
Efficient Computation of Queueing Delay at a
Network Port from Output Link Packet Traces

M. Farhan Habib
Department of Computer Science and Engineering

University of California, Riverside
Email: habib@cs.ucr.edu

Mart Molle
Department of Computer Science and Engineering

University of California, Riverside
Email: mart@cs.ucr.edu

Abstract—Current Internet core routers provide enough buffer
capacity at each output port to keep the link busy for 250 msec. to
avoid disrupting TCP flows because of dropped packets. Since
link speeds are rising much more quickly than the availability
and cost-effectiveness of large high-speed memories, there is now
significant interest in reducing these buffers. Queue inferencing
(QI) — a passive, external method for calculating the time-
dependent queue lengths and waiting times using start/end service
event timestamps — is an ideal tool for studying the effects of
such buffer size reductions because it can be appliedin situ to
packet traces collected from existing equipment carrying live
traffic without any service disruptions. Although existing QI
algorithms are too computationally expensive for this purpose,
we observe that packet-sizes in a typical network trace are
skewed towards a few “favored” sizes, and introduce two different
methods for exploiting this property. First, since the output
of a QI algorithm is a deterministic function of the service
time sequence in a busy period, and our traces contain many
repetitions of common packet-size sequences, we cache the output
of the QI algorithm for later reuse. Second, we develop a new
incremental QI algorithm, which can start from cached results for
any prefix of the current busy period. Combining both methods
leads us to structure the cache as a decision tree. Using network
traces from WIDE project backbone to evaluate our method, we
found that both the frequency of occurrence for particular busy
periods and for busy-period lengths follow a decreasing power
law, where busy periods lengths greater than 20 were very rare
and none were greater than 70. Moreover, although we found
that the size of thecompletedecision tree grows linearly with the
length of the trace, we can restrict the tree to afinite number of
“active” nodes (i.e., those nodes for which the probabilityof a
visit is above some threshold) and usesimple constant-time bounds
to handle the rare exceptional cases.

I. I NTRODUCTION

Consider a single-server FIFO queueing system, where
customeri arrives at timeai, begins service at timebi, and
departs at timedi (after receivingxi ≡ di−bi units of service,
assuming the system is work conservative). Given access to
“event logs” with this data, we can easily find the waiting
wi ≡ bi − ai or sojourn time ti ≡ di − ai for the ith
customer, or evaluate any operational value for their respective
distributions (i.e., means, percentiles, etc).

Unfortunately, for a number of important application do-
mains where such event logs are readily available,ai is not
directly measureable. For example, the motivation for Larson’s
pioneering work [1] was to estimate customer waiting times at
an automated banking machine in a remote location without

actually visiting it, using only the sequence of card-insertion
and card-removal events from the machine’s transaction log
to represent{bi} and{di}. The methods for estimating{ai}
from such event logs are calledqueue inferencing algorithms.

The goal of our work is to develop a queue inferencing
algorithm that is fast enough to process real-time packet
traces generated by a passive “network sniffer” attached to
a backbone link in the Internet core. In this way, we can
provide a mechanism for viewing the buffer occupancy at an
output port of a high-performance Internet backbone router,
non-obtrusively and during its normal operation. To see this,
consider that theith record in the packet trace contains (at
least) the packet lengthli and an end-of-packet timestampτi.
Without loss of generality, we can ignore the fixed propagation
delay between the physical locations of the output port and
“sniffer” and assume thatdi ≡ τi. Furthermore, given the
physical and data-link layer parameters for the link, we cansee
immediately that the service at the output port for transmitting
the ith packet over this link isxi ≡ (li + f)/C, wheref is
the fixed framing overhead added to each packet andC is the
capacity of the link.

The significance of our work is to provide a simple method
for collecting operational data from existing equipment to
help guide the current proposals for reducing the output
buffer capacities in commercial routers. A well-known “rule
of thumb” for router design [2], [3] states that output buffers
should be sized to handle the combined bandwidth-delay
product for all flows traversing the link, or about 250 ms of
packet data. A backbone router generally requires at least 10
Gbits of buffer memory [4] which is a major hardware cost.
High power consumption and higher cost of SRAM and slow
access time of DRAM makes it more difficult to build buffers
for backbone router. Under this scenario, some recent works
proposed a considerable reduction in backbone router buffer
sizes, still maintaining the performance. Appenzeller el al. [4]
proposed that a buffer of sizeRTT × C/

√
N is sufficient

for maintaining the throughput, whereC is the link capacity,
N is the number of flows andRTT is the average round-
trip propagation delay. Later Beheshti et al. [5] performed
several simple experiments on operational backbone networks
to evaluate the effect of reducing output buffer sizes. However,
it cannot be duplicated without the full cooperation of a
network operator. Moreover, artificially reducing buffer sizes

to see how it degrades performance is not going to please
paying customers. An accurate model to infer the queueing
behavior can solve this problem.

The rest of the paper is organized as follows. In section
II, we describe the queue inferencing problem and define our
notation. In section III, we present the new incremental QI
algorithm in detail and derive its complexity. We validate our
model through some experimental results in section IV-A. In
section IV-B, we show some experimental results from some
actual network traces giving the relative frequencies of busy
periods with different sequences of packet sizes in a weighted
search tree representation, and estimate the optimal speedup
for our incremental QI algorithm if it organized the cached
partial results into the same structure. In section V, we find
the lower and upper bound for the arrival time which can be
computed in linear time. We show how we can bound the size
of the decision tree using that bound of the arrival time. And
finally, in section VI, we conclude the paper.

II. T HE QUEUE INFERENCINGPROBLEM

Queue inferencing algorithms estimate customer waiting
times and/or queue lengths within a single busy period (BP)
from its sequence of start-service and end-service event times.
Thus, we introduce the following notation for describing the
current (active) busy period:

n = Number of customers in this busy period

ai = Arrival time for ith customer

bi = Begin-service time forith customer

di = Departure time forith customer

xi = di − bi; Service time forith customer

mi = Number of arrivals during theith service time

We then extend the notation to include aggregates of each basic
element type. Usingmi, the number of arrivals in a service
time as an example, we have:

~m(i) = [m1, . . . , mi]; vector of arrivals during the first

i service times of the busy period,1 ≤ i ≤ n

Mi = m1 + . . . + mi; Scalar sum over~m(i)

Finally, we define the following sets of arrival vectors:

Mn,k ={~m(n) | 0 ≤ mi ∀i ≤ n, Mn = k}; The set of all

possible partitions ofk arrivals inton groups

M∗
n,k j Mn,k; Those partitions ofk into n groups that

form a single busy period, i.e.,Mi ≥ i ∀i < n.

Using these definitions, we see thatM∗
n,n−1 is the set of all

arrival vectors that represent acomplete busy period of length
n, in which case we know thatmn ≡ 0 must hold.

Larson [1] introduced the queue inferencing problem by
describing anO(n5) “batch” algorithm, which he called the
Queue Inference Engine (QIE), for finding the mean wait-
ing time for each customer, the time-dependent mean queue
length, and the probability distribution function for the queue

size as seen by a randomly-chosen arrival over a single
n-customer busy period, given only the sequence of start-
service and end-service events within that busy period. The
results generated by the QIE are exact if the interarrival time
distribution is exponential (with any constant, but possibly
unknown, rate) and approximately correct if the interarrival
time distribution has a time-dependent exponential distribution
whose changes slowly over the length of each busy period.
Bertsimas and Servi [6] subsequently developed anO(n3)
algorithm for calculating transient queue lengths and customer
waiting times in ann-customer busy period with Poisson
arrivals, while Larson [7] discovered a modification of his
original O(n5) algorithm to reduce its complexityO(n3).

The starting point for both algorithms is the recognition that
the unconditional joint density function for any arrival pattern
[a2, . . . an] over the interval(0, t] is simply (n − 1)!/tn−1

under the Poisson arrivals model. However, if these arrivals
form an n-customer busy period then we must impose the
constraint thata1 = 0, ai ≤ di−1, 1 < i ≤ n. For example,
by integrating (n − 1 times) the expression for the number
in system atdi given ~a(n) over the constraint region, they
obtained anO(n3) expression for the mean queue size at
the ith departure instant. Repeating thisO(n3) calculation
at every departure instant within the busy periodmultiplies
this complexity by a factor ofn. Since the average number
in system is a linear function between departure instants, the
overall complexity of finding the overall average number in
system, and hence the average waiting time using Little’s law,
using their queue inferencing method isO(n4).

Later on, Manjunath and Molle [8] generalized the method
to shared-medium Local Area Networks, where they could
infer information about individual nodes connected to the LAN
from its individual contribution to the combined packet trace
and knowledge about the Medium Access Control protocol.

Bertsimas and Servi [6] also extended the method to allow
the interarrival time distribution to be a general renewal pro-
cess, such as the Erlang-k and hyper-exponential distributions.
Unfortunately, non-exponential interarrival time distributions
require (computationally expensive) numerical methods for
evaluating multi-dimensional integrals.

Daley and Servi [9] proposed a different method for solving
the queue inferencing problem. They observed that the distri-
bution of the number in system at departure instants,{di},
forms an embedded Markov chain under the Poisson arrival
assumption, and developed an exactO(n3) algorithm for cal-
culating this distribution at each departure point, together with
an O(n2log(n)) algorithm for approximating this distribution
to a specified accuracy by assuming a choice of arrival rate
for which the numerical values for terms far from the mean
can be neglected. They also described how to apply their
method tok-Erlang and hyper-exponential interarrival time
distributions, by extending the Markov chain to include the
number of “exponential stages” present at a departure instant.

Hohn et. al. [10] developed an analytical model for the
packet forwarding delay in a router, from the input-port to
the output-port. In their method, packet traces are collected

simultaneously from all router ports in a tier-1 operational
access router, and the arrival of each packet packet (at port
i, say) is matched with its subsequent departure (from port
j, say). They figured out that the forwarding delay has two
major components: queueing delay at the output buffer, and
processing delay due to path selection, segmentation of a
packet into fixed-length cells, transmission of cells through
switching fabric, and reassembly upon arrival at the output
buffer. They observed that, except for the first packet of each
output-port busy period, the total forwarding delay for a packet
is independent of its processing delay. Thus, the processing
delay is estimated as the minimum forwarding delay from their
measurement data for the first packet of each busy period, and
ignored for all other packets. The accuracy of the predicted
delay depends on that pre-computed minimum value. On the
other hand, this minimum delay is variable in reality and the
effect of the inaccurate delay value could be cumulative on
the following packets within a busy period.

In general, these QI algorithms impose several key assump-
tions to make the problem tractable. Most importantly, the
systems must bework conservative, sobi > di−1 implies that
the system was completely empty between those two event
times. In addition,{ai} should be generated by a Poisson
process whose rate is assumed constant over each busy period.

Under the Poisson assumption the system has no memory
across idle periods, so each busy period can be studied
independently. Therefore, without loss of generality, we can
assume that the “tagged” busy period begins at time zero with
the arrival of customer 1 and ends aftern customers have been
served wheredn < bn+1 for the first time. Furthermore, we
can exploit the property that Poisson arrivals are uniformly
distributed over any given interval.

Although several authors [6], [9] studied the generaliza-
tion to renewal-type interarrival times (i.e.,k-Erlang, hyper-
exponential, or similar application of the “exponential stages”),
the complexity of the algorithms is greatly increased by
this modification. Indeed, by implementing the Bertsimas
and Servi algorithm, Gawlick [11] found the non-exponential
version method to be prohibitively expensive:

“For example, for thek-Erlang arrival distribution,
the evaluation ofE[Q(t)] using integral III has a
complexity ofO(n22n) even at the lowest possible
degree of accuracy. On a 68030 at 24Mhz with a
f80882 coprocessor it took two days to calculate
expected queue lengths with the assumption of a 2-
Erlang arrival distribution for a busy period with 11
packets.”

Furthermore, we recognize that there is a long history of
work showing that the measured behavior of network traffic is
not consistent with the Poisson assumption because of long-
range dependence in the interarrival time process and heavy
tailed distributions for the aggregate number of arrivals over
large intervals. However, our primary goal in this paper is
to study queueing behavior at a high-speed output port for
Internet core router. This exact situation was recently studied
by Karagiannis et al. [12], who found that network backbone

traffic can be viewed as a piecewise-constant Poisson process
punctuated by distinct “rate-change events” that occur at a
time scale of seconds – which is orders of magnitude greater
than the duration of a busy period – and (only) the sequence
of rate-change events demonstrates long-range dependence.
Similarly, Appenzeller et al. [4] observed that with sufficiently
large number of flows (which is true for core routers), in-phase
synchronization is very rare and so bursts are smoothed out
which indicates the Poisson behavior of the arrival process.

In the remainder of this paper, we develop a new “cache-
assisted” QI algorithm that is specifically designed for process-
ing network traces. First, since the output of a QI algorithm
is a deterministic function of the service-time sequence~x(n)
in a busy period – and packet sizes in a network trace are
highly concentrated onto a small number of “popular” values,
determined by the dynamics of the higher layer protocols
– we can substantially reduce the total execution time for
any QI algorithm bycaching the answer for each service-
time sequence the first time it is encountered, rather than
recomputing it from scratch every time. Second, we develop
a new incremental QI algorithm, which greatly extends the
concept of caching by showing how to efficiently compute the
average delay for the BP pattern~x(n) from previously-cached
partial results for BP patterns~x(1), ~x(2), . . . , ~x(n − 1).

III. CACHE-ASSISTEDCONVOLUTION ALGORITHM

A. Derivation

Let a1 = b1 ≡ 0 be the start of a new busy period, and
let ~m(i) = [m1, . . . , mi], with scalar sumMi = m1 + . . . +
mi, be a partition of the subsequent arrivals at end-of-service
events(0, d1], . . . , (di−1, di]. Clearly, if the system is work
conserving, then arrivals1, . . . , i will all be served in a single
busy period ifaj ≤ dj−1 for all j ≤ i. In other words, if the
server always finds at least one customer in the queue at each
end-of-service event, it will never go idle. Recognizing that a1

does not get counted inMj and there is no arrival in the last
slot (ith slot), we see that(aj ≤ dj−1) ≡ (1 + Mj−1 ≥ j), or

Mj ≥ j ∀j < i. (1)

More formally, we say that customers1, . . . , i are served in a
single busy period if and only if~m(i) ∈ M∗

i,Mi
, where:

M∗
n,k ≡ {~m(n) | mj ≥ 0 ∀j; Mj ≥ j ∀j < n; Mn = k}

(2)
represents the set of all partitions ofk elements inton groups,
subject to the constraint of Eq.(1).

LEMMA 1 For all n > 0 and all k ≥ n − 1, the set of
ways to distributek arrivals overn service times so as to
generate a singlen-customer busy-period can be found from
the recurrence relation:

M∗
n,k =

k−n+1
⋃

j=0

{

~m(n − 1) ‖ [j] | ~m(n − 1) ∈ M∗
n−1,k−j)

}

(3)
starting from the base caseM∗

1,k = {[k]}.

Proof: If the arrival pattern~m(n) generates a single busy
period that covers (at least)n customers, then the busy period
did not end with the(n − 1)st customer and thus the arrival
pattern~m(n−1) must have generated a single busy period that
covers (at least)(n − 1) customers. Thus, combining Eq.(1)
with the observation that every arrival in~m(n − 1) is also
in ~m(n), we must have(n − 1) ≤ Mn−1 ≤ Mn ≡ k, and
hence the number of arrivals during the final interval satisfies
0 ≤ mn ≤ k − (n − 1).

LEMMA 2

P (~m∗(i) | ~x(i),M∗
i,k) =

1

G∗(~x(i), k)

i
∏

j=1

x
mj

j

mj !
(4)

where we define the following normalization constant

G∗(~x(i), k) =
∑

~µ(i)∈M∗
i,k

i
∏

j=1

x
µj

j

µj !
(5)

Proof: Under the Poisson assumption, thek arrivals have an
i.i.d. uniform distribution over(0, Xi). Thus, the multinomial
distribution gives us the unconditional probability of forming
the partition~m(i) → ~x(i):

P (~m(i) | ~x(i)) =
k!

∏i
j=1 mj !

i
∏

j=1

(

xj

Xi

)mj

(6)

Since the operational log tells us that the partition of arrivals
created a single busy period, we must convert Eq. (6) into a
conditional probability, given~m∗(i) ∈ M∗

i,k:

P (~m∗(i) | ~x(i),M∗
i,k) =

P (~m∗(i) | ~x(i))
∑

~µ(i)∈M∗
i,k

P (~µ∗(i) | ~x(i))

=

k!
(Xi)

k

∏i
j=1

(xj)
mj

mj!

k!
(Xi)

k

∑

~µ(i)∈M∗
i,k

∏i
j=1

(xj)
µj

µj !

which gives Eqs. (4–5) after canceling the common factors.
LEMMA 3: For all i > 0 andk ≥ i− 1, the normalization

constant in Eq.5 can be found from the recurrence relation:

G∗(~x(i), k) =

k−i+1
∑

mi=0

xmi

i

mi!
· G∗(~x(i − 1), k − mi) (7)

starting from the base caseG∗(~x(1), k) = xk
1/k!.

Proof: Using Lemma 1, Eq.(5) can be expanded into the
following double summation by conditioning onmi:

G∗(~x(i), k) =

k−i+1
∑

mi=0

∑

~µ(i−1)∈

M
∗
i−1,k−mi

i−1
∏

j=1

x
µj

j

µj !
· xmi

i

mi!
(8)

By moving the common factorxmi

i /mi! ahead of the inner
summation, we see that the inner sum can be reduced to by
G∗(~x(i − 1), k − mi) using Eq.(5), which proves the lemma.

Let us now turn our attention to the calculation of average
waiting times. Given~a(i) = [a1, a2, . . . , ai] as the vector of

arrival times for the firsti customers, andAi = a1 + . . . +
ai as its scalar sum, we can find the average waiting time
for these customers as(Di − Ai)/i, whereDi is the sum of
departure times for the same customer sequence. Sincedi ≡
Xi = x1 + . . . xi is readily available from the event logs, the
only challenge is finding a suitable estimate forAi starting
from the event-log data.

THEOREM 1: Let A∗
k(~x(i)) be the expected value for

the sum of thek arrival times that occur during the interval
(0, Xi], given that the associated (but unknown) arrival pattern
~m(i) ∈ M∗

i,k and hence all of the arrivals fall into a single
busy period. Then for alli ≥ 1:

A∗
k(~x(i)) =

H∗(~x(i), k)

G∗(~x(i), k)
, (9)

whereH∗(~x(i), k) can be found from the recurrence relation:

H∗(~x(i), k) =
k−i+1
∑

mi=0

xmi

i

mi!

(

H∗(~x(i − 1), k − mi)+

G∗(~x(i − 1), k − mi) · mi

(

Xi−1 +
xi

2

))

(10)

starting with the base caseH∗(~x(1), k) =
xk+1

1

2(k − 1)!
and

henceA∗
k(~x(1)) = kx1/2.

Proof: Under the Poisson assumption, ifmi arrivals fall
within the ith service time of the busy period, those arrival
times will be i.i.d. uniform(Xi−1, Xi] variables with mean
Xi−1 +xi/2. Thus for any given arrival pattern~m(i) ∈ M∗

i,k,
we have:

A∗
k(~x(i), ~m(i)) =

i
∑

j=1

mj ·
(

Xj−1 +
xj

2

)

(11)

Unconditioning over~m(i), Eq.(11) yields

A∗
k(~x(i)) =

∑

~m(i)∈M∗
i,k

P (~m(i),Mi,k)
i

∑

j=1

mj ·
(

Xj−1 +
xj

2

)

H∗(~x(i), k) , G∗(~x(i), k) · A∗
k(~x(i)) =

∑

~m(i)∈M∗
i,k





i
∏

j=1

xj
mj

mj !









i
∑

j=1

mj ·
(

Xj−1 +
xj

2

)



(12)

where we have introduced the compound functionH∗(·) to
reduce the notational clutter below. Substitutingi = 1 into
Eq.(12) gives us the base case for evaluatingH∗(·). Similar
to Lemma 3, we can expand the outer sum in Eq.(12) using
Lemma 1 by conditioning onmi, to obtain:

H∗(~x(i), k) =

k−i+1
∑

mi=0

xmi

i

mi!

∑

~m(i−1)∈

M∗
i−1,k−mi





i−1
∏

j=1

x
mj

j

mj !









i
∑

j=1

mj

(

Xj−1 +
xj

2

)



(13)

By partitioning the inner sum, we can apply Eq.(13) to the
first i− 1 terms, and Eq.(5) to theith term, to obtain Eq.(10).

Notice that Eqs.(7) and (10) include allk ≥ (i − 1) ≥ 0.
However, if k = i − 1 then the busy period must end after
the i-th packet, in which case these expressions reduce to
G∗(~x(i), i − 1) ≡ G∗(~x(i − 1), i − 1), andH∗(~x(i), i − 1) ≡
H∗(~x(i−1), i−1). Thus, only the termsk ≥ i ≥ 1 in Eqs.(7)
and (10) are needed to solve the recurrence relations.

B. Cache Structure

Consider the execution of our convolution algorithm across
a four-packet busy period. Starting from the root of the
decision tree, the algorithm traverses the tree, one “step”per
packet, to visit node~x(1) after seeingx1, ~x(2) after seeing
x2, and so on until it ends the busy period from node~x(4)
when it sees the first idle period.

Fig. 1. Triangular cache structure forG∗(~x(i), k). Columns show increasing
busy-period lengths while rows give total number of arrivals in them.

This path-traversal of the decision tree is shown in Figure
1, where thejth row represents node~x(j), and the columns
show partial results forG∗ cached at the corresponding node.
(For simplicity, we omit the partial results forH∗, which
use the same structure.) When the algorithm visits some
node ~x(j) along this path (after possibly creating the node
~x(j) if this is the first occurrence of this particular packet-
length sequence), it checks the cache at this node to see if it
already containsG∗(~x(j), j − 1), which is the desired value
of G∗ if the busy period ends after this packet. If so, then
no further calculations are required and the algorithm simply
waits for the next packet arrival. Otherwise, it goes back up
to node~x(j − 1) and computeG∗(~x(j − 1), j − 1) (if it’s
not already there) as a weighted sum ofG∗(~x(j − 2), j − 1)
and G∗(~x(j − 2), j − 2) using Lemma 3 and then adds
G∗(~x(j), j − 1) ≡ G∗(~x(j − 1), j − 1) into the cache for
node~x(j).

Assume the shaded entries in Figure 1 were added to the
cache in a previous 6-packet busy period in which the first two
packets (x1 andx2) are identical to those in the current busy
period, butx3 is different. Starting from the beginning of the
new BP, the algorithm visits the existing cache nodes~x(1) and
~x(2) represented by rows 1 and 2 in the Figure. Since cache
node~x(i)[i = 1, 2], already containsG∗(~x(i), i − 1), it just
waits for the next packet arrival. In this case, sincex3 follows
x2 without an idle period, and is not already in the cache, then
it expands the tree by adding node~x(3) as another child of
node~x(2) and addG∗(~x(3), 2) == G∗(~x(2), 2) to its cache.
Similarly, sincex4 follows x3 without an idle period, it adds
~x(4) to the tree. This time, however, it first goes back up to

node~x(3) and apply Lemma 3 to calculateG∗(~x(3), 3) as a
weighted sum ofG∗(~x(2), 3) and G∗(~x(2), 2) — the entries
in the next-higher row above and/or to the left ofG∗(~x(3), 3)
in the Figure, before addingG∗(~x(4), 3) = G∗(~x(3), 3) into
the cache for node~x(4).

In the worst case, to calculateG∗(~x(j), j−1) we must add
one new entry to the cache for every node along the path~x(j).
These new entries form thejth column in Figure 1. Since each
entry is a weighted sum of the all entries above and/or to its
left in the previous row, cost per entry grows linearly as we
move up the column, giving a total computational complexity
of O(j2) for initializing a node at depthj in the decision
tree. Therefore, the worst-case computational complexityfor
our algorithm to process an entiren-packet busy period (i.e.,
starting from an empty cache) isO(12)+ . . . O(n2) ≡ O(n3).

However, this caching structure lets us avoid this worst-case
computation in almost all cases. Clearly, if (any prefix of) the
same packet-arrival sequence~x(n) appears later in the trace,
the algorithm requiresO(1) time per packet to “step” along the
path through the decision tree to the last node and return the
cached result. Moreover, suppose the cache contains the data
for some previous packet-arrival sequence~x′(m) for which
xj = x′

j for all j ≤ p but xp+1 6= x′
p+1. In this case, we

can reuse the firstp rows of the cache (up to the branch node
between the two paths), so that only the lastn − p columns
need to be evaluated. Furthermore, the firstp rows have already
been extended tom columns, so only the lastmax{n−m, 0}
columns of these existing rows must be evaluated.

IV. EXPERIMENTAL RESULTS

A. Model Validation

To demonstrate the accuracy of our QI algorithm, we carried
out the following experiment. First, we chose a simple test
system for which our analytical formulas should give exact
results, namely a single-server queueing system with Poisson
arrivals, where the arrival-rate does not change during a busy
period. Note that our QI algorithm makesno assumptions
about the service-time sequence~x(n) over the busy period:
every sequence is equally acceptable, and generates its own
deterministic result. Therefore, we restricted the experiment
to use the same packet-length sequence for every busy period:
two “large packets” (i.e.,l1 = l2 = 1514 bytes) followed
by an arbitrary number of “small packets” (i.e.,l3 = l4 =
. . . 60 bytes). When this “front heavy” packet-length sequence
is combined with a moderate arrival rate, few busy periods
will end before the 3rd packet or continue beyond the 20th
packet.

We then used CSIM-19 [13] to simulate approximately
0.5 million independent busy periods for the test system, as
shown in Table I. The results were grouped according to busy-
period length and then each group was split to form five
independent “batches” of approximately equal size. Finally,
we calculated a point estimate and 95% confidence interval for
the mean packet delay at each busy period length. In all cases,
the analytical result produced by our QI algorithm was well
within the 95% confidence interval from the simulation, and

Busy Period Info Mean Delay per Batch Grand 95% Conf. QI
length count batch 1 batch 2 batch 3 batch 4 batch 5 mean Interval Method
3 11232 145.28 147.30 145.35 146.55 146.55 146.206 145.24-147.17 145.33
4 25082 134.29 134.83 133.95 134.97 134.21 134.45 133.96-134.93 134.52
5 39347 130.05 130.39 129.96 130.28 129.93 130.12 129.90-130.35 130.01
6 50052 127.67 127.89 128.10 128.27 127.97 127.98 127.73-128.23 128.01
7 54533 127.11 127.07 126.99 126.78 126.07 126.80 126.33-127.28 126.95
8 52891 126.48 126.24 126.30 126.21 126.11 126.27 126.12-126.42 126.40
9 46415 126.58 126.26 126.32 126.28 126.28 126.34 126.20-126.49 126.11
10 37877 125.69 126.05 126.66 126.14 125.32 125.97 125.41-126.53 125.97
11 28366 125.92 125.50 125.59 125.66 125.70 125.67 125.50-125.85 125.90
12 20311 126.12 125.91 125.37 126.21 125.63 125.85 125.46-126.24 125.89
13 13571 125.53 126.24 125.90 125.91 125.43 125.80 125.44-126.16 125.91
14 9120 125.71 126.28 126.25 125.39 125.95 125.92 125.50-126.33 125.94
15 15010 126.16 126.20 126.51 125.99 125.83 126.14 125.85-126.42 125.99
16 11581 125.96 125.59 126.43 126.75 126.56 126.26 125.73-126.78 126.04
17 10024 125.91 127.10 126.18 125.27 126.45 126.18 125.43-126.93 126.10
18 14951 125.68 126.50 127.19 126.58 126.31 126.45 125.85-127.06 126.17
19 10933 126.42 126.64 125.71 126.52 125.37 126.13 125.51-126.75 126.23
20 10774 126.98 126.71 126.42 125.92 126.70 126.55 126.10-126.99 126.30

TABLE I
VALIDATION OF OUR ALGORITHM AGAINST THE MEASURED RESULTS FROM SIMULATING THE SAME SYSTEM.

indeed the widths of the confidence intervals themselves were
generally quite small (about 1% of the mean). We also tried
repeating the experiment after changing the Poisson arrival
rate and/or the link speed. As expected, these changes had no
effect on the mean delay at each busy period length, although
they did change the distribution of busy period lengths.

B. Busy Periods in a Network Trace

Previous authors of QI algorithms did not consider caching
of results because they assumed that service times are drawn
from some arbitrary continuous distribution. In the case ofnet-
work traffic, however, service times at the router/ switch port
are a deterministic function of the respective packet length,
and a small number of specific lengths — such as a maximum
size Ethernet packet, minimum size TCP/IP segment (i.e., an
ACK), etc. — cover a significant share of the traffic. Thus, we
have selected two traces from Wide project backbone traffic
data repository to study the busy periods at a core router
output port. Trace 1 [14] has 2138973 packets and 518190
busy periods collected over 844.17 seconds, giving an average
rate of 14.24 Mbps. Trace 2 [15] has 1998060 packets and
323829 busy periods collected over 725.82 seconds, giving an
average rate of 12.73 Mbps.

0 10 20 30 40 50 60 70

10
−4

10
−2

10
0

Busy Period Length

C
om

pl
em

en
ta

ry
 C

D
F

 (
lo

g
sc

al
e)

Trace 1
Trace 2

Fig. 2. Complementary CDF for busy period lengths.

Figure 2 shows the complementary cumulative distribution
function of the number of packets served in a busy period. We
observe that busy periods serving large numbers of packets
are very rare: approximately 90% have fewer than 10 packets,
and 99% have fewer than 20 packets. Furthermore, the tail
of the distribution exhibits an exponential decrease, which is
qualitatively similar to the known formula for the number of
customers served in an M/M/1 busy period [16].

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

Pattern number (log scale)

N
um

be
r o

f O
cc

ur
re

nc
es

 (l
og

 s
ca

le
)

518190 BPs
First 129500 BPs
Second 129500 BPs

Fig. 3. Number of occurrences of busy period patterns (log-log graph).

We found that about 2/3 of the busy periods duplicate the
exact packet sequence from a previous busy period. Thus,
we counted the total number of occurrences for each unique
sequence and then ordered the sequences from most-frequent
to least-frequent. The black (upper) curve in figure 3 plots the
number of occurrences as a function of rank for all the unique
packet sequences found in trace 1 on a log-log scale. (Trace
2 gives similar results, which are omitted to save space.) We
also partitioned the trace into four equal quartiles and repeated
the process on each quartile. The two (lower) colored curves
in figure 3 cover the first and second quartiles. It is interesting
to note the linearity of curves in figure 3, indicating a power-
law relationship between frequency and rank. Furthermore,the
similarity among curves obtained from the complete trace and

individual quartiles shows that the distribution of busy period
frequencies is stationary over time.

0 10 20 30 40 50 60 70
10

−4

10
−2

10
0

10
2

Number of unmatched packets in a new BP

%
 O

cc
ur

re
nc

e
(lo

g
sc

al
e)

Trace 1 (518190 BPs)
Trace 2 (323829 BPs)

Fig. 4. Percentage of BP withn − p unmatched packets in the cache.

Recall from section III-B that if the firstp packets of ann-
packet busy period were seen in an earlier busy period, then (at
least) the firstp columns of the cache must already be filled.
Thus, in figure 4, we plot the distribution for the number of
unmatched packets,n−p, over all busy periods in both trace 1
and trace 2. Notice that about 90% of the busy periods have 0
unmatched packets, so no new calculations are required. (The
proportion of busy periods that arecompletely matched in the
cache is significantly higher than the proportion (about 2/3)
of duplicate busy periods described previously because every
proper prefix of sequence~x(n) is a complete match but not a
duplicate sequence.) Furthermore, most of the remaining busy
periods have significant partial matches in the decision tree.
For example, the 99.99th percentile (i.e., 4 decades below the
maximum value on they-axis) isn ≈ 45 for the busy period
length (figure 2), but only(n − p) ≈ 25 for the number of
unmatched packets (figure 4). Therefore, a cache of reasonable
size would provide a significant speed-up for our convolution
algorithm when applied to typical network trace data.

V. A SYMPTOTICALLY L INEAR COMPUTATION PERPACKET

The yellow (upper) curve in figure 5 plots the growth in
size of the decision tree as a function of the number of
packets processed from the trace 1 on a log-log scale. (Trace
2 gave similar results, and are omitted to save space.) For
an arbitrarily long trace, we see no indication that the size
of the decision tree will converge to some limiting value,
which is an obvious concern for any practical implementation
of this algorithm. Moreover, since the incremental cost of
adding one new node to the tree at depthd is O(d2), the
average processing time per packet is likely to increase over
time unless we can modify the algorithm to achieveO(1)
processing time per packet in the large trace-size limit.

A. Bounding the Total Size of the Decision Tree

We begin by restricting the decision tree to include a
bounded number of “popular” nodes, i.e., those nodes for
which the visit frequency is above a thresholdv << 1.
Although the cost ofadding a node at depthd is O(d2), the
cost of visiting an existing node is alwaysO(1) independent
of d. Thus, the processing time per packet will converge to
O(1) after all the “popular” nodes are in the decision tree.

The visit frequency,c/T , for a node is its visit countc
divided by the current trace lengthT . The frequency increases

every time the algorithm visits this node, and decreases at
every other “step”. Thus, we define a new intermediate status
discovered for leaf node~x(j) in the decision tree, such that its
parent is avisited node~x(i) with a fully initialized cache, but
node~x(j) only has a visit count,c, and an uninitialized cache.
Suppose the algorithm reaches this node for thecth time. If
c/T ≥ v, a parameter of the algorithm, then we initialize the
cache and upgrade its status tovisited. Otherwise, the node
retains itsdiscovered status and the algorithm “rests” here for
the remainder of the busy period.

The other six curves in figure 5 plot the number of nodes
(instantaneous: black, magenta, green and cumulative: blue,
cyan, red) for which the minimum visit frequency, i.e.,c/T ,
is at least10−3, 10−4 and10−5 respectively. In each case, the
curves run parallel to the upper curve untilT ≈ 1/v, which
shows that at any time only about 10% of the nodes in the
full decision tree have been visited more than once. Thereafter,
the curves quickly level off to approach a constant asymptotic
size that is significantly less than1/v. Therefore, we can use
this method to identify those nodes at which we can “prune”
the decision tree to a bounded size by truncating the “tails”of
rarely-occurring packet-arrival sequences. It remains tofind an
O(1) algorithm for bounding the expected waiting times for
all packets served in one of those truncated busy periods.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Packets

N

od
es

All Nodes
Visit−Ratio(cum)>=1/100000
Visit−Ratio(inst)>=1/100000
Visit−Ratio(cum)>=1/10000
Visit−Ratio(inst)>=1/10000
Visit−Ratio(cum)>=1/1000
Visit−Ratio(inst)>=1/1000

Fig. 5. Number of nodes in the decision tree vs packets seen for trace 1.

B. Linear Cost Bound for the Expected Arrival Sum

Suppose the algorithm enters thediscovered node ~x(n)
upon seeing the last packet of a busy period, and we wish to
find simple upper and lower bounds forA∗

n−1(~x(n)) while
avoiding the high cost of initializing the cache at this node.
Clearly, thearrival time sum can only increase if we force the
last packet arrival to occur within the minimum possible range
of (Xn−2, Xn−1], and the summations in Eqs.(7, 10) collapse
to a single term withmn−1 = 1, so that Eq. (9) reduces to:

A∗
n−1(~x(n)) ≤ A∗

n−2(~x(n − 1)) + Xn−2 +
xn−1

2
(14)

Conversely, thearrival time sum can only decrease if we
allow the last packet to arrive anywhere in the range(0, Xn−1]
without changing the busy-period forming requirement on the
earlier packet arrivals imposed by Eq. (1). Thus:

A∗
n−1(~x(n)) ≥ A∗

n−2(~x(n − 1)) +
Xn−1

2
(15)

Figure 6 compares the average delays computed for the
unbounded tree and the bounded tree with visit frequency
10−5. The average of the lower and upper bounds almost
overlaps with the delay computed from unbounded tree.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

Number of Busy Periods

Av
g D

ela
y (

in
mi

llis
ec

on
ds

)

Trace 1 (unbounded tree)
Trace 1 (finite tree + avg of bounds)
Trace 1 (finite tree + upper bound)
Trace 1 (finite tree + lower bound)
Trace 2 (unbounded tree)
Trace 2 (finite tree + avg of bounds)
Trace 2 (finite tree + upper bound)
Trace 2 (finite tree + lower bound)

Fig. 6. Average packet delay over all the busy periods.

VI. CONCLUSIONS

We have developed a new incremental queue inferencing
algorithm and associated decision-tree based caching scheme
that provides an efficient method for collecting waiting time
information from existing networking equipment during nor-
mal operation. Indeed, once the cache has been expanded
to include all packet-length sequences whose frequency of
occurrence within the trace is above a selectable minimum
threshold (say, a probability of10−6) then the algorithm can
continue running indefinitely, while processing the remainder
of the trace in approximately linear time and producing tight
bounds on waiting times.

Recently Vishwanath et al. [17] surveyed recent work
related to the reduction output-port buffers in Internet core
routers and its likely effects on TCP performance. Many of
the results they described were based on simulations and other
“offline” experiments, with few examples of actual measure-
ment data. We believe that the queue inferencing algorithm
developed in this paper will help to advance this discussion
by making experimental data for real systems readily available.

So far, we have only tested our method on a few traces
from the WIDE project, so more experimentation is clearly
needed. However, our results so far are very encouraging.
As expected, we found that the distribution of packet sizes
was highly concentrated on a small number of packet values,
resulting in 65% to 70% duplicate busy periods. We also found
that most of the busy periods were short and their length
distribution decreases in the form of a power law — which
is again consistent with known asymptotic results for G/G/1
queues (see [18], section 2.4).

One reason for the relative simplicity of our queue infer-
encing algorithm is that we avoid calculating the distributions
for number in system at departure points and proceed directly
to the sum of expected arrival times. Those who are familiar
with the analysis of closed product-form queueing networks
may recall the dramatic speedup from using Mean Value
Analysis (MVA) in place of early solution algorithms based
on the calculation of a normalization constant by summing a

simple product-form expression over an irregular state space.
Although the queue inferencing problem seems to have a
similar structure — namely the sum/integral of a simple
expression over an irregular state space — the performance
increase from our average-based method is far more modest.
We attribute the relatively small performance benefit for our
method to the lack of any analog to the “arrival instant
theorem” for queue inferencing.

ACKNOWLEDGMENTS

This work was supported in part by the Regents of the
University of California through a Graduate Fellowship for
Mr. Habib. The authors would also like to thank the Measure-
ment and Analysis on the WIDE Internet (MAWI) Working
Group Traffic Archive for publishing the network trace files.

REFERENCES

[1] R. Larson, “The queue inference engine: Deducing queue statistics from
transactional data,”Management Science, vol. 36, no. 5, pp. 586–601,
May 1990.

[2] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM
Computer Communication Review, vol. 24, no. 5, pp. 45–60, Oct. 1994.

[3] R. Bush and D. Meyer, “Some internet architectural guidelines and
philosophy,” RFC 3439, Internet Engineering Task Force, Dec. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3439.txt

[4] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in
SIGCOMM ’04. New York, NY, USA: ACM Press, 2004, pp. 281–292.

[5] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon,
“Experimental study of router buffer sizing,” inIMC ’08. Vouliagmeni,
Greece: ACM Press, 2008.

[6] D. Bertsimas and L. D. Servi, “Deducing queueing from transactional
data: The queue inference engine revisited,”Operations Research,
vol. 40, no. 2, pp. 217–228, May-June 1992.

[7] R. Larson, “The queue inference engine: Addendum,”Management
Science, vol. 37, no. 8, p. 1062, Aug. 1991.

[8] D. Manjunath and M. L. Molle, “Passive estimation algorithms for
queueing delays in lans and other polling systems,” inIEEE INFOCOM
’96, 1996, pp. 240–247.

[9] D. A. Daley and L. D. Servi, “Exploiting markov chains to infer queue
length from transactional data,”Journal of Applied Probability, vol. 29,
pp. 713–732, 1992.

[10] N. Hohn, K. Papagiannaki, and D. Veitech, “Capturing router congestion
and delay,” IEEE/ACM Transactions on Networking (TON), vol. 17,
no. 3, pp. 789–802, June 2009.

[11] R. Gawlick, “Estimating disperse network queues: The queue inference
engine,” ACM Computer Communication Review, vol. 20, no. 5, pp.
111–118, Oct. 1990.

[12] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary
poisson view of internet traffic,” inINFOCOM ’04, Mar. 2004, pp. 1558–
1569.

[13] H. Schwetman, “CSIM19: A powerful tool for building system models,”
in WSC ’01: Proceedings of the 33nd conference on Winter simulation.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 250–255.

[14] “Wide project, mawi working group network trace, sample point
b, jun 30, 2006, http://tracer.csl.sony.co.jp/mawi/samplepoint-
b/2006/200606301815.html.”

[15] “Wide project, mawi working group network trace, sample point
b, dec 28, 2000, http://tracer.csl.sony.co.jp/mawi/samplepoint-
b/2000/200012281400.html.”

[16] B. Bunday and R. Scraton, “The number of customers served during a
busy period for an m/m/1 queue: an elementary treatment,”Int. J. Math.
Educ. Sci. Technol., vol. 11, no. 1, pp. 25–27, 1980.

[17] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: recent results and open problems,”SIGCOMM Comput.
Commun. Rev., vol. 39, no. 2, pp. 34–39, 2009.

[18] L. Kleinrock, Queueing Systems, Volume 2: Computer Applications.
Wiley, 1976.

