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Self-Similar Traffic Models

• 1993, Leland et al. introduced the concept of 
self-similarity or long-range dependence in 
Ethernet traffic models

• Many others found the effect in other networks

• 1996, Erramilli et al. presented some 
experiments to show its effect on queueing 
models of network devices



Outline of this Talk:

• Review Erramilli’ s experimental methodology

• Show that results obtained in this way are 
sensitive to network load in the trace file

• Explain shuffling by fixed time intervals, not 
fixed sample counts

• Demonstrate that there is a limited range to 
the dependence



Erramilli’s Approach

• Start with trace of packet inter-departure 
times  t1, t2, t3, . . .

• Ignore packet service times (length) and 
replace by a fixed value v.

• Vary v to obtain a delay-throughput curve

• Compare curve to queueing formula with 
i.i.d. arrivals with similar moments



Block Shuffling by Sample Count

• Divide trace into blocks of N consecutive 
samples

• Internal shuffle randomly reorders inter-
departure times within each block, but 
preserves the order of the blocks

• External shuffle preserves the ordering 
within each block, but randomly reorders 
the blocks



Effects of Shuffling by Counts

• External shuffles with N=25 points has a 
large effect on the delay-throughput curve

• The effect is still visible, even with N=500

• Internal shuffle with N=25 points has 
almost no effect on the curve



Bias from Shuffling by Counts

• Network traffic is bursty
– transmissions are clustered into busy periods

– pick a sample from the inter-departure time 
sequence and it is likely to be in a busy period

• Therefore, splitting the trace at a given 
sample is likely to split the busy periods 
– external shuffle breaks up busy periods

– internal shuffle reorders packets in the b.p. 



Shuffling by Time Interval

• Divide trace into intervals of length L

• Interval 1 contains n1 samples, where

• Intervals also contain partial samples at the 
beginning and the end
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Bias of Time Interval Shuffling

• Block boundaries are more likely to occur 
between bursts than between packets inside a 
burst

• If time between bursts were exponential, then 
the two partial samples at the block boundaries 
would joint to become exponential

• External shuffling would test dependence 
between busy periods



Effects of Time Interval Shuffling

• 30 minute traces were externally shuffled, 
varying L from 0.1 seconds to 24 minutes

• For Erramilli’ s curves, shuffling block sizes 
as small as 1 second have no visible effect

• When y-axis scale is increased larger block 
sizes must be used, but 1 minute is adequate



Trace Decomposition

• Label the intervals into different groups, 
based on number of samples per interval

• Divide the trace into sub-traces, containing 
only those intervals from a single group

• Run separate experiments on each sub-trace

• Combine the results of each experiment as a 
weighted average, using proportion of 
samples contained in each sub-trace



Effect of “Trains”  on Delay

• In a “ train”  model, ti, ti+1, . . . , ti+k-1 are 
small, and possibly periodic; ti+k is large

• ti depends on typical packet size within a 
transaction

• If Erramilli’ s service time is less than ti, 
then average waiting time is almost zero



Service Time Exceeds Inter-
Departure time in Trace File

• Assume inter-departures within “ train”  are t

• Assume all service times are v

• Average waiting time is 

• Result is linear growth beyond the “knee”
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Effect of Recombining Sub-traces

• Traffic on a given subtrace has 
– no long-range dependence, and 

– is less bursty than the original

• Recombining the output from separate 
experiments on each sub-trace is
– almost perfect in low load (startup transient)

– pessimistic in high load (busy periods get huge)



Conclusions

• Erramilli’ s experiment is flawed, and does 
not demonstrate long-range dependence

• Shuffling by time interval is more relevant

• Beyond a critical interval size on the order 
of 1 second, shuffling has very little effect

• Behavior could be explained by exponential 
gaps between highly variable busy periods


