Efficient Computation of Queueing Delay at a
Network Port from Output Link Packet Traces

M. Farhan Habib Mart Molle
Department of Computer Science and Engineering Department of Computer Science and Engineering
University of California, Riverside University of California, Riverside
Email: habib@cs.ucr.edu Email: mart@cs.ucr.edu

Abstract—Current Internet core routers provide enough buffer — actually visiting it, using only the sequence of card-itiser
capacity at each output port to keep the link busy for 250 msedo and card-removal events from the machine’s transaction log
avoid disrupting TCP flows because of dropped packets. Since to representb;} and{d;}. The methods for estimating; }

link speeds are rising much more quickly than the availabilty . . .
and cost-effectiveness of large high-speed memories, tieeis now from such event logs are callegieue inferencing algorithms.

significant interest in reducing these buffers. Queue infegncing The goal of our work is to develop a queue inferencing
(Ql) — a passive, external method for calculating the time- algorithm that is fast enough to process real-time packet

dependent queue lengths and waiting times using start/enesvice traces generated by a passive “network sniffer” attached to
event timestamps — is an ideal tool for studying the effectsfo a backbone link in the Internet core. In this way, we can

such buffer size reductions because it can be appliesh situ to id hani f iewing the buff ¢
packet traces collected from existing equipment carrying ive ~PrOVIO€ @& mechanism for viewing the bulier occupancy at an

traffic without any service disruptions. Although existing QI output port of a high-performance Internet backbone router
algorithms are too computationally expensive for this purpse, non-obtrusively and during its normal operation. To see this,

we observe that packet-sizes in a typical network trace are consider that theth record in the packet trace contains (at
skewed towards a few “favored” sizes, and introduce two difrent least) the packet length and an end-of-packet timestamp
(s

methods for exploiting this property. First, since the output -
of a QI algorithm is a deterministic function of the service Without loss of generality, we can ignore the fixed propagati

time sequence in a busy period, and our traces contain many delay between the physical locations of the output port and
repetitions of common packet-size sequences, we cache thegut ~ “sniffer” and assume thatl; = 7;. Furthermore, given the
of the QI algorithm for later reuse. Second, we develop a new physical and data-link layer parameters for the link, we se
incremental QI algorithm, which can start from cached resuls for immediately that the service at the output port for trantngt
any prefix of the current busy period. Combining both methods . L .
leads us to structure the cache as a decision tree. Using neixk the Z'_[h packet_ over this link ise; = (Ii + f)/C, Whergf IS
traces from WIDE project backbone to evaluate our method, we the fixed framing overhead added to each packet(risi the
found that both the frequency of occurrence for particular busy capacity of the link.
periods and for busy-period lengths follow a decreasing poer The significance of our work is to provide a simple method
law, where busy periods lengths greater than 20 were very r& ¢, cqjlecting operational data from existing equipment to
and none were greater than 7.0: Moreover, although we found hel ide th ¢ s f duci th tout
that the size of thecompletedecision tree grows linearly with the "€!P gulde theé current proposals for reducing the outpu
length of the trace, we can restrict the tree to dinite numberof ~ buffer capacities in commercial routers. A well-known ‘&ul
“active” nodes (i.e., those nodes for which the probabilityof a of thumb” for router design [2], [3] states that output buffe
visit is above some threshold) and ussimple constant-time bounds should be sized to handle the combined bandwidth-delay
to handle the rare exceptional cases. product for all flows traversing the link, or about 250 ms of
packet data. A backbone router generally requires at least 1
Gbits of buffer memory [4] which is a major hardware cost.
Consider a single-server FIFO queueing system, wherigh power consumption and higher cost of SRAM and slow
customer; arrives at timea,, begins service at timg;, and access time of DRAM makes it more difficult to build buffers
departs at timel; (after receivingz; = d; —b; units of service, for backbone router. Under this scenario, some recent works
assuming the system is work conservative). Given accesspteposed a considerable reduction in backbone router buffe
“event logs” with this data, we can easily find the waitingizes, still maintaining the performance. Appenzellerle[4
w; = b; — a; or sojourn timet; = d; — a; for the ith proposed that a buffer of sizRT'T x C/+/N is sufficient
customer, or evaluate any operational value for their retsge for maintaining the throughput, wher@ is the link capacity,
distributions (i.e., means, percentiles, etc). N is the number of flows andRT'T is the average round-
Unfortunately, for a number of important application dotrip propagation delay. Later Beheshti et al. [5] performed
mains where such event logs are readily availableis not several simple experiments on operational backbone nkswor
directly measureable. For example, the motivation for bais to evaluate the effect of reducing output buffer sizes. Hmre
pioneering work [1] was to estimate customer waiting times & cannot be duplicated without the full cooperation of a
an automated banking machine in a remote location withon¢twork operator. Moreover, artificially reducing buffezes

I. INTRODUCTION

to see how it degrades performance is not going to pleasige as seen by a randomly-chosen arrival over a single
paying customers. An accurate model to infer the queueingcustomer busy period, given only the sequence of start-
behavior can solve this problem. service and end-service events within that busy period. The
The rest of the paper is organized as follows. In sectiomsults generated by the QIE are exact if the interarrivaéti
II, we describe the queue inferencing problem and define adistribution is exponential (with any constant, but polsib
notation. In section lll, we present the new incremental Qinknown, rate) and approximately correct if the interaakiv
algorithm in detail and derive its complexity. We validatero time distribution has a time-dependent exponential distidn
model through some experimental results in section IV-A. whose changes slowly over the length of each busy period.
section IV-B, we show some experimental results from sonBertsimas and Servi [6] subsequently developedGim?)
actual network traces giving the relative frequencies afybualgorithm for calculating transient queue lengths andamustr
periods with different sequences of packet sizes in a wedjhtwaiting times in ann-customer busy period with Poisson
search tree representation, and estimate the optimal speedrrivals, while Larson [7] discovered a modification of his
for our incremental QI algorithm if it organized the cachedriginal O(n®) algorithm to reduce its complexit®(n?).
partial results into the same structure. In section V, we find The starting point for both algorithms is the recognitioatth
the lower and upper bound for the arrival time which can bihe unconditional joint density function for any arrivaltfEan
computed in linear time. We show how we can bound the sif@, . ..a,] over the interval(0,t] is simply (n — 1)!/t"~!
of the decision tree using that bound of the arrival time. Andnder the Poisson arrivals model. However, if these asival
finally, in section VI, we conclude the paper. form an n-customer busy period then we must impose the
constraint thata; = 0, a; < d;—1, 1 < i < n. For example,
by integrating £ — 1 times) the expression for the number
Queue inferencing algorithms estimate customer waiting system atd; given @(n) over the constraint region, they
times and/or queue lengths within a single busy period (BBbtained anO(n?3) expression for the mean queue size at
from its sequence of start-service and end-service evexgsti the ith departure instant. Repeating thi¥n?3) calculation
Thus, we introduce the following notation for describing that every departure instant within the busy perioditiplies
current (active) busy period: this complexity by a factor of.. Since the average number
in system is a linear function between departure instahts, t
overall complexity of finding the overall average number in

Il. THE QUEUE INFERENCINGPROBLEM

n = Number of customers in this busy period

a; = Arrival time for ith customer system, and hence the average waiting time using Littlels la
b; = Begin-service time forth customer using their queue inferencing method@¥n?).
d; = Departure time foiith customer Later on, Manjunath and Molle [8] generalized the method

to shared-medium Local Area Networks, where they could
infer information about individual nodes connected to tieéN_
m; = Number of arrivals during théth service time from its individual contribution to the combined packetctea
d knowledge about the Medium Access Control protocol.
Bertsimas and Servi [6] also extended the method to allow
the interarrival time distribution to be a general renewal-p
cess, such as the Erlarigand hyper-exponential distributions.

m(i) = [ma, ..., my]; vector of arrivals during the first Unfortunately, non-exponential interarrival time dibtrtions

i service times of the busy periot,< i < n require (computationally expensive) numerical methods fo
evaluating multi-dimensional integrals.

Daley and Servi [9] proposed a different method for solving
Finally, we define the following sets of arrival vectors: the queue inferencing problem. They observed that thei-distr
. , bution of the number in system at departure instafits},
Mo ={ni(n) | 0 < m; Vi < n, My =k}; The setofall ¢4 an embedded Markov chain under the Poisson arrival

possible partitions of: arrivals inton groups assumption, and developed an ex&¢h?) algorithm for cal-

Z,k € M,,;; Those partitions ok into n groups that culating this distributi_on at each depgrtur_e poir_1t, tngmith
anO(n%log(n)) algorithm for approximating this distribution
to a specified accuracy by assuming a choice of arrival rate
Using these definitions, we see th&t}, ,, , is the set of all for which the numerical values for terms far from the mean
arrival vectors that representcamplete busy period of length can be neglected. They also described how to apply their
n, in which case we know that,, = 0 must hold. method tok-Erlang and hyper-exponential interarrival time

Larson [1] introduced the queue inferencing problem bgistributions, by extending the Markov chain to include the
describing anO(n®) “batch” algorithm, which he called the number of “exponential stages” present at a departurerihsta
Queue Inference Engine (QIE), for finding the mean wait- Hohn et. al. [10] developed an analytical model for the
ing time for each customer, the time-dependent mean queuaeket forwarding delay in a router, from the input-port to
length, and the probability distribution function for theepe the output-port. In their method, packet traces are calbbct

x; = d; — b;; Service time forith customer

We then extend the notation to include aggregates of eadt b&¥
element type. Usingn;, the number of arrivals in a service
time as an example, we have:

M; = mi1+ ...+ my; Scalar sum ovenmi(q)

form a single busy period, i.eM; > i Vi < n.

simultaneously from all router ports in a tier-1 operatibndraffic can be viewed as a piecewise-constant Poisson [goces
access router, and the arrival of each packet packet (at pounctuated by distinct “rate-change events” that occur at a
1, say) is matched with its subsequent departure (from pairhe scale of seconds — which is orders of magnitude greater
4, say). They figured out that the forwarding delay has twihhan the duration of a busy period — and (only) the sequence
major components: queueing delay at the output buffer, anfl rate-change events demonstrates long-range dependence
processing delay due to path selection, segmentation ofSimilarly, Appenzeller et al. [4] observed that with suféintly
packet into fixed-length cells, transmission of cells thylou large number of flows (which is true for core routers), in-pha
switching fabric, and reassembly upon arrival at the outpaynchronization is very rare and so bursts are smoothed out
buffer. They observed that, except for the first packet oheawhich indicates the Poisson behavior of the arrival process
output-port busy period, the total forwarding delay for @lget In the remainder of this paper, we develop a new “cache-
is independent of its processing delay. Thus, the procgssassisted” Ql algorithm that is specifically designed forqarss-
delay is estimated as the minimum forwarding delay fromrtheing network traces. First, since the output of a QI algorithm
measurement data for the first packet of each busy period, ana deterministic function of the service-time sequengén)
ignored for all other packets. The accuracy of the predictéd a busy period — and packet sizes in a network trace are
delay depends on that pre-computed minimum value. On thighly concentrated onto a small number of “popular” values,
other hand, this minimum delay is variable in reality and théetermined by the dynamics of the higher layer protocols
effect of the inaccurate delay value could be cumulative enwe can substantially reduce the total execution time for
the following packets within a busy period. any QI algorithm bycaching the answer for each service-

In general, these QI algorithms impose several key assuntipne sequence the first time it is encountered, rather than
tions to make the problem tractable. Most importantly, theecomputing it from scratch every time. Second, we develop
systems must beork conservative, sob; > d,—; implies that a newincremental QI algorithm, which greatly extends the
the system was completely empty between those two eveonnhcept of caching by showing how to efficiently compute the
times. In addition,{a;} should be generated by a Poissoaverage delay for the BP pattefiin) from previously-cached
process whose rate is assumed constant over each busy.pepadial results for BP patterng(1), #(2),...,Z(n — 1).

Under the Poisson assumption the system has no memory
across idle periods, so each busy period can be studied !!l: CACHE-ASSISTEDCONVOLUTION ALGORITHM
independently. Therefore, without loss of generality, vea ¢ A. Derivation
assume that the “tagged” busy period begins at time zero with o -
the arrival of customer 1 and ends aftecustomers have been4; (i) = [ma, ..., m,], with scalar sumM; = m; + ... +

served wherel,, < b, for the first time. Furthermore, we . e partition of the subsequent arrivals at end-of-servic
can exploit the property that Poisson arrivals are u”'fgrmbvents(o,dl], ... (di_1,d;]. Clearly, if the system is work

distributed over any given interval. , _conserving, then arrivals, . . ., i will all be served in a single
Although several authors [6], [9] studied the generahzab—usy period ifa; < d;_; for all j < i. In other words, if the

tion to re_newal-t_yp_e mtera_rrlvgl times (""df"Erlang' hyp?r- server always finds at least one customer in the queue at each
exponential, or similar application of the “exponentiaiges”), end-of-service event, it will never go idle. Recognizingttt,

the complexity of the algorithms is greatly increased by,eg not get counted ifiZ; and there is no arrival in the last
this modification. Indeed, by implementing the BertsimaaOt th glof). we see thata. < d =1 .

: . .)) afa; < dj_1)=(1+M;—1 > j), 0r
and Servi algorithm, Gawlick [11] found the non-exponehntia ¢) 5 S di-) = =12J)

version method to be prohibitively expensive: M; >j Vj<i. (1)
“For example, for thek-Erlang arrival distribution,
the evaluation ofE[Q(t)] using integral Il has a
complexity of O(n?2") even at the lowest possible
degree of accuracy. On a 68030 at 24Mhz with a M;,k = {mi(n) | m; >0Vj; M; >jVj<n; M,=k}
f80882 coprocessor it took two days to calculate (2)
expected queue lengths with the assumption of a 2- represents the set of all partitions lolements inte: groups,
Erlang arrival distribution for a busy period with 11 subject to the constraint of Eq.(1).
packets.” LEMMA 1 For alln > 0 and allk > n — 1, the set of

Furthermore, we recognize that there is a long history efays to distributek arrivals overn service times so as to

work showing that the measured behavior of network traffic igenerate a single-customer busy-period can be found from

not consistent with the Poisson assumption because of lofige recurrence relation:

range dependence in the interarrival time process and heavy

tailed distributions for the aggregate number of arrivalero Eent1

large intervals. However, our primary goal in this paper isp(* — U {m(n—1)[|[5] | 7(n—1) € Mi_y)}
7=0

= b; = 0 be the start of a new busy period, and

More formally, we say that customets. .., i are served in a
single busy period if and only ifii(i) € M)., where:

to study queueing behavior at a high-speed output port for
Internet core router. This exact situation was recentlylistd 3)
by Karagiannis et al. [12], who found that network backboretarting from the base case(] , = {[k]}.

Proof: If the arrival patternmi(n) generates a single busyarrival times for the firsti customers, andi; = a1 + ... +
period that covers (at least) customers, then the busy periodz; as its scalar sum, we can find the average waiting time
did not end with the(n — 1)st customer and thus the arrivalfor these customers g9, — A;)/i, whereD; is the sum of
patternmi(n— 1) must have generated a single busy period thdeparture times for the same customer sequence. Finee
covers (at least]n — 1) customers. Thus, combining Eq.(1)X; = z1 + ... x; is readily available from the event logs, the
with the observation that every arrival ii(n — 1) is also only challenge is finding a suitable estimate fér starting
in m(n), we must havgn — 1) < M,,_1 < M,, = k, and from the event-log data.
hence the number of arrivals during the final interval sassfi THEOREM 1: Let A*,(%(i)) be the expected value for

0<m, <k-—(n—-1). the sum of thek arrival times that occur during the interval
LEMMA 2 (0, X;], given that the associated (but unknown) arrival pattern
1 i m(i) € M;, and hence all of the arrivals fall into a single
P(m* — ||~ 4) busy period. Then for all > 1:
= (s - HTEDR) 9
where we define the following normalization constant R(Z(1)) = G(Z(i), k)’ ©)
s : where H*(Z(i), k) can be found from the recurrence relation:
SCORIEIS H (5) |
BE)EMS) J= k—itl xm’“
H*(Z(i), k) = Z (H*(f(z’—l) k—m;)+
Proof: Under the Poisson assumption, thaurrivals have an mi0 m;!

i.i.d. uniform distribution over(0, X;). Thus, the multinomial o T;

distribution gives us the unconditional probability of faing G*(@(0 — 1),k —mq) -my (Xi‘l + 5)) (10)

the partitionmi (i) — Z(i): SRt
starting with the base cas#*(#(1),k) = —-—*—— and

k! R 2(k —1)!
P |70 - =T (%) © nencemmua) = ko 2 .
=170 =1 AT Proof: Under the Poisson assumption,sif; arrivals fall
Since the operational log tells us that the partition ofvalsg within the ith service time of the busy period, those arrival
created a single busy period, we must convert Eq. (6) intotimes will be i.i.d. uniform(X;_;, X;] variables with mean

conditional probability, given7i* (i) € M : Xi—1+;/2. Thus for any given arrival pattenfi(i) € M; ,,
P (i) | #(), M) = P(m*(i) | Z(i)) we have: |
| Zﬁ(i)eM* I A (3(0), i) =Y m, - (Xjfl + %) (11)
T8, & 2
(X'L)k j=1 m]!

k' (x)" Unconditioning overn (i), Eq.(11) yields

(X)H)F Z;L (B eM; H] 1 py!)

which gives Egs. (4-5) after canceling the common factors g+, — POm(i). M, Z ma (X + 2
LEMMA 3: For alli > 0 andk > i — 1, the normalization (#2) Z (ild), ’k)z ! (=)

constant in Eq.5 can be found from the recurrence relation:

k—it1 H*(2(i), k) £ G™(Z(i), k) - A, (2(i)) =
LGHE = 1),k = m) (7) gyma
m;=0 mz Z H m]' ij(j— 1+ 2) (12)
m(i * j=1
starting from the base case*(7(1), k) = 2z /k!. DMy \I
Proof: Using Lemma 1, Eq.(5) can be expanded into thehere we have introduced the compound functidn(-) to

following double summation by conditioning on;: reduce the notational clutter below. Substituting= 1 into
Eqg.(12) gives us the base case for evaluatifig-). Similar

A()EM]

k—it1 i—1 My mi ; .
G*(#(i), k) = Z Z H Yoz 8) to Lemma 3, we can (_expand the outer_ sum in Eq.(12) using
=, e pil o mg! Lemma 1 by conditioning om;, to obtain:
v AGi—1)e -
M: 1,k—m,

H*(2(3), k) =

By moving the common factog"* /m,! ahead of the inner o _

summation, we see that the inner sum can be reduced to by g x ;-nj : xj

G*(Z(i — 1),k — m;) using Eq.(5), which proves the lemma. Z my! Z H m;! ij (Xfl + 7) (13)
Let us now turn our attention to the calculation of average =1

waiting times. Giveni(i) = [a1, a2, ...,q;| as the vector of M ke,

my
= m(i—1)€

By partitioning the inner sum, we can apply Eq.(13) to therode#(3) and apply Lemma 3 to calculate*(Z(3),3) as a
firsti — 1 terms, and Eq.(5) to th&h term, to obtain Eq.(10). weighted sum ofG*(Z(2), 3) and G*(Z(2),2) — the entries
Notice that Egs.(7) and (10) include &ll> (i — 1) > 0. in the next-higher row above and/or to the left@f(Z(3), 3)
However, if k = i — 1 then the busy period must end aftein the Figure, before adding™(#(4),3) = G*(#(3), 3) into

the i-th packet, in which case these expressions reduceth@ cache for node(4).

G*(Z(i),i— 1) =G*(Z(i—1),i—1), and H*(Z(i),i — 1) = In the worst case, to calculate* (Z(j), 7 — 1) we must add
H*(Z(i—1),i—1). Thus, only the term& > i > 1 in Eqgs.(7) one new entry to the cache for every node along the gath
and (10) are needed to solve the recurrence relations. These new entries form thgh column in Figure 1. Since each

entry is a weighted sum of the all entries above and/or to its
left in the previous row, cost per entry grows linearly as we
Consider the execution of our convolution algorithm acrosfiove up the column, giving a total computational complexity
a four-packet busy period. Starting from the root of thef O(;2) for initializing a node at deptly in the decision
decision tree, the algorithm traverses the tree, one “st&p” tree. Therefore, the worst-case computational complefity
packet, to visit noder(1) after seeingry, #(2) after seeing our algorithm to process an entirepacket busy period (i.e.,
z2, and so on until it ends the busy period from nogle) starting from an empty cache) @(1%)+...0(n?) = O(n?).
when it sees the first idle period. However, this caching structure lets us avoid this worsieca
computation in almost all cases. Clearly, if (any prefix @R t
same packet-arrival sequengén) appears later in the trace,
the algorithm require®(1) time per packet to “step” along the
path through the decision tree to the last node and return the
G*((B3)2) G*(x(),3) cached result. Moreover, suppose the cache contains the dat
G*(%(4),3) for some previous packet-arrival sequen€éém) for which
z; =a'; forall j < p butz,;1 # 2'p41. In this case, we
Fig. 1. Triangular cache structure far* (Z(7), k). Columns show increasing can reuse the firgi rows of the cache (up to the branch node
busy-period lengths while rows give total number of arsval them. between the two paths), so that only the last p columns
need to be evaluated. Furthermore, the firdws have already
This path-traversal of the decision tree is shown in Figuileeen extended tov columns, so only the lastaz{n —m, 0}
1, where thejth row represents nod&(;j), and the columns columns of these existing rows must be evaluated.
show partial results fo6&* cached at the corresponding node.
(For simplicity, we omit the partial results foFf*, which
use the same structure.) When the algorithm visits sorfle Model Validation
node Z(j) along this path (after possibly creating the node To demonstrate the accuracy of our QI algorithm, we carried
Z(j) if this is the first occurrence of this particular packeteut the following experiment. First, we chose a simple test
length sequence), it checks the cache at this node to see Hyistem for which our analytical formulas should give exact
already containgz*(#(j),j — 1), which is the desired value results, namely a single-server queueing system with Boiss
of G* if the busy period ends after this packet. If so, thearrivals, where the arrival-rate does not change duringsy bu
no further calculations are required and the algorithm $ympperiod. Note that our QI algorithm make® assumptions
waits for the next packet arrival. Otherwise, it goes back ugbout the service-time sequengén) over the busy period:
to nodeZ(j — 1) and computeG*(Z(j — 1),5 — 1) (if its every sequence is equally acceptable, and generates its own
not already there) as a weighted sum@f(Z(j — 2),j — 1) deterministic result. Therefore, we restricted the expenit
and G*(Z(j — 2),j — 2) using Lemma 3 and then addsto use the same packet-length sequence for every busy period
G*(Z(j),j — 1) = G*(#(j — 1),j — 1) into the cache for two “large packets” (i.e.]; = Il = 1514 bytes) followed
nodeZ(j). by an arbitrary number of “small packets” (i.ds = I3 =
Assume the shaded entries in Figure 1 were added to the60 bytes). When this “front heavy” packet-length sequence
cache in a previous 6-packet busy period in which the first twe combined with a moderate arrival rate, few busy periods
packets £; andz-) are identical to those in the current buswill end before the 3rd packet or continue beyond the 20th
period, butzs is different. Starting from the beginning of thepacket.
new BP, the algorithm visits the existing cache noggsy and We then used CSIM-19 [13] to simulate approximately
Z(2) represented by rows 1 and 2 in the Figure. Since caciés million independent busy periods for the test system, as
nodeZ(i)[¢ = 1,2], already containgz*(Z(¢),7 — 1), it just shown in Table I. The results were grouped according to busy-
waits for the next packet arrival. In this case, singefollows period length and then each group was split to form five
2o Without an idle period, and is not already in the cache, thémdependent “batches” of approximately equal size. Fnall
it expands the tree by adding nod€3) as another child of we calculated a point estimate and 95% confidence interval fo
node#(2) and addG*(Z(3),2) == G*(¥(2),2) to its cache. the mean packet delay at each busy period length. In all cases
Similarly, sincez, follows x5 without an idle period, it adds the analytical result produced by our QI algorithm was well
Z(4) to the tree. This time, however, it first goes back up twithin the 95% confidence interval from the simulation, and

B. Cache Structure

G*(x(1).0) | ¢*(x(1).1) | G*(x(1).2) |6*(X(1):3) | G*(%(1)4)| G*(X(1).5)

G*(E(2)1)| G*(X(2)2) |G*(%(2),3) | G*(X(2)4)| G*(x(2).5)

IV. EXPERIMENTAL RESULTS

Busy Period Info Mean Delay per Batch Grand 95% Conf. Ql
length count batch 1 batch 2 batch 3 batch 4 batch 5 mean Interval Method
3 11232 145.28 147.30 145.35 146.55 146.55 146.206 145.24-147.17 | 145.33
4 25082 134.29 134.83 133.95 134.97 134.21 134.45 133.96-134.93 | 134.52
5 39347 130.05 130.39 129.96 130.28 129.93 130.12 129.90-130.35 | 130.01
6 50052 127.67 127.89 128.10 128.27 127.97 127.98 127.73-128.23 | 128.01
7 54533 127.11 127.07 126.99 126.78 126.07 126.80 126.33-127.28 | 126.95
8 52891 126.48 126.24 126.30 126.21 126.11 126.27 126.12-126.42 | 126.40
9 46415 126.58 126.26 126.32 126.28 126.28 126.34 126.20-126.49 | 126.11
10 37877 125.69 126.05 126.66 126.14 125.32 125.97 125.41-126.53 | 125.97
11 28366 125.92 125.50 125.59 125.66 125.70 125.67 125.50-125.85 | 125.90
12 20311 126.12 125.91 125.37 126.21 125.63 125.85 125.46-126.24 | 125.89
13 13571 125.53 126.24 125.90 125.91 125.43 125.80 125.44-126.16 | 125.91
14 9120 125.71 126.28 126.25 125.39 125.95 125.92 125.50-126.33 | 125.94
15 15010 126.16 126.20 126.51 125.99 125.83 126.14 125.85-126.42 | 125.99
16 11581 125.96 125.59 126.43 126.75 126.56 126.26 125.73-126.78 | 126.04
17 10024 125.91 127.10 126.18 125.27 126.45 126.18 125.43-126.93 | 126.10
18 14951 125.68 126.50 127.19 126.58 126.31 126.45 125.85-127.06 | 126.17
19 10933 126.42 126.64 125.71 126.52 125.37 126.13 125.51-126.75 | 126.23
20 10774 126.98 126.71 126.42 125.92 126.70 126.55 126.10-126.99 | 126.30

TABLE |

VALIDATION OF OUR ALGORITHM AGAINST THE MEASURED RESULTS FR® SIMULATING THE SAME SYSTEM.

indeed the widths of the confidence intervals themselves wer Figure 2 shows the complementary cumulative distribution
generally quite small (about 1% of the mean). We also triddnction of the number of packets served in a busy period. We
repeating the experiment after changing the Poisson &rrivdbserve that busy periods serving large numbers of packets
rate and/or the link speed. As expected, these changes hadrevery rare: approximately 90% have fewer than 10 packets,
effect on the mean delay at each busy period length, althoud 99% have fewer than 20 packets. Furthermore, the tail
they did change the distribution of busy period lengths. of the distribution exhibits an exponential decrease, Whs
qualitatively similar to the known formula for the number of

B. Busy Periods in a Network Trace customers served in an M/M/1 busy period [16].
Previous authors of QI algorithms did not consider caching

of results because they assumed that service times are draw
from some arbitrary continuous distribution. In the caseetf
work traffic, however, service times at the router/ switchtpo
are a deterministic function of the respective packet lengt
and a small number of specific lengths — such as a maximum
size Ethernet packet, minimum size TCP/IP segment (i.e., ar
ACK), etc. — cover a significant share of the traffic. Thus, we
have selected two traces from Wide project backbone traffic & o 0
data repository to study the busy periods at a core router

output port. Trace 1 [14] has 2138973 packets and 518196ig. 3. Number of occurrences of busy period patterns (tmgdraph).
busy periods collected over 844.17 seconds, giving an geera _ .

rate of 14.24 Mbps. Trace 2 [15] has 1998060 packets and/ve found that about 2/3 of the busy periods duplicate the

323829 busy periods collected over 725.82 seconds, giving &@ct packet sequence from a previous busy period. Thus,
average rate of 12.73 Mbps. we counted the total number of occurrences for each unique

sequence and then ordered the sequences from most-frequent

to least-frequent. The black (upper) curve in figure 3 plbts t

Trace 1 number of occurrences as a function of rank for all the unique
packet sequences found in trace 1 on a log-log scale. (Trace

2 gives similar results, which are omitted to save space.) We

also partitioned the trace into four equal quartiles anctatpd

the process on each quartile. The two (lower) colored curves

in figure 3 cover the first and second quatrtiles. It is inténgst

to note the linearity of curves in figure 3, indicating a power

law relationship between frequency and rank. Furtherntbee,

Fig. 2. Complementary CDF for busy period lengths. similarity among curves obtained from the complete trac# an

518190 BPs
First 129500 BPs
Second 129500 BPs | |

Number of Occurrences (log scale)

10° 10
Pattern number (log scale)

N
o
©

=
o
rl:
T

o
o\

Complementary CDF (log scale)

.
10 20 30 40 50 60 70
Busy Period Length

o

individual quartiles shows that the distribution of busyipd every time the algorithm visits this node, and decreases at

frequencies is stationary over time. every other “step”. Thus, we define a new intermediate status
discovered for leaf nodeZ(j) in the decision tree, such that its

T parent is avisited nodeZ(:) with a fully initialized cache, but

Trace 2 (323829 BPs) nodeZ(;) only has a visit count;, and an uninitialized cache.

] Suppose the algorithm reaches this node for dfietime. If

¢/T > v, a parameter of the algorithm, then we initialize the

cache and upgrade its statuswigited. Otherwise, the node

10°

% Occurrence (log scale)

10 ‘ ‘ —r- N retains itsdiscovered status and the algorithm “rests” here for
0 l?\lumbefgf unm;?:hed p:;::c:(ets inionew BF?o 7 the remalnder Of the busy perIOd'

The other six curves in figure 5 plot the number of nodes
Fig. 4. Percentage of BP with — p unmatched packets in the cache. (instantaneous: b|ack, magenta, green and Cumu|ative:, blu

_ . i cyan, red) for which the minimum visit frequency, i.e/T,
Recall from section 11I-B that if the firsh packets of am- g 4t |eastio—3. 10—+ and 105 respectively. In each case, the

packet busy period were seen in an earlier busy period, #ten { ,es run parallel to the upper curve urifil~ 1/v, which

least) the firsip columns of the cache must already be filledy g5 that at any time only about 10% of the nodes in the
Thus, in figure 4, we plot the distribution for the number of | gecision tree have been visited more than once. Theseaf
unmatched packets,—p, over all busy periods in both trace 1y, cyrves quickly level off to approach a constant asyniptot
and trace 2. Notice that about 90% of the busy periods haveQq that is significantly less than/v. Therefore, we can use
unmatched packets, so no new calculations are require@. (this method to identify those nodes at which we can “prune”
proportion of busy periods that acempletely matched in the o ecision tree to a bounded size by truncating the “taifs”
cache is significantly higher than the proportion (about 2/3?arely—occurring packet-arrival sequences. It remairfin an

of duplicate busy periods described previously because every) 1)’ gigorithm for bounding the expected waiting times for

proper prefix of sequence(n) is a complete match but not a5 hackets served in one of those truncated busy periods.
duplicate sequence.) Furthermore, most of the remainisg bu

periods have significant partial matches in the decisioa. tre

For example, the 99.99th percentile (i.e., 4 decades bdiew t Cys‘;ygg;;mm)):mmo

maximum value on thg-axis) isn = 45 for the busy period 10} - - Vii-Ratolinst=1/100000

length (figure 2), but only(n — p) ~ 25 for the number of 20} e VistRetio(aumoo11000 S
unmatched packets (figure 4). Therefore, a cache of reaonab 4 | =~ Vi Ratelnayzmneoe i~
size would provide a significant speed-up for our convolutio

algorithm when applied to typical network trace data. 07 e arir e s eeesmn e e e e
V. ASYMPTOTICALLY LINEAR COMPUTATION PERPACKET 10'¢

The yellow (upper) curve in figure 5 plots the growth in wl - - s - - s 4
size of the decision tree as a function of the number of # Packels

packets processed from the trace 1 on a log-log scale. (Trace
2 gave similar results, and are omitted to save space.) For'
an arbitrarily long trace, we see no indication that the size

of the decision tree will converge to some limiting valueB. Linear Cost Bound for the Expected Arrival Sum

which is an obvious concern for any practical implementatio syppose the algorithm enters thiscovered node Z(n)

of this algorithm. Moreover, since the incremental cost Qfpon seeing the last packet of a busy period, and we wish to
adding one new node to the tree at degittis O(d*), the find simple upper and lower bounds far,,_; (Z(n)) while
average processing time per packet is likely to increase ovgoiding the high cost of initializing the cache at this node
time unless we can modify the algorithm to achie¥l) ciearly, thearrival time sum can only increase if we force the
processing time per packet in the large trace-size limit. |ast packet arrival to occur within the minimum possiblegan

A. Bounding the Total Size of the Decision Tree of (Xy—2, Xn—1], and the summations in Egs.(7, 10) collapse
g) a single term withm,,_; = 1, so that Eq. (9) reduces to:

5. Number of nodes in the decision tree vs packets seetmace 1.

We begin by restricting the decision tree to include
bounded number of “popular” nodes, i.e., those nodes for’ g _ (#(n)) < A%, _o(Z(n — 1)) + Xp_s + Fn-1 (14)
which the visit frequency is above a threshald << 1. 2
Although the cost ofdding a node at deptld is O(d?), the Conversely, thearrival time sum can only decrease if we
cost ofvisiting an existing node is alway®(1) independent allow the last packet to arrive anywhere in the rafgeX,, 1]
of d. Thus, the processing time per packet will converge without changing the busy-period forming requirement o@ th
O(1) after all the “popular” nodes are in the decision tree. earlier packet arrivals imposed by Eg. (1). Thus:

The visit frequencyc/T, for a node is its visit count X, 1

2

divided by the current trace length. The frequency increases A%y 1 (E(n)) > A%y o(T(n — 1)) + (15)

Figure 6 compares the average delays computed for thienple product-form expression over an irregular statecspa
unbounded tree and the bounded tree with visit frequen&though the queue inferencing problem seems to have a
10~°. The average of the lower and upper bounds almasimilar structure — namely the sum/integral of a simple

overlaps with the delay computed from unbounded tree.

Avg Delay (in milliseconds)

10°

107"

107?

Trace 1 (unbounded tree)
Trace 1 (finite tree + avg of bounds)
Trace 1 (finite tree + upper bound)
Trace 1 (finite tree + lower bound)
Trace 2 (unbounded tree)

Trace 2 (finite tree + avg of bounds)
Trace 2 (finite tree + upper bound)
Trace 2 (finite tree + lower bound)

10° 10" 10% 10° 10* 10° 10°
Number of Busy Periods

expression over an irregular state space — the performance
increase from our average-based method is far more modest.
We attribute the relatively small performance benefit for ou
method to the lack of any analog to the *“arrival instant
theorem” for queue inferencing.

ACKNOWLEDGMENTS

This work was supported in part by the Regents of the
University of California through a Graduate Fellowship for
Mr. Habib. The authors would also like to thank the Measure-
ment and Analysis on the WIDE Internet (MAWI) Working
Group Traffic Archive for publishing the network trace files.

Fig. 6. Average packet delay over all the busy periods.

(1]
VI. CONCLUSIONS
We have developed a new incremental queue inferencirig]
algorithm and associated decision-tree based cachingreche
that provides an efficient method for collecting waiting ém
information from existing networking equipment during nor

(31

REFERENCES

R. Larson, “The queue inference engine: Deducing quéatésscs from
transactional data,Management Science, vol. 36, no. 5, pp. 586-601,
May 1990.

C. Villamizar and C. Song, “High performance TCP in ANSNEACM
Computer Communication Review, vol. 24, no. 5, pp. 45-60, Oct. 1994.
R. Bush and D. Meyer, “Some internet architectural glimes and
philosophy,” RFC 3439, Internet Engineering Task Forcec.02002.
[Online]. Available: http://www.ietf.org/rfc/rfc343%t

mal operation. Indeed, once the cache has been expand&dC: Appenzeller, |. Keslassy, and N. McKeown, "Sizing tenbuffers,” in

to include all packet-length sequences whose frequency @
occurrence within the trace is above a selectable minimum
threshold (say, a probability af0—6) then the algorithm can 6]
continue running indefinitely, while processing the rendain
of the trace in approximately linear time and producing tigh
bounds on waiting times. v

Recently Vishwanath et al. [17] surveyed recent workg
related to the reduction output-port buffers in Interneteco
routers and its likely effects on TCP performance. Many oli

. X X 9]

the results they described were based on simulations ared ot
“offline” experiments, with few examples of actual measure-
ment data. We believe that the queue inferencing algoritr{i"r?]
developed in this paper will help to advance this discussion
by making experimental data for real systems readily alsbgla [11]

So far, we have only tested our method on a few traces
from the WIDE project, so more experimentation is clearly o
needed. However, our results so far are very encouraging.
As expected, we found that the distribution of packet siz?&]
was highly concentrated on a small number of packet values,
resulting in 65% to 70% duplicate busy periods. We also found
that most of the busy periods were short and their IengH’f‘]
distribution decreases in the form of a power law — which
is again consistent with known asymptotic results for G/G/15]
gueues (see [18], section 2.4).

One reason for the relative simplicity of our queue infefg)
encing algorithm is that we avoid calculating the distribas
for number in system at departure points and proceed djre
to the sum of expected arrival times. Those who are familiar
with the analysis of closed product-form queueing networks
may recall the dramatic speedup from using Mean Vallt!
Analysis (MVA) in place of early solution algorithms based
on the calculation of a normalization constant by summing a

SIGCOMM '04. New York, NY, USA: ACM Press, 2004, pp. 281-292.
N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G.IiBan,
“Experimental study of router buffer sizing,” iMC '08. Vouliagmeni,
Greece: ACM Press, 2008.

D. Bertsimas and L. D. Servi, “Deducing queueing fromnsactional
data: The queue inference engine revisite@perations Research,
vol. 40, no. 2, pp. 217-228, May-June 1992.

1 R. Larson, “The queue inference engine: Addendumanagement

Science, vol. 37, no. 8, p. 1062, Aug. 1991.

D. Manjunath and M. L. Molle, “Passive estimation algbms for
queueing delays in lans and other polling systems|/HBEE INFOCOM
'96, 1996, pp. 240-247.

D. A. Daley and L. D. Servi, “Exploiting markov chains tofer queue
length from transactional datajournal of Applied Probability, vol. 29,
pp. 713-732, 1992.

N. Hohn, K. Papagiannaki, and D. Veitech, “Capturingtes congestion
and delay,” [EEE/ACM Transactions on Networking (TON), vol. 17,
no. 3, pp. 789-802, June 2009.

R. Gawlick, “Estimating disperse network queues: Thieug inference
engine,” ACM Computer Communication Review, vol. 20, no. 5, pp.
111-118, Oct. 1990.

T. Karagiannis, M. Molle, M. Faloutsos, and A. Broidé, tionstationary
poisson view of internet traffic,” iINFOCOM ' 04, Mar. 2004, pp. 1558—
1569.

H. Schwetman, “CSIM19: A powerful tool for building sgsn models,”
in WSC ’'01: Proceedings of the 33nd conference on Winter simulation.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 258-2
“Wide project, mawi working group network trace, samppoint
b, jun 30, 2006, http://tracer.csl.sony.co.jp/mawi/stappint-
b/2006/200606301815.html.”

“Wide project, mawi working group network trace, samppoint
b, dec 28, 2000, http://tracer.csl.sony.co.jp/mawi/Sepgqnt-
b/2000/200012281400.html.”

B. Bunday and R. Scraton, “The number of customers skdwging a
busy period for an m/m/1 queue: an elementary treatménit,J. Math.
Educ. Sci. Technal., vol. 11, no. 1, pp. 25-27, 1980.

A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspest on router
buffer sizing: recent results and open problen@GCOMM Comput.
Commun. Rev,, vol. 39, no. 2, pp. 34-39, 2009.

L. Kleinrock, Queueing Systems, Volume 2: Computer Applications.
Wiley, 1976.

