
Localization and Clock Synchronization Need
Similar Hardware Support in Wireless LANs

Smruti Parichha and Mart Molle
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA, 92521, USA

{sparichh, mart }@cs.ucr.edu

Abstract— Secure localization protocols enable a group of
cooperating verifier nodes in a wireless LAN to determine the
physical location of a stranger (called theprover), using preci-
sion timing measurements during a carefully scripted packet
exchange. After identifying a number of common features
between the localization and precision clock synchronization
problems, we describe a small set of additional physical-layer
capabilities that — if incorporated into commercial wireless
transceiver (PHY) products — could lead to significant perfor-
mance improvements in both solution domains.

I. I NTRODUCTION

A. Notation

A “clock” C(·) is a function from evente (which must be
visible to the “clock”) to timestampt, wheret represents the
reading ofC(·) at the instant whene occurred. Note that we
sometimes uset as a special location-independent event type,
representing the instant when the ideal “universal clock”
would generate timestamp valuet. We say thatCX(·) ≡
CY (·) if the two clocks aresynchronized(i.e., they run at
the same rate, with zero offset), and thatCX(·)||CY (·) if
the two clocks aresyntonized(i.e., they run at the same rate
while maintaining some fixed offset, possibly not zero).

B. Bi-lateral Timed-Echo Distance Bounding

Secure localization protocols enable the verifier(s) to im-
pose location-based resource control policies on the prover,
i.e., a coffee shop wishing to offer free wireless Internet
service to anyone sitting inside the store, instead of a list
of subscribers with pre-arranged login credentials. Therefore,
simply providing a means for the prover to determineits own
location (such as a GPS receiver)is not a solution, since a
dishonest prover could simply claim a false position.

The basictimed-echo distance bounding protocolenables
verifierV to upper bound its distanceD(V, P) from proverP
– constrainingP ’s location to a circle aroundV . Repeating
the protocol with different verifiers can further localizeP
to a smaller region. The protocol, shown in Fig. 1(a), uses
four timed events defined by two packet transmissions:e1,
V sends a “challenge”;e2, the “challenge” reachesP ; e3,
P sends its “response”; ande4, the “response” reachesV .
Afterwards,V finds the one-way network transit delay toP

τV P = (CV (e4)− CV (e1)−∆P)/2, (1)

and henceD(V, P) ≤ τV P · v, where v is the signal
propagation velocity.

e1e1

e2

e3 e4

e4

vpτ

vpτ

e32 vpτ
∆p

e2(=)
∆ =0p

P
hase

D
elay M

easurem
ent

O
ffset M

easurem
ent

P
hase

,

Delay_Response

Delay_Request

Follow_Up

Sync

Verifier (V) Prover (P) Master Clock Slave Clock

Time

Fig. 1. Space-Time representations of: (a) the basic timed-echo distance-
bounding protocol; and (b) IEEE 1588 precision clock synchronization.

The major difficulty with this approach is determiningP ’s
“response time”,∆P , for interpretting the question, formulat-
ing an answer, and generating the response. Depending on the
author, the value of∆P is assumed to be either “tiny” [1] or
elseP is expected to adjuste3 to force∆P to take on “some
fixed/known constant” [12]. This is a serious concern that
can lead to distance fraud attacks (where a dishonest prover
intentionally changes∆P) or low quality results (because
∆P � τV P and difficult to control).

C. Similarities to IEEE 1588 Precision Clock Synchroniztion

It is interesting to compare the IEEE 1588 precision clock
sychronization algorithm to the basic timed-echo distance
bounding protocol described above. During the first (offset-
measurement) phase, the Slave,P , uses the periodic “Sync”
and “Follow Up” messages sent by trusted Master,V , to
adjust its local clock to satisfyCP (·)||CV (·) with an offset
lagging behind “Master time” by exactlyτV P . During the
second (delay-measurement) phase,P effectively simulates
the basic timed-echo protocolusing two timed events defined
by one timed and one untimed packet transmission:e3, P
sends its “response” (Delay Request packet); ande4, the
“response” reaches theV . The “simulation” inserts an imag-
inary “challenge” ahead of the actual “response”, defined
by eventsê1, when it left V , and ê2, when it reachedP .
Because of phase one,P knows thatCP (ê2) = CV (ê1)

must hold. Moreover, because it is just a simulation,P sets
CP (ê2) = CP (e3), and hence∆P ≡ 0. Therefore, onceV
sendsCV (e4) as payload of the untimed Delay Response
packet, the SlaveP (but not the MasterV) knowsCV (ê1),
∆P , CV (e4), and can findτV P .

Notice that the IEEE 1588 protocol just provides a means
for the Slave to adjust its own clock, with no provision for
an outside entity (such as the Master) to verify that the
Slave’s clock has indeed been properly synchronized. To
accomplish this stronger goal, we would need to add athird
clock-verfication phaseto the IEEE 1588 protocol, in which
the Master “challenges” the Slave to send a “response” that
reaches the Master at precisely its chosen time.

It is also interesting to note that the IEEE 1588 protocol
replaces one precision timing requirement (i.e., knowledge of
∆P) by another (i.e.,CV (·)||CP (·)). And once again,cor-
rectnessrequires all parties to be trustworthy, andaccuracyis
limited by the participants’ abilities to measure event times.

II. M ULTI -LATERAL TIME-DIFFERENCE-OF-ARRIVAL

A. Infrastructure-Based Methods

More sophisticated localization protocols are based
on time-difference-of-arrival (TDoA) measurements shared
among multiple verifiers. As applied to infrastructure-based
systems (including cellular 911 [3] or indoor localization
with UWB radios [4]), the protocol consists ofN + 1
timed events defined by the transmission of a single packet
over an omnidirectional broadcast channel:e3, P sends an
unsolicited “response”; ande(Vi)

4 , the “response” reachesVi,
1 ≤ i ≤ N . Since the exact locations of all verifiers are
assumed to be known, andCVi

(·) ≡ CVj
(·) for all i, j, two

verifiers can localizeP to the following hyperbola

CVi
(e(Vi)

4) · v −D(P, Vi) = CVj
(e(Vj)

4) · v −D(P, Vj) (2)

without consideringe3. Adding a third, non-collinear verifier
collapses the result to a single intersection point. Thus,P can
be uncooperative and/or dumb, as long as the verifiers can
generate precision timestamps using synchronized clocks.

B. Smart-Repeater Based Method of Loschmidt et al.

Recently, Loschmidt et. al [8] have proposed a modifi-
cation to the basic infrastructure-based TDoA protocol for
utilizing commercial-off-the-shelf IEEE 802.11 hardware.
They partition the fixed infrastructure into fully-functional
verifiers, V1, . . . , VN , that represent wireless access points
running both phases of the IEEE 1588 protocol, and low-cost
(possibly battery-powered) “smart repeaters”,R1, . . . , RM

that only run phase one (syntonization) of the 1588 protocol.
The repeaters’ task is simply to transmit a duplicate

“response” after a fixed, repeater-specific forwarding delay,
∆Rj

, as shown in Fig. 2. This increases the total number
of timed events in the protocol to(M + 1)(N + 2) − 1
and introduces two new event types:e

(Rj)
5 , Rj transits its

duplicate; ande(Rj ,Vi)
6 , the duplicate fromRj reachesVi.

The key observation is thatVi can determine the timestamp

for repeater evente(Rj)
4 from local evente(?,Vi)

6 in two steps:
(i) identifyingRj by matchingCVi(e

(·,Vi)
6)−CVi(e

(Vi)
4) with

{∆Rj
}; and then (ii)back-tracing the event toRj to give

CVi
(e(Rj)

4) = CVi
(e(Rj ,Vi)

6)−∆Rj
− τRj ,Vi

.

e4
(V)i

R Vj i
τ

Rj ∆

e3

Infrastructure Based

Repeater Based

Prover (P)

Time

Verifier (V) Repeater(R)

e4
(R)

e6
(R ,V)i

i j

j

e5
(R)j

j

Fig. 2. The Smart-Repeater localization system of Loschmidt et al.

Obviously,∆Rj
must be carefully chosen to avoid causing

collisions and/or unanticipated access delays among the
duplicates. Moreover, the perturbation of event timings due
to the IEEE 802.11 CSMA/CA MAC protocol is a serious
limitation to this approach, and may necessitate upgrading
the capabilities of a repeater to support full timestamp
generation with synchronized clocks. Finally, given the tight
tolerances required for time stamps and forwarding delays
(roughly10ns), it seems unlikely that the method can operate
without the help of dedicated hardware support.

C. Witnessed Challenge-Response of Saha and Molle

Saha and Molle [10] have developed a novel localiza-
tion protocol for omnidirectional broadcast networks, which
addsN − 1 receive-only trusted “secondary verifiers” (or
“witnesses”) at known locations to the basic two-packet
timed-echo distance bounding protocol, as shown in Fig. 3.
Their protocol consists of3N + 1 timed events of the
following types:e1, V1 sends the (only) “challenge”;e(X)

2 ,
the “challenge” reaches nodeX ∈ {P, V1, . . . , VN}; ê

(X)
2 ,

“end-of-challenge” reaches nodeX ∈ {V2, . . . , VN}; e
(P)
3 ,

P sends its “response”; ande(Vi)
4 , the “response” reaches

Vi, 1 ≤ i ≤ N . Note thate1 ≡ e
(V1)
2 are the same event.

Following the packet exchange,Vi knows thepacket inter-
arrival time in its local frame of reference,

Ai = CVi(e
(Vi)
4)− CVi(e

(Vi)
2). (3)

Since the time delay betweene1 ande
(Vi)
2 is τV1,Vi , we have

Ai ≡ D(V1, P)/vi+∆(i)
P +D(P, Vi)/vi−D(V1, Vi)/vi, (4)

wherevi and ∆(i)
P , respectively, are the signal velocity and

P ’s response time, normalized toCi(·). Now suppose that

1e

e
4

(V)1

e4
(V)i

p
(i)

∆
e3
(P)

e2
(V)

j

e4
(V)j

p
(j)

∆

e2
(V)i

e2
(P)

Challenge
Response Time

Prover (P)Witness (V)i

Verifier (V)1 Witness (V)j

Fig. 3. Witnessed challenge-response localization by Saha and Molle.

Ci(·)||Cj(·). In this case,vi ≡ vj and ∆(i)
P ≡ ∆(j)

P , so
simply forming the difference between two instances of
Eq.(4) representingVi andVj would eliminate the unknown
∆(i)

P and localizeP to a hyperbola equivalent to Eq.(2):

Ai·vi+D(V1, Vi)−D(P, Vi) = Aj ·vj+D(V1, Vj)−D(P, Vj).
(5)

Notice how the “challenge” serves as a common reference
event among the verifiers, which relaxes the timing require-
ment from Ci(·) ≡ Cj(·) (for other multi-lateral TDoA
protocols) to justCi(·)||Cj(·) (for this approach). More-
over, we can determine the value ofv(i) without assuming
syntonization to the “universal clock” from a “dummy”
execution of the protocol to “localize” the known position
of a trusted verifier, since all distances in Eq. (5) are
known. To complete the protocol, Saha and Molle proposed a
novel method for settingCVi

(·)||CV1(·), which utilizes some
hidden capabilities of existing Physical Layer transceivers.

In addition to its system clock,CX(·), nodeX also has
two other “clocks” integrated within its PHY transceiver
logic: a master, CX(·), to control itstransmit logic(e.g., a
crystal oscillatorset to the baud rate of the physical channel),
and aslave, CX(·), to control itsreceive logic(e.g., aphase-
locked loopthat tracks the exact baud rate of each incoming
packet). Their method enables all verifiers{Vi} to bothlearn
the “tick rate” for CV1(·), and thenimmediately use itfor
their respective inter-packet time measurements.

By definition of the PHY transceiver logic,CVi
(·)||CV1(·)

must hold whileVi is receiving the “challenge” sent by
V1, whereasCVi(·) continues to run at its normal speed.
Therefore,Vi can easily find the scale factor to ensure that

ρV1,Vi
· CVi

(·)||CV1(·), (6)

as the ratio of clock increments frome(Vi)
2 to ê

(Vi)
2 , namely

ρV1,Vi
=

CVi
(ê(Vi)

2)− CVi
(e(Vi)

2)

CVi
(ê(Vi)

2)− CVi
(e(Vi)

2)
(7)

III. T IMING WITH CURRENT IEEE 802.11 HARDWARE

A. Synchronization Services in the IEEE 802.11 Standard

The IEEE 802.11 Standard [5] currently provides a Time
Synchronization Function (TSF), through which all stations
syntonize their local MAC-layer protocol timers to the
“timestamps” (actually 64-bit microsecond counter values)
broadcast by the Access Point in periodicBeacon Frames.
Separate from the TSF, the IEEE 802.11 standard also
includes an optional capability calledMLME-HL-SYNCin the
MAC-layer management entity (MLME), which is intended
to support application-layer time synchronization protocols.

To enable the MLME-HL-SYNC capability, the MAC
client issues theMLME-HL-SYNC.request primitive to
the MLME, together with a target multicast MAC ad-
dress; this triggers the MLME to immediately issue the
MLME-HL-SYNC.confirm primitive, together with a result
code of eitherSUCCESSor NOTSUPPORTED. If it is sup-
ported, the MLME starts searching for the next frame that
contains the target multicast MAC address as its destina-
tion; when found, the MLME waits until the end of the
frame and then issues theMLME-HL-SYNC.indication

primitive to the MAC client, together with the source
MAC address and sequence number from the trig-
gering frame. Notice that theMLME-HL-SYNC capabil-
ity handles both transmitted and received frames, in
which case theMLME-HL-SYNC.indication primitive
will coincide with either thePHYTXEND.confirm or the
PHYRXEND.indication primitive, respectively.

Unfortunately, neither the TSF timer nor the
MLME-HL-SYNCcapability can match the precision timing
requirments of applications described in Sections I and II.
In particular, the specified tolerances for the TSF timer are
rather loose (±0.01%) and in practice its accuracy will likely
be substantially worse because the update mechanism does
not account for variability in MAC-layer channel access
delays. Moreover, the role of the MLME is strictly limited
to issuing theMLME-HL-SYNC.indication primitive at
certain end-of-packet events; the MAC client is left with the
full responsibility for generating the timestamp to this event
by consulting some sort of external clock.

B. Overview of the IEEE 802.11 PHY-MAC Interface

The 802.11 PHY consists of two sublayers: thePMD (i.e.,
the actual radio transceiver) and thePLCP (i.e., a set of
functions for controlling and/or [re-]configuring the PMD).
The PLCP-PMD boundary is somewhat vague because it
was never intended to be an exposed interface, and hence
is inappropriate for timestamping.

Figure 4 shows the sequence of primitives that cross the
MAC-PHY interface to handle a single packet. Notice that
the Preamble and PLCP Header are handled entirely by
the PLCP sublayer: unlike Ethernet autonegotiation (which
configures the PHY once at link startup), 802.11 nodes may
need to reconfigure the PHY on a packet-by-packet basis to
communicate with different nodes in the same Basic Service
Area or even – for some modulation schemes – in mid packet.

P
H

Y
−TX

 S
TA

R
T.req

(TX
V

E
C

TO
R

)

P
H

Y
−TX

 S
TA

R
T.conf

P
H

Y
−D

A
TA

.req
P

H
Y

−D
A

TA
.conf

P
H

Y
−D

A
TA

.req
P

H
Y

−D
A

TA
.conf

P
H

Y
−D

A
TA

.req
P

H
Y

−D
A

TA
.conf

P
H

Y
−D

A
TA

.conf
P

H
Y

−TX
 E

N
D

.req

P
H

Y
−TX

 E
N

D
.conf

PMD_TXPWRLVL.req,
PMD_TXENDPMD_DATA.reqPMD_TXSTART.req,

PMD_DATA.req PMD_RATE.req

PLCP Preamble PLCP Header
PSDU

CRC
HEC/

Length
Signal/Service/Sync SFD

RAMP
DOWNUP

RAMP
TX Power TX Power

MAC

PHY
PLCP

PHY
PMD

(a)

PLCP Preamble PLCP Header
PSDU

CRC
HEC/

Length
Signal/Service/Sync SFD

MAC

PHY
PLCP

PHY
PMD

(b)

PMD_DATA.ind

PMD_RATE.req

(S
TA

TU
S

=busy)
P

H
Y

−C
C

A
.ind

PMD_CS.ind
PMD_ED.ind,

P
H

Y
−R

X
S

TA
R

T.ind
 (R

X
V

E
C

TO
R

)

P
H

Y
_D

A
TA

.ind

P
H

Y
_D

A
TA

.ind

P
H

Y
_D

A
TA

.ind

(R
X

E
R

R
O

R
)

P
H

Y
−R

X
E

N
D

.ind

PMD_ED,

PMD_CS

P
H

Y
_C

C
A

(ID
LE

)

PMD_DATA.indPMD_DATA.ind

PMD_RATE.req,
PMD_MODULATION.req

Fig. 4. Control Flow at the MAC-PHY Interface for an 802.11 Node: (a)
Transmitting a Packet; (b) Receiving a Packet.

By default, the PMD is configured to receive incoming
packet headers (CS/CCA state). Therefore, to initiate a packet
transmission, the MAC issues thePHY-TXSTART.request

to the PLCP, together with a parameter list including the
data rate, packet length, preamble type, modulation to be
used, scrambler initialization vector (if OFDM is used), and
the transmit power level. Receipt of this primitive causes the
PLCP to ready the PHY for this packet transmission by: (i)
issuing various primitives to the PMD to configure and then
power up its transmit function, (ii) generating an appropriate
Preamble and PLCP Header, and (iii) then passing this stream
of header data to the PMD for transmission.

Once the PMD has been configured and transmis-
sion of header data is under way, the PLCP issues the
PHY-TXSTART.confirm primitive, telling the MAC of
its readiness to accept the outgoing packet, one octet
at a time, through an exchange ofPHY-DATA.req and
PHY-DATA.confirm primitives. After supplying the final
octet of data, the MAC issues thePHY-TXEND.request

primitive to the PLCP. Receipt of this primitive causes the
PLCP to power down the PMD’s transmit function and
restore it to the CS/CCA state after the entire packet has
been sent, then issue aPHY-TXEND.confirm primitive to
the MAC acknowledging its completion.

Packet reception involves similar interations between the
MAC and PLCP, shown in Fig. 4(b). As soon as the PMD
detects a signal on the medium, the PLCP notifies the
MAC by issuing thePHY-CCA.indication primitive with
STATUS=busy, and then waits for the PMD receive function
to synchronize with the incoming data stream. Once the
PLCP has received enough of the incoming PMD data
stream to detect a valid SFD and decode the parameters
(including its length) from the PLCP Header, it issues a

PHY-RXSTART.indication primitive to notify the MAC
that a data packet is now arriving, and, possibly, recon-
figures the PMD to a new rate and modulation scheme.
Subsequently, each correctly-received octet is passed to
the MAC with the PHY-DATA.indicate primitive. When
it finds the end of the packet, the PLCP notifies the
MAC by issuing thePHY-RXEND.indicate primitive with
RXERROR=noerror , and reconfigures the PMD back to its
default CS/CCA state. Finally, when the PMD has stopped
detecting a signal, the PLCP notifies the MAC by issuing the
PHY-CCA.indication primitive with STATUS=idle .

C. Using the PHY-MAC Interface to Support IEEE 1588

Recently, two experimental studies investigated hardware-
assisted timestamping in commercial IEEE 802.11b hardware
to support IEEE 1588 Synchronization. In both studies,
the triggering events were derived from interface signals
between the transceiver (PHY) and controller (MAC), using
the Intersil PRISM 2.4 GHz WLAN Chip Set product family.
In these Intersil products, the rising and falling edges,
respectively, of theTX-RDY interface signal provide the
PHY-TXSTART.confirm and PHY-TXEND.confirm primi-
tives. Similarly, the rising and falling edges of theTX-RDY

interface signal provide thePHY-RXSTART.indicate and
PHY-RXEND.indicate primitives. It is interesting to note
that the IEEE 1588 standard ([6], section 6.6.5) and the IEEE
802.11 MLME-HL-SYNC capability specify their respective
timestamp reference points at opposite ends of the packet
transmission: whereas 1588 uses “the beginning of the first
symbol following the start of frame delimiter”, the 802.11
MLME-HL-SYNC.indication uses the end-of-packet.

Cooklev et al. [9], [11] measured the one-way net-
work delay between the PHY-MAC interfaces of two Cisco
AIRONET series 340 wireless PC cards equipped with the
Intersil HFA3861B chipset [2]. To limit the effects of jitter
on the air medium (due to changing channel conditions and
multipath, etc), the two radios were placed1m apart with
clear line-of-sight in an area known to be free of interference
in the 2.4 GHz band. This configuration allowed the authors
to focus on the jitter induced by the PHY circuitry.

Using an oscilloscope to capture the timing offset between
signal transitions at the transmitting and receiving nodes, the
authors found the two interface signals had a mean offset
of 39.44µs and standard deviation of145.6ns at the rising
edges, compared to a mean offset of7.35µs and standard
deviation of594ns at the trailing edges, and concluded that
the “last-symbol-on-the-air” event is the appropriate times-
tamp reference point in 802.11 networks. On the other hand,
it is important to recognize that these jitter measurements are
orders of magnitude larger than the actual signal propagation
delay (3.3ns) over the1m air gap between the two nodes.
Moreover, the spread between the minimum and maximum
individual offset values in each experiment – from39.20µs
to 41.20µs at the rising edge, and from−9.95µs to 9.64µs
at the falling edge – shows how difficult it is to retrofit a
timestamp reference point into pre-existing hardware.

Kannisto et al. [7] implemented a prototype for IEEE 1588
synchronization on a pair of Altera Excalibur EPXA1 em-
bedded development boards connected to Intersil HW1151-
EVAL transceivers equipped with the (slightly older) Intersil
HFA3860B chipset. The ARM9 processors on each board
handled the IEEE 1588 protocol, while FPGAs were used
to implement the two 32-bit local second and nanosecond
clocks for the 1588 protocol and generate packet timestamps
triggered by the rising edge of the interface signals. The
FPGAs also handled experimental data collection through
serial ports connected to an external pulse generator (running
at approximately 1 Hz) and a PC analyser connected to both
development boards. The simultaneous arrival of a pulse to
both development boards triggered their respective FPGAs
to send a copy of its clocks (counters) to the PC analyser,
which tracked the clock offset between the two boards over
a 10 minute measurement period.

In their experiments, Kannitso et al. gave the Slave
clock some initial offset and then started the IEEE 1588
synchronization protocol in both Master and Slave nodes.
After discarding the first 5 minutes of “warmup” data, they
calculated the average clock offset over the remainder of the
measurement period. Using 10 replications of the complete
experiment, they calculated the overall average offset of
1.1ns with a variance between replications of3.1ns2.

Unfortunately, despite the remarkable accuracy of their
reported results, we must point out that Kannisto’s methodol-
ogy provides almost no information about the measurement
error in individual timestamps, since clock synchronization
over a long interval is insensitive to individual timestamp
errors, and the symmetric hardware configuration ensures
that the timestamping errors will have similar distributions
in both directions.1

IV. A DDING PRECISIONTIMING TO THE 802.11 PHY

A. The Interval Counter and its External Interface

Separate from the MAC-layer TSF timer, every 802.11
PHY needs a high-precisionreference oscillatorto regulate
both the transmit center frequency and symbol clock within
its transmit logic. Depending on the chosen combination of
modulation scheme and data rate, the specified tolerance2

for the reference oscillator is never weaker than±25ppm
– which is 40 times more strict than the tolerance for the
MAC-layer TSF timer!

To take advantage of the PHY’s existing reference oscilla-
tor, we now propose to add an “interval timer” to the PHY,

1Since the variance of the mean ofN i.i.d. samples is1/N th the
population variance, andN ≈ 300 for one second sampling over a 5
minute experiment, we can use

√
3.1× 300 ≈ 30ns as a crude estimate for

the standard deviation of the individual clock offset samples in Kannisto’s
experiment – which is remarkably consistent with Cooklev’s result of
145.6ns for the standard deviation of the individual timing offset samples.

2The transmit center frequency tolerance for all versions of the PHY are
given as±25ppm except as follows. For 1 Mbps operation, the tolerance
is specified as±60KHz on the 2.4 GHz band, which is equivalent to
±25ppm. For the 5 GHz band, the tolerance is specified as±20ppm for
the 20 MHz and 10 MHz sampling rates, and±10ppm for the 5 MHz
sampling rate.

i.e., a free-running counter clocked by the reference oscilla-
tor. Whenever some application atVi needs to generate high-
precision timestamps at packet-boundary events, it would use
this PHY counter to emulateCVi(·). Otherwise, the PHY
counter logic could be disabled to reduce power consumption
in the PHY, similar to the optionalMLME-HL-SYNCcapability
in the current IEEE 802.11 standard.

For compatibility with the local clocks in IEEE 1588,
and to provide enough resolution to represent propagation
delays over distances on the order of1m, we will assume
a 32-bit counter that runs at a nominal rate of 1 tick per
nanosecond. However, it is important to recognize that it is
just a simple, uncalibrated interval timer, not a full 1588-style
clock, to avoid adding an unreasonable amount of complexity
to the PHY. Moreover, since the IEEE 802.11 standard
requires the PHY to use different oscillator frequencies for
various combinations of modulation scheme and data rate,
the counter won’t necessarily advance in unit increments.
For example, the counter might advance in fixed increments
of size 50 under OFDM modulation with a 20 MHz sampling
rate. More importantly, since the PHY must always use an
11 MHz chip rate for the Preamble and PLCP Header trans-
mission (and1/11 is a non-terminating decimal fraction!), in
this case the 11 counter-increments per microsecond would
be properly rounded to 5 steps of size 91, followed by one
step of size 90, and then another 5 steps of size 91.

To avoid the difficulties of attempting to control this
interval timer remotely from an application program, let us
further assume that the PHY counter is linked to read-only
registers that automatically store its value at the most-recent
start-packet or end-packet event, respectively, whenever the
PHY counter is enabled. Thereafter, each stored counter
value remains in its respective register until it is overwritten
by events generated by the next packet. This provides the
application program with a (relatively-large) window of time
in which to retrieve the stored values ofCVi

(e) from the
PHY registers, without further degrading the data due to the
addition of an offset or some jitter to the retreived value.

B. Triggering Timestamps for Packet-Boundary Events

The simplest method for triggering the required times-
tamps would be to follow the IEEE 802.11MLME-HL-SYNC

capability and the experimental studies described in Section
III-C in using some existing MAC-PHY interface signals.
Even this näıve approach should provide better accuracy
than theMLME-HL-SYNCcapability, because the same PHY
logic that issued theMLME-HL-SYNC.indicate primitive
could simultaneously trigger a timestamp from the PHY
counter, without waiting for the MAC client to respond
to this primitive and generate a timestamp from another
clock. However, these MAC-PHY interface signals are too
far removed from events at the air-PMD interface to provide
precision time stamping.

For example, restating Cooklev’s results in the notation of
Section II-C, we see that

(CP (ê(P)
2)−CP (e(P)

2))− (CV (ê(V)
2)−CV (e(V)

2)) ≈ 32µs

holds on average. This discrepancy in the measured packet
transmission time corresponds to an uncertainty of 350 bits
in packet length (using a data rate of11Mb/s) or 96km
in the distance between the two nodes! The major reason
for this discrepancy is that the start-of-packet event at the
air-PMD interface only affects the MAC-PLCP interface
signals indirectly, and the offset between the two layers
is inherently different for transmitters and receivers and
also varies significantly between different combinations of
modulation scheme and data rate.

To highlight the issue, let us define an “ideal” timing
reference point for the start-of-packet event to occur when
the end of the last bit from the Preamble and PLCP Header
passes through the air-PMD interface. (A similar argument
can be made for the end-of-packet event, but is omitted due
to limited space.) From within the PMD, it should be possible
(at least in theory) to determine the time of such events with
uncertainties on the order of a single sampling period – al-
though the answer may be delayed considerably to allow the
PMD to carry out some off-line computations involving many
samples. Nevertheless,even if an oracle could instantly re-
veal the exact time of this “ideal” start-of-packet event to the
PLCP, neither the transmitter nor the receiver could change
the time at which it issues thePHY-TXSTART.confirm or
PHY-RXSTART.indication primitive, respectively.

The reason for this behavior – together with the fact
that the IEEE 802.11 standard does not specify the exact
timing of these primitives, relative to events at the air-
PMD interface – should be evident from Fig. 4. At the
transmitter, thePHY-DATA.confirm primitive must be is-
suedbefore the endof the header error check (HEC) has
been transmitted, but it could be as early as the start of
the Preamble. Similarly, thePHY-DATA.confirm must be
issued before any of the associated data is transmitted,
and the PHY-TXEND.confirm must be issuedafter the
transmission of last bit of the packet. Conversely, at the
receiver, thePHY-RXSTART.indication primitive must be
issued after the endof the HEC has been received, but
it could be much later as long as the PHY has enough
buffer space. Similarly, thePHY-DATA.indicate(DATA)

and PHY-RXEND.indicate primitives must be issuedafter
the associated data has been received.

V. CONCLUSION

We describe several localization algorithms and show how
the witnessed time-difference-of-arrival method of Saha and
Molle could be applied to a commercial Wireless LAN
environment. We also show the similarity between timed
packet exchanges used by localization algorithms and the
IEEE 1588 Precision Clock Synchronization Protocol.

In order to estimate the distance to a node with an uncer-
tainty of less than10m, a timestamping precision of about
30ns is required. Based on published experiments about
supporting IEEE 1588 synchronization on similar hardware,
and a careful review of IEEE 802.11 standards, we explain

why this level of accuracy is just slightly out of reach for
existing COTS hardware.

To solve this problem, we propose the addition of a simple
counter and the supporting digital logic to the 802.11 PHY.
The counter would be driven by the PHY’s existing high-
precision reference oscillator and equipped with a means for
generating precise timestamps at the moment that a packet-
start (or packet-end) passes through the air-PHY interface.
An application program could later access the stored times-
tamp values simply by reading the contents a register –
without degrading its value because of some uncontrolled
notification and/or access delays.

REFERENCES

[1] Stefan Brands and David Chaum. Distance-bounding protocols. In
T. Helleseth, editor,Advances in Cryptology – EUROCRYPT ’93,
volume 765 ofLecture Notes in Computer Science, pages 344–359.
International Association for Cryptologic Research, Springer-Verlag,
Berlin Germany, 1994.

[2] Intersil Corp. Hfa3861b direct sequence spread spectrum baseband
processor. Technical Report Data Sheet FN4816.2, February 2002.

[3] J. M. Zagami et al. Providing universal location services using a
wireless e911 location network. InIEEE Communications Magazine,
pages 66–71, April 1998.

[4] Robert J. Fontana, Edward Richley, and JoAnn Barney. Commercial-
ization of an Ultra Wideband Precision Asset Location System. In
IEEE Conference on Wideband Systems and Technologies, November
2003.

[5] IEEE. IEEE Standard for Information technology - Telecommu-
nications and information exchange between systems - Local and
metropolitan area networks - Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) And Physical Layer (PHY)
Specifications. Number 802.11-2007. Piscataway, NJ, June 2007.

[6] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. Number 1588-2008.
Piscataway, NJ, Jan 2008.

[7] J. Kannisto, T. Vanhatupa, M. Hannikainen, and T.D Hamalainen.
Software and Hardware Prototypes of the IEEE 1588 Precision Time
Protocol on Wireless LAN. In14th IEEE Workshop on Local and
Metropolitan Area Networks, September 2005.

[8] P. Loschmidt, G. Gaderer, and T. Sauter. Clock synchronization for
wireless positioning of cots mobile nodes. InIEEE International
Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, pages 64–69, October 2007.

[9] A. Pakdaman, T.Cooklev, and J.C.Eidson. Ieee 1588 over ieee
802.11b for. synchronization of wireless local. area network nodes.
In 2004 Conference on IEEE 1588, Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems, pages 116–127, November 2004.

[10] A. Saha and M. Molle. Localization with witnesses. InProc. 1st
International Conference on New Technologies, Mobility and Security
(NTMS 2007), May 2007.

[11] T.Cooklev, J.C.Eidson, and A. Pakdaman. An implementation of IEEE
1588 Over IEEE 802.11b for Synchronization of Wireless Local Area
Network Nodes.IEEE Trans. on Instrumentation and Measurement,
56:1632–1639, 2007.

[12] Brent R. Waters and Edward W. Felten. Secure, Private Proofs of
Location. Technical Report TR-667-03, Department of Computer
Science, Princeton University, January 2003.

