, and the multiple phase structure introduced
by [Awe87]. For example, an algorithm that we will
see 1n the next section, called multiphase optiMST,
uses the two last phases of the multiphase approach;
it starts off like the basic algorithm and then each
fragment independently switches to optiMST, when it
reaches a certain size.

5 Experimental Results
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Figure 3: Sparse graphs: Time versus nodes

We found it important to measure the performance
of the above algorithms and techniques, especially be-
cause we didn’t find any previous experimental work.

We created a simulator using SMURPH [Gbu95], a
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Figure 5: Graphs of 70 nodes: Time vs Edges.

package on top of C++ for simulating low level com-
munication protocols. We found the package very use-
ful though some extensions had to be made. The
correctness of the solutions was tested with a non-
distributed MST algorithm known as Prim’s algorithm
[Pri57], and described in [Afr90].

Given the wide variety of different algorithms that
can be created, as stated already, we decided to test a
representative group rather than exhaustively trying
all combinations. We chose to test the following algo-
rithms, each of which is identified by the nickname we
gave it:

1. GHS: the basic [GHS83]
2. FR: Fast Report as described in a previous section

3. optiMST: optiMST as described in a previous sec-
tion

4. Root Size: the basic plus the Root Size technique

5. no FR optiMST: optiMST without the Fast Re-
port
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Figure 6: Graphs of 70 nodes: Messages vs Edges.
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Figure 7: Dense graphs: Time versus nodes

6. Awe-FM: third phase of [Awe87] with the correc-
tions of [FM95], i.e., the basic plus the Root Dis-
tance and the Leader Distance techniques tech-
nique.

7. multiphase optiMST: a two phase algorithm with
T) the basic IT) optiMST, as described in the pre-
vious section. Note our measurements do not
include the time and message complexity of the
Counting phase, which would increase the com-
plexity further.

Comparison of Algorithms. Our first goal is to
find the effect of the size, and the density of a network
to the performance of the algorithms. For this, the
following sets of graphs are used in the simulations
(Fig.3-Fig.8). First, we use sparse random graphs
with 50 up to 200 nodes with an average degree that
increased from 3 to 5.5. We interpreted randomness
as making all node pairs possible with equal probabil-
ity. However, we ensure connectivity by creating each
node with at least one appropriate edge. The weight
of the edges was a uniform distribution (0, 1000), and
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Figure 9: Path graphs: Time versus nodes.

the time delay was equal to the weight. Second, we
examine a family of 70-node graphs that was created
with increasing average degree from 3 to 15. Third,
we test a family of graphs, that we call dense, with
a rapidly increasing average degree from 3 to 50. No-
tice that each measurement, is the median termination
time of runs on three similar networks.

Our first major observation is that Fast Report out-
performs the rest of the algorithms. In most exper-
iments, 1t is the fastest algorithm, while its message
complexity is also the lowest. The optiMST algorithm
also performs well, but the removal of the Fast Report
technique (“no FR optiMST”) makes it very slow.

Considering the termination time, the algorithms
are roughly grouped in fast ones (Fast Report, and op-
tiMST), slow ones (optiMST without Fast Report, and
Root Size) and the basic (“GHS”) that is in between
(see Fig.5 Fig.6). Note the very long termination time
of Root Size in the dense graphs: increasing the level
seems to degrade the performance. Note, also, that
the termination time of the basic, Fast Report and
optiMST seems to stay unaffected by the size of the
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Figure 10: Path graphs: Messages versus nodes.
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Figure 11: Level vs logarithm of time: Path graph
with 104 nodes.

network. To explain this we can recall that, as nodes
function in parallel, the larger the size of the network
the higher the parallelism. It is worth noticing that
as the graphs become denser their time performances
converge (Fig.5 and Fig.7) By observing the log file of
the simulations, we saw that the algorithms reached
their final levels in different times, but it was the final
Finding procedure that delayed all of them enough to
overwhelm these differences. Namely, the last Find-
ing procedure requires the rejection of a great number
of internal edges, and this rejection time was really
proportional to the average degree of the network.

Considering the message complexity, the groups are
changed to economical (Fast Report, and basic), ex-
pensive (Root Size, and optiMST without Fast Re-
port), and optiMST who is in the middle. Note also
(Fig.8), the linear relationship between the messages
and the edges of the dense graphs, which indicates that
the number of edges determines the message complex-
ity, as expected (E >> N log(N)).

Bad Case Comparison. We wanted to cre-
ate a graph that would force the basic algorithm to
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Figure 13: Maximum variation of termination time vs
nodes: sparse graphs.

O(N log(N)) time, but the implementation was not
straightforward (see [CT85]). In an effort to approach
a worst case scenario, we created a set of graphs bor-
rowing ideas from our bad case example. These graphs
consist mainly of a long line of nodes with increasing
weights of edges between them. All nodes submit to
their neighbor, say on the right, and form a huge line of
submitted fragments. The only exception is four nodes
at the end of the line with the higher weight: these
nodes form a fragment of Level 2. The 4-node frag-
ment has to wait for the tail of the chain to increase to
at least the 4-node level, before it can submit to the
long line. Obviously this example is tailored to demon-
strate the positive effect of the Leader Distance, and
Leader Size technique of Awe-FM, and optiMST re-
spectively (Fig.9 and Fig.10). Moreover, it illustrates
the time-message trade-off, since the communication
complexity (Fig.10) of the “fast” algorithms increases
proportionally with the square of number of nodes, as
predicted theoretically. Note, though, that the time
complexity is linear to the size of the graph, even for

the “slow” algorithms. In addition, the time com-
plexity of the multiphase optiMST is identical to that
of Fast Report, which indicates that the multiphase
structure passes on to its second “fast” phase too late
to make a difference. Our conclusion from the above
observations is that we can not achieve a great speed
up with the time efficient techniques, unless we are
prepared to sacrifice the communication complexity.
Note, finally, that Awe-FM is slower than optiMST,
though they have identical message complexity.

Comparison of Techniques. Another major ob-
servation is that, in some cases, increasing the level
faster can increase the termination time. Theoreti-
cally, most of the previous techniques try to increase
the level as fast as they can, since the complexity
proofs rely on the speed with which the level increases
(see [Awe87] [FM95]). In practice, however, the rep-
etition of the Finding procedure at a new level can
cause big delays. In support of that we trace the level
of the nodes during the execution. Figures 11 and 12
show the first, last and average time (measured in time
units) that nodes reach each level. The x-axis in the
figures is the logarithm of the measured time, and the
y-axis is the level the nodes reach. The best way to
read the figures, is to compare for each level, horizon-
tally, the different times that it is reached. Note that
optiMST reaches the levels faster than both Fast Re-
port and the basic, but ends up reaching more levels,
which eventually reduces its advantage. In figure 11,
optiMST keeps some advanatage untill the end, while
in figure 12 it looses it completely. In that second
case, Fast Report follows closely optiMST, but avoids
the last level increase, and terminates much faster. In
the same example, the basic terminates after optiMST
eventually (see Fig.3 for 70 nodes), due to increased
delay in the final Reporting procedure.

The Reliability of the Results. We wanted to
see the extend to which we can generalize our re-
sults. For this, we examined the variation of the
three runs that we did for each measurement. For
the sparse graphs, Figure 13 shows the maximum dif-
ference among the three measurements, while the me-
dian termination time of GHS is provided as a refer-
ence point. The average of the maximum differences
is 5,000 time units or 256% of the termination time of
GHS. Tt is worth mentioning that great variations for
the same graph usually reflected a different final level,
which strengthens our observation that increasing the
level in practice is costly in time. Clearly, the discus-
sion of this paragraph can serve only as an indication,
while an accurate calculation of intervals of confidence
lies beyond the scope of this paper.

6 Conclusions

This paper takes a practical look at the efficiency
of distributed MST algorithms. The first contribution
is several new algorithms based on the Distributed In-
formation approach, that distributes information and
decision making across all the nodes. The second con-
tribution is various sets of experiments, where we mea-
sure the termination time and the number messages
for several algorithms on various families of graphs.

Our primary conclusion is that in practice simple



techniques usually perform better than the techniques
used for theoretical reasons. On the one hand, the
theoretically suggested techniques usually degrade the
performance of the basic algorithm in practice. Such
techniques increase the number of executions of al-
gorithmic procedures by a constant, but the proce-
dures can require the traversal of large parts of the
graph. On the other hand, techniques that have no
influence on the asymptotic complexity improve the
performance of the basic algorithm in practice. Fur-
thermore, it was surprisingly difficult to construct a
test case that fully demonstrates the gain from the
theoretically oriented techniques.

Our second conclusion was that Fast Report, a
simple algorithm based on the Distributed Informa-
tion strategy, outperforms the rest of the algorithms
striking a balance between time and communication
complexity. In addition, the simplicity of its imple-
mentation makes it a very attractive candidate for
real applications. For completeness, we mention that
Fast Report has the worst case complexity of the ba-
sic algorithm, namely, O(F + N log N) messages, and
O(NlogN) or O((Dpyst + d)log N) time units, as
explained in the introduction. In addition, the Fast
Report technique when used in other algorithms im-
proved their performance greatly.

Future work. These experimental results are only
the first step of a comparison of algorithms for the dis-
tributed MST problem. More experiments should be
conducted on different families of graphs, and with
various assumptions. In addition, we believe that
there 1s further room for improvement in devising tech-
niques to speed up distributed MST algorithms in
practice.
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