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Abstract— We define a “forking node” to be a service center
with one input feeding two outputs (each served by its own queue)
under the control of some internal routing policy. We assume
that both outputs lead to paths through which an arriving packet
can reach its final destination. However, the mean delays are
different between the two downstream paths, so the routing policy
should favor the path with the lower downstream delay. Using
simulation, we compare the performance of this system under
a variety of random, deterministic and state-dependent routing
policies, including threshold-based and Join-the-Shortest-Queue
with bias (��� � �). Our results show that ��� � � routing
has significantly better performance than any of the alternatives.
Moreover, if the input process to the forking node is Poisson, then
standard time series analysis techniques show that its two outputs
are very close to being independent Poisson processes. Thus, if we
can find a sufficiently accurate and efficient “offline” analytical
performance model for a ��� � � forking node, we can extend
the applicability of product-form queueing networks to include such
forking nodes. For this reason, we present several ways of modeling
the performance of a ���� � node, using approximations and/or
bounds, and compare their results on some example networks.

Keywords: Asymmetric networks; Parallel servers; Thresh-
old routing; State dependent routing; Performance bounds.

I. INTRODUCTION

In this paper we model the performance of networks with
routing algorithms that distribute traffic over multiple paths.
Using the terminology of queueing network models, our goal
is to study forking nodes (such as node � in Figure 1), which
are service centers with one input and two outputs. More
specifically, we wish to find routing policies for forking nodes
that: (i) are easily implementable in real network switches; (ii)
provide good performance; and (iii) can be incorporated into
tractable analytical network performance models.

To simplify the problem, we will make the following as-
sumptions about the environment. Packet arrivals to the forking
node form a Poisson stream with rate �.1 The two outputs
from the forking node, which we refer to as LINK 1 and
LINK 2, operate at the same speed. Furthermore, both output

1We are well aware of the extensive literature about long-range dependence
in network traffic. However, it has been shown in [11] that the traffic on highly-
multiplexed high-speed backbone links looks increasingly like a Poisson
process.
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Fig. 1. A network in which there are two paths, �� and ��, from the forking
node, �, to the destination node, �. The routing algorithm at node � is aware
of the mean delay on each path, and uses this information to determine how
much traffic to send over each path.
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Fig. 2. Queueing options at the forking node �.

links lead to paths by which an arriving packet can reach
its final destination. However the remainder of the network
transit delays are different for the two paths. Without loss of
generality, we assume that the downstream delay for the path
beyond LINK � is ��, � � �� �, and that �� � �� � �. We
define � � � as the difference between �� and ��.

There are several options for designing the internal structure
of a forking node, as shown in Figure 2. If the node uses a
single shared input queue, then the routing decisions can be
delayed until a packet is at the head of the queue. Conversely,
if the node uses separate output queues for each link, then
the routing decisions must be made when a packet arrives.
Despite the fact that only the shared queue option can support
work conservative scheduling algorithms, network switches
generally use separate queues per output port to limit head-
of-the-line blocking [14].

In addition to being easy to implement and providing
good performance, a good routing policy should also allow
us to develop analytically tractable performance models for
optimizing the performance of the network. In this context,
product-form queueing networks are very attractive, since they
can provide precise and detailed performance results with
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relatively low computational complexity [7]. Thus, we will
focus our attention on the relationship between routing policies
and the product-form solution.

Jackson [10] and Gordon and Newell [9] introduced the
product-form property for open and closed queueing networks
with exponential interarrival and service time distributions,
while Kleinrock [12] was the first to apply such models to
the analysis of packet-switched data networks. They have
shown that for these networks, a closed-form solution for
the equilibrium state probabilities of queueing networks of
arbitrary size and complexity exists and it is equal to the
product of factors describing the state of each node in the
network. This solution is called product-form solution.

The literature with regards to networks having product-
form solution is rich [4], [6], [7], [5], [24]; the application to
computer systems and their widespread queueing disciplines
may be credited to Chandy [7]. In [4], queueing network
models were extended to multiple classes of customers and
non-exponential distributions. Towsley [20] considers a closed
queueing network model with state dependent routing. The
routing function is a rational function of the queue length of
various downstream queues. He shows that the introduction
of routing will preserve the product-form of the equilibrium
distribution if the network with no state dependent routing has
product-form. Nelson [17] discusses the mathematics leading
to the product-form results and the properties of the stochastic
process underlying the network model.

However, most practical queueing problems lead to
non-product-form networks such as networks with non-
exponentially distributed services times, computer systems and
networks with asymmetric nodes with simultaneous resource
possessions (systems with memory constraints, or with I/O
subsystems), models of programs with internal concurrency,
and fork-join operations in parallel processing systems. Instead
of the costly alternative of simulation, approximate procedures
have been considered [5] such as the Flow Equivalent Server
(FES) approximation. In general, such techniques are approx-
imations that reduce the model to a similar system that has
product-form.

The remainder of this paper is organized as follows. In
Section 2, we consider a forking node that uses separate
output queues for each link and describe a variety of routing
algorithms including static policies (such as simple random
routing) and some dynamic threshold-type routing policies
(such as join-the-shortest-queue, ���). Using simulation, we
show that threshold type routing polices perform much better
than the alternatives; ��� � � being the best and random
routing the worst. In section 3, we analyze the output processes
generated by various routing schemes to determine which
ones are compatible with the product-form solution based
on Muntz’ 	 � 	 condition. In section 4, we describe a
two-dimensional model of the two queue ��� � � system
and present bounds for the number in each queue and the
mean overall delay. In section 5, we consider a threshold-type
single queue system as a one-dimensional approximation to the
����� two queue system and compare its behavior to the two

dimensional model. This is similar to the two heterogeneous-
server system considered by Lin and Kumar [15], Walrand
[23], Viniotis and Ephremides [22] and more recently, Koole
[13], except in our case we have heterogeneous ‘paths’ behind
each server. In section 6 we present closed-form expressions
for the stationary probabilities of the single queue model. In
section 7, we present a simple application of our result to
a non-product-form queueing network and compute relevant
statistics. We conclude with a summary.

II. ROUTING POLICY SELECTION

1. Unbiased Routing Policies

Unbiased policies do not favor one downstream path over
the other. However, they may consider local information about
the two queue lengths. In this paper, we consider the set of
random, deterministic and state dependent routing policies:

� Random routing: An incoming packet is blindly routed to
one of the two queues based on a random coin toss. It is
well known that random routing can be used in product
form queueing networks.

� Round robin: Incoming packets are routed to the two
queues deterministically, according to a strict alternation
pattern.

� Join-Shortest-Queue (���): An incoming packet is
routed to the output link that has a smaller number of
waiting packets at its moment of arrival. This greedy
algorithm is known to be socially optimal [25] over
all non-preemptive policies that use knowledge of the
distribution (but not the actual value) of each customer’s
service time, i.e., it minimizes the discounted expected
sojourn time of the packets in the system and maximizes
the discounted number of jobs to complete their service
in any specified time interval [26]. It also minimizes the
expected total time to complete the processing of all jobs
arriving before some fixed time [8]. This policy is known
to have a complex sum of products closed form solution
[1], [2], [3].

� Virtual waiting time (
� ): This scheme is similar to
���, except that it knows the actual service times for
each customer, and not just their average value.
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Fig. 3. Performance of unbiased routing policies when the downstream delay
behind the queues is the same (� � �).
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Figure 3 shows that state dependent routing policies perform
well compared to random and round robin routing policies
when � � �. We studied different versions of random routing
and round robin as shown in Figure 3, which “blindly” favor
one of the queues. So rather than splitting the traffic between
the queues we force only 40% (33%) of the traffic to use
one of the queues using random (round robin) scheme. As
a result, their performance decreases drastically especially at
high network loads.

However when � is large, which is generally the case, such
information should be incorporated in the routing decision.
A bias introduced in the routing policy such that packets
will prefer the path with the lower downstream delay will
improve the performance of the model as we show in the next
subsection.

2. Biased Routing Policies

Based on Figure 3, ��� policy performs better than the
alternative routing policies. We will introduce a bias into this
policy and compare its performance to the plain ���. We
refer to this biased routing policy as the �����. We describe
���� � in more details.

The routing bias in ��� � � scheduling provides a sig-
nificant performance improvement over pure ��� scheduling
when our system model includes an additional source of state-
independent delay behind one of the queues.
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Fig. 4. Reducing the mean delay via threshold routing when there is some
extra delay behind ��. Network load � � ���, (� � ���� ��� ��� ��� ��)

This improvement is clearly visible in Figure 4, which
shows the mean delay as a function of � at � � ��, for
several values of the extra delay � behind �� (�� is the queue
in front of LINK �� � � �� �). The delay curve seems to
be a convex function in �. Similar results were obtained for
other network loads (� � � � �) and various downstream
delays. Notice that in all cases, the minimum delay occurs
for some � � �. Moreover, the optimum value of ��� is
always much smaller than �, and becomes even smaller as
� increases. It is interesting to note that the optimal solution
to the standard parallel queue scheduling problem (� � �) is
a “greedy” policy, i.e., ���. However, when we generalize
the problem by adding some extra delay behind one queue
(� � �) then the “greedy” policy, i.e., ���� � with ��� � �,
is clearly not optimal in this case.

We consider the following biased routing policies.
� Join-Shortest-Queue with bias (��� � �), a dynamic

routing policy. We route an incoming packet to the slower
path only if the difference in the instantaneous queue
lengths between the two queues exceeds �, which we call
the routing bias.

� Virtual waiting time with bias (
� � �): A new arrival
will choose the slower path if the difference in virtual
waiting times for the two servers exceeds �.

3. Comparison of the Routing Policies

We compare the routing policies in terms of mean end-
to-end delay. We consider a simple three node network and
simulate the system for various combinations of � and network
loads.

Figure 5, for � � ���� and � � � � �, shows that random
routing has the worst delay followed by round robin. We used
different versions of random and round robin routing. For
random routing we force 40% of the traffic to use the slower
path. For round robin we impose that about 33% of the traffic
uses the slower path. This has improved their performance
especially for low loads. Threshold routing policies however,
have a better performance, ��� � � having the highest
followed by the virtual waiting time based routing policy.
Similar results are obtained for other values of �. Note that
for threshold routing, we compute the delay using the optimal
routing bias obtained by simulation.
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Fig. 5. Comparison of several routing policies. The mean delay in a two-
queue system when there is some extra delay behind one of the queues.
(� � ����)

III. RELATION TO PRODUCT-FORM

We use the 	 � 	 property, due to Muntz [16], to
determine whether forking nodes with various routing policies
can be incorporated into a product-form queueing network
model. A service center satisfies the 	 � 	 (Markov
implies Markov) property if feeding it a Poisson arrival
process causes it to produce a Poisson departure process.
If every service center in a queueing network satisfies the
	 � 	 property, then we have a sufficient condition for
showing that its solution has a product-form. Based on this
result, we simulated a forking node and applied time-series
analysis to its two output processes to test for goodness of fit
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between the observed interdeparture times distribution and the
exponential distribution, and evaluated the autocorrelation and
cross correlation functions (as a test for independence). Note
that this methodology is not intended as a rigorous proof that
the product-form does or does not hold for the routing policies
we studied. Instead, our goal is to decide whether or not we can
use a product-form solution to approximate the performance
of a network that includes forking nodes.

For each of the routing policies, we simulate the system
with various utilizations (�=10% to 90%) and different path
downstream delays (�). For the threshold based routing poli-
cies, we study the system using the optimal routing threshold,
��, that we obtain by simulation. We study the distribution of
packet interdeparture times from both queues (�� and ��) and
show that it can be described by an exponential distribution
for certain routing schemes. Furthermore, we show that the
interdeparture times are independent for other routing policies.
For some policies such as the round robin the results do not
show that product-form holds.

1. Interdeparture Times Distribution

To show that the interdeparture times distribution from both
�� and �� is exponential we use the complementary distri-
bution function (CCDF). The CCDF is defined as � ���� �
�� � ���, where � ��� is the cumulative distribution function.
The CCDF of an exponential distribution with mean ��� is

� ���� � ���� � � �

The CCDF of packet interdeparture times is a straight line
when the Y axis is plotted in log scale, which corresponds to
an exponential distribution.

The CCDF of interdeparture times distribution from �� and
�� for a network 70% utilized and using the threshold based
routing and random routing schemes are given in Figure 6(a)
and (b) respectively. We tested networks with various loads
and linear least square fitting shows that the CCDFs for
all network utilization we tested can be described by an
exponential distribution with confidence over 95% for all
routing policies with the exception of the round robin scheme.

Table I gives a more detailed approximation of the in-
terdeparture times distribution from each queue, for various
network utilizations, to an exponential distribution in terms of
confidence levels (%).

2. Correlation in Interdeparture Times

The interdeparture times correlation is captured by the
autocorrelation function (ACF), ���� ��� which measures the
dependency between a series �� and a shifted version of itself
����:

���� ��� �
����� � �

�
������ � �

�
�	

��
�

where �
�

and �
�

are the sample mean and standard deviation
respectively.

The correlation of interdeparture times between queues is
also captured by the cross correlation (��� ) which measures

TABLE I

CONFIDENCE LEVEL TO APPROXIMATE THE INTERDEPARTURE TIMES TO

AN EXPONENTIAL DISTRIBUTION FOR ALL ROUTING POLICIES

��� . (� � ���	) ��� . (� � ����	)
Policy 
 �� �� �� ��

Virtual 10 *2 96.0 * 94.8
Waiting 20 * 95.2 * 95.6
Time 30 * 97.9 * 95.4

40 97.7 94.4 * 94.9
50 98.3 96.4 97.7 96.6
60 99.5 95.9 96.0 94.3
70 98.6 94.6 98.8 95.0
80 98.4 97.5 99.5 95.1
90 98.6 95.6 98.4 95.6

JSQ+b 10 * 95.2 * 94.8
20 * 97.3 * 95.0
30 * 97.3 * 95.2
40 97.5 96.7 * 95.4
50 98.1 97.4 99.1 95.0
60 99.6 96.3 98.4 96.9
70 98.9 97.0 98.6 95.8
80 98.2 97.1 98.7 95.1
90 98.3 96.6 99.2 95.0

JSQ 10 98.0 95.7 97.3 95.7
20 96.6 96.4 97.7 97.6
30 98.4 96.9 98.8 96.2
40 98.6 96.6 98.1 95.6
50 99.2 97.2 98.7 97.2
60 98.0 95.2 97.5 95.3
70 97.9 95.1 99.2 96.7
80 98.7 96.8 96.8 95.0
90 98.0 97.9 98.5 95.0

Random 10 97.7 97.2 98.1 98.0
20 95.5 95.0 97.9 96.6
30 95.1 97.0 96.5 96.0
40 96.8 97.2 96.8 96.5
50 96.9 96.3 97.7 96.4
60 97.4 96.5 95.8 95.5
70 95.2 96.7 97.1 98.2
80 96.5 96.2 97.1 95.4
90 97.4 95.9 96.5 95.9

Round 10 93.0 89.8 94.2 93.2
Robin 20 97.0 95.2 90.6 92.6

30 94.8 93.6 90.1 90.1
40 96.2 96.9 93.3 87.8
50 92.4 97.3 91.2 95.3
60 95.9 91.8 91.7 93.0
70 95.5 96.0 93.5 95.5
80 94.7 92.5 96.7 97.2
90 94.9 96.9 91.9 97.5

Not enough data to compute statistics.

the dependency between two different series ���� and ����

shifted.

���� ��� �
������� � �

����
���������� � �

����
�	

�
����

�
����

where �
����

and �
����

are ����’s mean and standard deviation
respectively, and �

����
and �

����
are ����’s mean and standard

deviation respectively.
The closer the ���� ��� and ���� ��� are to zero the indepen-

dent the series are. For various values of the downstream delay
� and for all routing policies, we computed the autocorrelation
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TABLE II

ERROR(%) IN THE AUTOCORRELATION OF THE INTERDEPARTURE TIMES

FROM �� (	�) AND FROM �� (	�) AND IN THE CROSS CORRELATION (	�)

� � ���	 � � ����	
Policy 
 �� �� �� �� �� ��

Virtual 10 -13 0 -1 -1 0 -1
Waiting 20 -1 0 -1 -1 0 -1
Time 30 0 0 0 -1 0 -1

40 0 0 0 -1 0 -1
50 0 0 0 0 0 0
60 0.5 0 0 0 0 0
70 0.5 0 0 0.5 0 0
80 0 0 3.0 1.5 0 1.5
90 0 0 4.5 0.5 0 1.7

JSQ+b 10 -1 0 -1 -1 0 -1
20 -1 1.2 -1 -1 0.5 -1
30 0 2.1 0 -1 0 -1
40 0 0 0 0 0 2.2
50 0 0.7 0 0 0 0
60 0 0.9 0 0 0 0
70 0 0 0.2 0 0 2.0
80 0 0 1.5 0 0 1.0
90 0.5 0 3.2 0 2.9 2.0

JSQ 10 0 0.5 0 0 0 0
20 0 0.5 0 0 0.5 0
30 0.5 0.5 0 0 0.5 0
40 0 0.5 0 0 0.5 0
50 0 1 0 0 0.5 0
60 0 1 1.5 0 1 1.0
70 0.5 1 1.0 0 0.5 1.7
80 0 0.5 2.0 0.5 0.5 3.0
90 0 0.5 3.0 0.5 0 3.0

Random 10 0 0 0 0 0 2.7
20 0 0 2.2 0 0 2.5
30 0 0 2.2 0 0.5 2.0
40 0 0.5 3.7 0 0 3.2
50 0 0 2.7 0 0 2.0
60 0 0 3.2 0.5 0.5 2.7
70 0 0 4.5 0 0 2.5
80 0 0 2.7 0 0 1.0
90 0 0 4.0 0 0 1.7

Round 10 0 0 3.2 0 0 4.2
Robin 20 0.5 0 5.7 0.5 0 6.5

30 0 0.5 5.7 0 0.5 5.7
40 0.5 0.5 3.7 0.5 0.5 7.0
50 0.5 0.5 4.0 1 1 5.5
60 0.5 0.5 6.2 1 0.5 7.0
70 0.5 1.5 7.2 0.5 1.5 7.2
80 0 0.5 6.7 0.5 0.5 6.0
90 0 0 6.2 0 0 6.0

Not enough data to compute statistics.

function (��� ) for packet interdeparture times, from �� and
��. We also computed the queues cross correlation (��� ).
These statistics were computed for 200 lags for over 50,000
consecutive packet interdeparture times.

Figure 7 gives plots of the ��� , of the packet interde-
parture times using threshold routing, from �� and �� for a
downstream delay �� � � �����. It also shows the ��� of
packet interdeparture times from both queues. Similar plots
are given in Figure 7 for the random routing policy.

We computed the error, that is the fraction of data outside of
the 95% confidence interval bounds, for the auto correlation
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Fig. 6. CCDF of packet interarrival times from �� and ��. The distributions
can be well approximated by an exponential distribution. � = 70%, � � �����

of the interdeparture times from ��, �� and for the cross
correlation of the interdeparture times from both queues. In
all cases, except for the round robin, the error is less than
or equal to 5% (Table II), so with a 95% confidence level,
our simulation results show that the autocorrelations are very
close to zero. Note that in certain cases, not enough data is
available to compute the error (due to low load in the system
or not enough packets join a particular queue, in this case ��).

3. Satisfaction of the 	 �	 Property

We showed that for a variety of network utilizations the
interdeparture times are exponentially distributed with a con-
fidence level of at least 95%, with the exception of the
round robin policy. We also showed that for most policies,
the interdepartures from each queue and cross correlations
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(a) Correlation– ���� � routing policy
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(b) Correlation– random routing policy

Fig. 7. Autocorrelation function of packet interarrival times from ����� and sample cross correlation (left to right). All the correlation coefficients are
within the 95% confidence intervals except for a small number of coefficients. � = 70%, � � �����

also pass the test for independence. We conclude that it is
very likely that the departure processes from both queues are
(or almost are) Poisson. We cannot generalize for sure that
the 	 � 	 property holds for all policies. However, we
can claim with confidence that a network using any of the
threshold routing policies we tested can be approximated to
having a product-form solution. Furthermore, the threshold
routing under test have a much higher performance than
random routing that has product-form. Therefore, we will base
our further analysis of the system on ���� � routing policy.

IV. MODELING THE ���� � FORKING NODE

1. Two-Dimensional State Space

Let ����� be the number of packets in queue � (� � �� �)
at time �, including the packets being transmitted (if any).
In this case, we can use ���� 
� ������� �����	 to represent
the state of the system at time �. Clearly, ���� evolves as
a two dimensional continuous-time Markov chain (CTMC) in
���, with state transitions as shown in Figure 8. In particular,
because of the ����� routing policy, an arriving packet will
be directed to LINK 2’s queue iff ����� � ����� � �. We
call the line defined by ����������� � � in the state space
of � its attractor line. Notice that for all states that are not
on this line, a packet arrival transition always moves the state
toward the attractor line. Thus, for all states to the left of the
attractor line, an arrival is routed to LINK 2. Similarly, for
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Fig. 8. The transition diagram for the CTMC ��
�. The attractor line is
shown for � � �

all states to the right of the attractor line, an arrival is routed
to LINK 1.

If we assume that � � �
�	 � �, then the Markov chain ����

will be ergodic. Let �
��
� denote the stationary probability
of ���� � ���� ��	. Given the difficulties of the analysis of
the basic ��� system, we do not anticipate finding an easy
solution to the more-general ���� � system. Hence we now
focus on the problem of finding good approximations, rather
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Fig. 9. Bounds of the number in the queues and in the system for the two queue infinite buffer model when the threshold routing is � � � and � � ����
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Fig. 10. Bounds of the mean delay in the system for two infinite buffer
queues when the threshold routing is � � � and � � ����

than an exact solution.

2. Approximate Solution via Two-Dimensional Bounds

Following the method of [21], [19], separate Markov chains
can be constructed whose solutions can be shown to respec-
tively upper and lower bound the stationary probabilities.
In [21], [19], it is shown that suitable modifications of the
transitions at the edges of the state spaces can in fact yield tight
upper and lower bounds of the stationary probabilities. These
stationary probabilities in turn have a closed-form expression
that can be easily computed. Performance statistics like mean
and variance of the system are also amenable to closed-
form and computable solutions. The Markov chains over the
truncated state space form a quasi-birth-death (QBD) process
that can be solved using matrix geometric techniques [18].

We followed the procedure in [19] to compute bounds of
the stationary probabilities and consequently bounds of the
number in the queues and in the system, which are shown in
Figure 9. The bounds are very tight at low and average loads.

We also compute bounds of the mean overall delay based
on a model we discuss in subsection IV-4. The results are
shown in Figure 10. Note that the bounds approximate the
actual delay very well, especially for low and average network
loads.
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Fig. 11. The CTMC for the single queue model with threshold �.

3. Approximating the System by a Single-Queue Model

Due to the complexity of the two-dimensional system de-
scribed in the previous section, we now consider the alternative
strategy of approximating the system by a simpler one with
similar performance, rather than approximating the solution to
the original system. In this case, we consider a single-queue
model shared by two links and serviced by a threshold routing
policy. Each link has a single server, and all the service rates
are identical and equal to �. The path through LINK � is
assumed to have a downstream delay of ��, � � �� � where
�� � �� � �. We assume that the queue has an infinite buffer
capacity and that the arrival process is Poisson with rate �.
New arrivals join the queue and are scheduled for transmission
as follows.

� If LINK 2 is free, a packet is transmitted on this link.
� If LINK 2 is busy but LINK 1 is free, then a packet is

transmitted on LINK 1 only if the queue length is greater
than the threshold �.

The CTMC given in Figure 11 describes the transition
behavior of the system. Let ���� denote the system state at
time � where ���� takes on values as follows:

���� �

������
�����

� Queue is empty
�� � � ��� �� � in system; both links busy
�� � � � � � � in system; LINK 2 busy
��� � � � � � � in system; both links busy
��� � � � � in system; LINK 1 busy

4. Comparing Single-Queue vs Two-Queue Results

Before we describe efficient solution techniques for the
single-queue model, we must first demonstrate that approx-
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imating the system in this way gives us performance results
of sufficient accuracy in comparison to the two-dimensional
model. Thus, we now compare the results of these two models
to see how well they agree in terms of predicted mean delay
and the optimal routing bias.

We define � to be the average end-to-end delay from the
forking node to the target destination. Let � be the proportion
of time that LINK 1 will be idle. Then � can be expressed as
follows:

� �

��
�
��

��� �� single queue model

�
�

��� ���� two queue model

Notice that �� � ��� is the mean departure rate along the
slower path. On the other hand, the combined departure rate
through both paths will be � if the system is ergodic. Thus, a
fraction �����	

�
of the packets entering the forking node will

be subject to the additional downstream delay on the slower
path.

We let � be the average number of packets within the
forking node, including the ones in service. Using Little’s law
we have the following overall delay model:

� �
�

�
� ��� ��

�

�
� (1)

Numerically we compute the steady-state probabilities of
both models by brute force (i.e., � � �� , where � is the
transition matrix of the corresponding CTMC) to get the
probability LINK 1 is idle. Based on Equation (1) we compute
the overall mean delay for various network loads (�=50, 70
and 80%).
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Fig. 12. Comparative results: overall mean delay of the single queue and
the two queue models (� � ��� 	�� 
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Figure 12 gives a plot of both models overall mean delay as
a function of the downstream delay. For high loads and high
�, the delays are very close. For low loads and low values of
�, the delays are not as close as for high loads but the gap is
acceptable. In all cases, the single queue delay are lower than
the two queue delays which is expected.

We also tested both system on how well they estimate
the optimum routing bias. We use Equation (1) to find the
optimum routing bias (�� that minimizes the mean delay) for
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Fig. 14. The truncated CTMC to obtain bounds for the number in the system
and the mean delay for the single queue model. When � � �, the CTMC
provides upper bounds and when � � � it provides lower bounds. The routing
threshold is �.

various network loads. Though Equation (1) does show a direct
relationship between � and �, but � is a function of � since
� depends on �.

Figure 13 presents a plot of both systems estimates of ��.
It is clear that the estimates are very close; in the worst case
they are off by 1 packet. Note that when the delay is zero,
it is clear that the optimal routing bias is also zero. In this
case, packets will be subject to the same delay joining either
queues. As a result, the single queue system can be modeled
as an 	�	�� queueing system. For the two queue system
arrivals will be evenly split between both queues.

V. APPROXIMATE SOLUTION TO THE SINGLE QUEUE

MODEL

Lin and Kumar [15] solved a similar problem and found
complex expressions for the stationary probabilities. There-
fore, we are looking for approximations or, preferably, tight
bounds with simpler expressions that provide better insight and
allow for easy computation. Further, a closed-form expression
for the mean number in the system and hence the mean delay
seems elusive. In the following we derive tight lower and upper
bounds for the stationary probabilities of the continuous time
Markov chain (CTMC) given in Figure 11. For � � �

�	 � �,
the Markov chain is ergodic.

1. Upper Bounds for the Number in the System

We truncate the state space such that when there are �� �
packets in the system, a departure from LINK 2 will not be
allowed until a departure from LINK 1 occurs. Following the
arguments of [19], this provides a sample path based upper
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bound for the number in the system. Solving the global balance
equations of the Markov chain given in Figure 14 when � � �
gives an upper bound of the stationary probabilities, ����, and
consequently an upper bound of the number in the system and
the overall mean delay. ���� are expressed as follows:

�� �

�
������

� for � � � � �� �
���

����� for � � �� �

where,

�� �
��� ����� ���

�� ��� � ��������

The upper bound, � , of the mean queue length is:

� � ��

�
��������

�
��� �� � �

 �
�

����� ��!� ��

!�

�
�

��

!�

	

where, ! � ��� � and  � �� �

2. Lower Bounds for the Number in the System

We truncate the state space such that when there are �� �
in the queue, a departure from LINK 2 will force a departure
from LINK 1. The CTMC of the system is given in Figure 14
when � � �. The solution of the stationary probabilities of the
Markov chain, following the argument in [19], provides lower
bounds of the stationary probabilities of the original system
and consequently lower bounds of the number in the system
and the overall mean delay.

Let ����, be the stationary probabilities of the Markov chain
(Figure 14 when � � �), ���� are expressed as:

�� �



������

� for � � � � �� �

���
����

�� ��
��� for � � �

where

�� �

�
�� �����

�� ��
�

�������

�� ��

���
The lower bound, � of the mean queue length is:

� � ��

�
��� �������

��� ����
�

������

�� ��
�

�������

�� ��

�
��

�

�� �

�	

To assess the tightness of the bounds, in Figure 15 we plot
� and � as a function of �. The bounds are very tight for
low and high network loads.

3. Bounds for the Mean Overall Delay

Based on the computed upper and lower bound values of the
stationary probabilities we compute upper and lower bounds
of the mean departure rate from LINK 1 (�� �). Having
computed upper and lower bound of the number in the system
(�� �� we use Equation (1) and combine similar bounds to
obtain bounds of the mean overall delay. Figure 16 shows a
plot of the delay bounds. As in the case of the number in the
system, the bounds are very tight for high network loads.
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VI. APPLICATION TO QUEUING NETWORKS

To illustrate our approach, we now describe the application
of our methodology to the simple queueing network shown in
Figure 17. In this example, the network is non-product-form
because of forking nodes � and ", which use output queueing
in combination with state-dependent ���� � routing. How-
ever, we assume that the remainder of the network satisfies the
conditions for a product-form solution. We assume that all the
nodes run at the same speed of � except for � and � which
run at a speed of ��. To validate the accuracy of our results,
we also simulated the system.

1. Computational Method

Starting from the assumption that the network has a product-
form solution, we find the flows in each link in the usual way.
We then calculate the mean number in system for each service
center — using standard results for product-form queues
everywhere except at the forking nodes � and ", where
we invoke our one- and two-dimensional approximations to
estimate the queue length at node � and node ", �� and
�� , and the departure rates ��� , ��� from �’s two output
links and ��� and ��� from "’s two output links. In the case
of the two queue forking nodes ��� and ��� refer to the
individual queues length at node �. Similarly, ��� and ���

refer to the individual queues length at node " These statistics
are computed using the upper and lower bound approximations
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this information to determine how much traffic to send over each path. When
� � � we have a network with feedback.

we described in Section V. If these calculated departure rates
from the forking nodes do not match our previously estimated
flows, then we update the flows on each link and recompute the
number in system for each service center. Finally, we compute
the overall number in the system (� ) as the sum of the number
in the individual nodes, and apply Little’s law to obtain the
mean delay (� ).

2. Numerical Results

Recall that our analysis in Section IV considered two
different approximation strategies for modeling a ��� � �
forking node: (i) approximating the solution to the exact 2-
dimensional system by truncating its state space to leave us
with upper and lower bounds that are more easily computed;
and (ii) approximating the system as a much simpler 1-
dimensional threshold queue model which has similar behavior
but is much easier to solve (at least to give us upper and lower
bounds). For completeness, the results shown in Tables III and
IV are designed to illustrate the effects of both approximation
strategies. In all cases, we use the same parameters for the
underlying queueing network model. However, for all results
shown in Table III we have approximated each forking node as
the 1-dimensional threshold queue from strategy (ii), whereas
in Table IV we have represented each forking node by the
“correct” 2-dimensional model. Therefore, the discrepancy
between the analytical and simulation results within each table
shows the approximation error that results from assuming the
product-form solution algorithm holds in a queueing network
where some of the nodes use state-dependent routing (i.e.,
single queue with threshold queueing in Table III, and two
queues with ��� � � scheduling Table IV). Conversely, the
discrepancy between tables shows the approximation error
from modeling ����� scheduling as a 1-dimensional thresh-
old queueing system.

The results given in Tables III and IV show that the esti-
mated number in the system for the forking nodes computed
via both methods are in good agreement, and they also fit very
well the “reference value” obtained by simulation. Actually
they bound the actual values provided by the simulator. Similar
results are obtained for the overall mean delay.

These results supports our hypothesis that a non-product-
form queueing network can be very well approximated by a
product-form queueing network.

TABLE III

STATISTICS GATHERED FROM A NON-PRODUCT QUEUING NETWORK

(FIGURE 17) THAT IS APPROXIMATED TO A PRODUCT FORM ONE. SINGLE

QUEUE AT THE FORKING NODES � AND ; ROUTING IS

���� �� � � 	��

Statistics Simulation Lower Bound Upper Bound

� 9.30 8.876 10.952
�� 3.42 3.144 4.767
�� 0.904 0.8247 1.044
�� 1.240 1.142 0.896
�� 0.713 0.7656 1.2456
�� 3.006 3 3
��� 0.3171 0.2891 0.3698
��� 0.6828 0.7108 0.6301
��� 0.0579 0.0367 0.0250
��� 0.2591 0.2525 0.3448
��� 0.6828 0.7108 0.6301
��� 0.0579 0.0367 0.0250

� ������ 0.006209 0.00592 0.00730

(a) Case of � � �

Statistics Simulation Lower Bound Upper Bound

� 10.664 9.9452 12.734
�� 4.188 4.08 6.105
�� 1.2316 0.892 1.279
�� 1.309 1.022 0.8070
�� 0.9387 0.9512 1.5429
�� 2.999 3 3
��� 0.351 0.325 0.4045
��� 0.649 0.675 0.5955
��� 0.0728 0.044 0.0330
��� 0.3465 0.281 0.3715
��� 0.649 0.674 0.5954
��� 0.0728 0.044 0.0330

� ������ 0.0071 0.00663 0.00848

(b) Case of � � �

VII. CONCLUSION

In this paper, we focused our attention on problem of
modeling the performance of queueing networks that contain
forking nodes. We assume that packets entering the forking
node can be directed to one of two different output links, ac-
cording to a dynamic routing policy. Moreover, we considered
a variety of routing policies, including random, deterministic
and state-dependent (based on its own internal state, i.e., the
instantaneous queue lengths for its two outputs). We also
allowed the routing algorithm to consider the mean delays
along alternate paths from the forking node to a common final
destination.

The main impact of this work is an existence proof: fork-
ing nodes that use high performance state-dependent routing
policies can be included in tractable analytical models of
network performance by approximating them as a service
center in a standard product form network. More specifically,
we compared the performance of different routing policies, and
found that state-dependent policies (such as Join-the-Shortest-
Queue) provided the best performance and random routing the
worst. We also showed that biasing the routes in favor of the
faster path leads to a significant performance improvement,
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TABLE IV

STATISTICS GATHERED FROM A NON-PRODUCT QUEUING NETWORK

(FIGURE 17) THAT IS APPROXIMATED TO A PRODUCT FORM ONE. TWO

QUEUES AT THE FORKING NODES � AND ; ROUTING IS

���� �� � � 	��

Statistics Simulation Lower Bound Upper Bound

� 9.40 9.05 10.94
�� 4.49 4.206 6.049
��� 1.51 1.236 4.20
��� 2.98 2.97 1.849
�� 1.0245 0.8995 1.033
��� 0.0995 0.0435 0.0607
��� 0.925 0.856 0.9723
�� 0.780 0.903 0.803
�� 0.104 0.0417 0.0579
�� 3.01 3 3
��� 0.3904 0.3671 0.4059
��� 0.6096 0.6329 0.5941
��� 0.0496 0.0267 0.0365
��� 0.3408 0.3404 0.3694
��� 0.6096 0.6329 0.5941
��� 0.0496 0.0267 0.0365

� ������ 0.006265 0.006033 0.00729

(a) Case � � �.

Statistics Simulation Lower Bound Upper Bound

� 11.09 10.393 12.67
�� 5.85 5.42 7.51
��� 2.133 1.49 2.63
��� 3.72 3.92 4.87
�� 1.217 1.01 1.218
��� 0.137 0.057 0.0894
��� 1.08 0.955 1.128
�� 0.885 0.9389 0.862
�� 0.144 0.0205 0.0805
�� 3.01 3 3
��� 0.452 0.3826 0.435
��� 0.5479 0.6173 0.5651
��� 0.0669 0.033 0.0497
��� 0.385 0.349 0.3851
��� 0.5479 0.6173 0.5651
��� 0.0669 0.033 0.0497

� ������ 0.00741 0.0069 0.00838

(b) Case � � �

but the optimal bias is not a simple function of the difference
in delays between the two alternate paths.

Among all routing policies we considered, ��� � � con-
sistently gave us the best performance. Unfortunately, even
though it would be easy to implement in a network switch,
��� � � routing is not easy to analyze, even in isolation.
Therefore, the main contribution of this paper is to develop and
test a simple approximation method that includes a ���� �
forking node as a service center within the framework of a
standard product-form queueing network model. By applying
standard time-series analysis techniques to the outputs of a
���� � service center, we showed that its “offline” behavior
comes very close to satisfying Muntz’ sufficient condition
service centers that produce a product form solution. We also
presented numerical examples to show the effectiveness of our
method on various networks.
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