A New Last-Come First-Served Preemptive
Window Access Conflict Resolution Algorithm

Gillian M. Woodruff

Technical Report CSRI-263
March 1992

Computer Systems Research Institute
University of Toronto
Toronto, Canada

M5S 1A1

The Computer Systems Research Institute (CSRI) is an interdisciplinary group formed to conduct
research and development relevant to computer systems and their application. It is an Institute
within the Faculty of Applied Science and Engineering, and the Faculty of Arts and Science, at the

University of Toronto, and is supported in part by the Natural Sciences and Engineering Research
Council of Canada.

Abstract

Random access protocols can be employed as distributed controls to ensure successful packet
transmissions over a shared, multiple access communications channel. These schemes consist of
a channel access algorithm (which governs when a station can first attempt to send a packet),
and a conflict resolution algorithm (which governs when to try again if the attempt resulted in
a collision). Some of these protocols are said to have the limited sensing property, which means
that the actions necessary to transmit a given packet depend only on the state of the channel
after the arrival of that packet. This is a significant practical advantage over continuous sensing
algorithms, such as the first-come first-served (FCFS) window access algorithms, in which the
actions necessary to transmit a given packet can depend on the channel history arbitrarily far
into the past. However, current limited sensing protocols have other disadvantages: free access
(or stack) algorithms are significantly less efficient than window access algorithms, and existing
limited sensing window algorithms impose a delay penalty of several slots for new packet arrivals to
acquire enough of the current state of the protocol to join in. Furthermore, their global scheduling
is approximately last-come first-served (LCFS).

Here, a new LCFS preemptive window channel access method is proposed and analysed; it
eliminates the state acquisition problem as long as each station operates with a common clock and
window boundaries (assumed to be every two or three slots). Exact expressions for the packet delay
distributions are derived assuming Poisson packet arrivals to the channel, and either a Standard
Traversal or Modified Tree Algorithm (STA or MTA) for the conflict resolution. The mean and
standard deviation of these delays are evaluated and compared to those for the FCFS sliding
window channel access approach. The mean delays are shown to be comparable, but the standard
deviation of the LCFS delay is significantly higher. The latter indicates the price of eliminating
the continuous sensing problem, and may not be significant when the extra delay required for
limited sensing is taken into account.

1 Introduction

In multiple access communications environments, such as local area networks (LANSs), packet radio,
and satellite networks, stations share a common channel and contend with each other for channel
resources when they wish to send a packet. In many cases, there is only limited channel state
information available to these stations, which leads to a non-zero probability of packet collisions.
Several schemes to control the timing of packet transmissions in a distributed manner (in an
attempt to efficiently utilise the channel) have been proposed and analysed. These schemes are
based different degrees of channel state information available at each station ranging from ALOHA
(no information) through Carrier Sense Multiple Access (CSMA — with carrier sensing) to CSMA
with collision detection (CSMA/CD).

Each of these types of schemes employ both a channel access algorithm, which governs when a
station can first attempt to send a packet, and a conflict resolution algorithm, which governs when
to try again if the attempt resulted in a collision. In this project, attention is restricted to a class of
conflict resolution algorithms called binary preorder tree traversal algorithms analysed extensively
in [1]. These algorithms resolve conflicts between a group of contending stations (admitted into
the contention by the channel access algorithm) during a Conflict Resolution Interval (CRI). In
[1], the delay performance of this conflict resolution algorithm was studied assuming a first-come
first-served (FCFS) fixed-size Simplified Window Algorithm (SWA) for channel access, which will
be referred to here simply as the SWA method. With this method, the time axis can be visualised
as being divided into fixed-size windows; at the end of the window, all packets arriving during
that window are permitted to join the next CRI, when it occurs.

This method, studied in [1] in its simplest form, requires continuous sensing — all stations must
know both where the current window, and the current CRI boundaries are. This is difficult to ac-
complish when new stations join an active channel, and has led to the development of limited sens-
ing schemes, in which new stations monitor the channel to recognise certain idle/success/collision
patterns that will indicate when the current CRI ends. Current limited sensing schemes have
certain disadvantages: free access (or stack) algorithms are significantly less efficient than window
access algorithms, and existing limited sensing schemes for window access impose a delay penalty
of several slots for new packet arrivals to acquire enough of the current state of the protocol to
join in. Furthermore, their global scheduling is approximately last-come first-served (LCFS). This
problem has motivated the following objective of this project:

Objective: To study the the delay performance of the same conflict resolution algorithm
(binary preorder tree traversal algorithm) as in [1], but under a last-come first-served
(LCFS) preemptive window access scheme. This scheme assumes a slotted channel,
with window boundaries every 2 or 3 slots, and requires only that all stations have
common knowledge of when these boundaries occur, e.g. using a common clock.

The conflict resolution algorithm and LCFS channel access scheme assumed here, and the delays
encountered by a packet, are outlined in the next subsections.

1.1 Conflict Resolution Algorithm: Binary Preorder Tree Traversal

As in [1], it is assumed that the channel is slotted, with one packet allowed to be transmitted per
slot, and that each station will know within a slot time (e.g. with acknowledgements) whether the
transmission was successful. At the start of a CRI, each contending station permitted to join the

CRI attempts to transmit its packet (this is the root node of the ‘tree’). If the attempt is successful,
the CRI ends. However, if there is a collision, each station tosses a (possibly biased) two-sided coin
to determine which ‘branch’ of the tree to take. If the left branch is taken, the station attempts
to transmit again in the next slot; again, if the attempt is successful, this ‘subepoch’ ends with
this leaf node and the right node is now visited, with the stations that took the right branch now
transmitting. If the left node resulted in a collision, those colliding stations again toss a coin and
create a new pair of left and right branches at the next level of the tree.

In this manner, each station traverses its own copy of the binary ‘tree’, with each successful left
node transmission leading back to its right counterpart, and each successful right node transmission
implying a success for its parent node. The CRI ends when all nodes in the tree have been traversed
and all packets successfully sent. The ‘epoch length’ of the tree is the total number of nodes
traversed for which a time slot was required. The Standard Traversal Algorithm (STA) results in
one slot used per node created, and hence always results in an odd epoch length. The Modified
Tree Algorithm (MTA) employs ‘level skipping’ by recognising that a collision node followed by
an idle left node will always result in a collision right node; rather than wasting a slot on the
right node, it is skipped, and its left successor node is visited in the next slot. This results in a
shorter epoch length and CRI, and hence better delay performance and increased channel capacity.
Figure 1 illustrates possible sample paths of the STA and MTA binary trees assuming that three
packets are contending for transmission within the CRI.

Channel capacity is defined as the maximum successfully carried packet rate per slot for which
the packet delay is finite. Tt is shown in [1] that for the fixed-size window SWA channel access
method, the optimal fixed window sizes, i.e. those which maximise the capacity, are between 2
and 3. The capacities for a window size of 2 for the SWA/STA and SWA/MTA (unbiased) are
4196 and .4510 respectively, and are .4285 and .4614 respectively for a window size of 3.

1.2 Channel Access Algorithm: Last-Come First-Serve (LCFS)

It is assumed here that all stations have knowledge of slot boundaries and window boundaries,
with windows being an integer number of slot times. Since the optimal window sizes for the STA
and MTA are real numbers between 2 and 3, integer window sizes of 2 and 3 are considered here.

A new CRI is initiated at each window boundary with access permitted only to packets which
have arrived during the previous window regardless of the number of steps remaining in any
previous CRIs. The first slot in the window is always reserved for the root node of the new CRI.
If there is a collision, the remainder of slots in the window are used to continue that same CRI,
which is preempted by the arrival of a new window and a new CRI. If there is no collision at the
root node of the new CRI, the remaining slots in the window are used to resume the execution of
the most recent unresolved CRI. Remaining unresolved CRIs are served to completion in LCFS
order during the ‘extra’ one (for window of 2) or two (for window of 3) slots available in windows
which had a non-conflict root node in the first slot.

Figure 2 illustrates a possible LCFS CRI, labelled W (i), within which all packets arriving
within the ¢’th window are transmitted. In this example, a window size of 2 and a tree traversal
epoch length of 5 are assumed; 5 is the number of slots which would be required for the CRI with

a FCFS SWA channel access method. The random variables shown are defined further in Section
2.

Note that the LCFS non-idle CRIs will always end at a window boundary for the STA with
window sizes of either 2 or 3, since the STA epoch length is odd (i.e. transmissions for a given CRI
will be 2 contiguous slots initially and 1 per window thereafter, or 3 initially and 2 per window
thereafter). However, for the MTA, this is true only for a window of size 2 since epoch lengths
can be even. It will be seen that the delay analysis is tractable only when CRIs end on a window
boundary; for this reason, the STA and MTA are considered in Section 2 for a window size of 2
but only the STA is considered in Section 3 for a window size of 3.

The advantage of the proposed LCFS preemptive scheme over existing limited sensing algo-
rithms is that stations need only determine where the (constantly spaced) window boundaries are
to know when to join the next CRI. The scheme also lends itself to easy delay analysis (compared
to free access schemes, which allow a new station to immediately join a CRI in progress) for
Poisson packet arrivals with an infinite population size because there is no complex interaction
between new joining packets and old packets already being resolved within their CRI.

1.3 Packet Delay Components

The packet delay is defined as the time from the arrival of a packet at a station until its successful
transmission over the channel (ending with the end of the slot during which the transmission was
successful), and is expressed in units of slots.

In the LCFS scheme, the packet delay is the sum of two independent random delays *. 2 :

T 2 delay from packet arrival until start of next window

G delay from start of the CRI at the next window boundary after

packet arrival, until successful packet transmission

It will be assumed throughout that the arrival of transmissions to the common channel are
Poisson, with an infinite population size and random addressing. With these assumptions, the
initial random delay T' is uniformly distributed across a window. If we denote the window size by
w, then the Laplace transform of T' is given by [1]:

y Al_e—sw
lw,s) = —20—

with mean denoted by:

and standard deviation denoted by:

op = —.
T2
The derivation of the distribution of delay within the CRI, G, is the subject of Sections 2 (for
a window size of 2) and 3 (for a window size of 3).

1T corresponds to the first delay component, o, in [1]

2@ corresponds to the third delay component, t3, in [1], and should not be confused with the standard notation
for arrival rate in a random access channel. The second delay component, ¢1, in [1] is the time from the start of
the next window boundary until the start of the CRI in which the given packet is transmitted; this delay is zero in
the LCFS preemptive case — when ¢1 is non-zero, sensing is required to detect when the pertinent CRI begins.

1.4 Notation

To a large extent, the notation adopted in [1] is used here. In particular, the following are defined:

2 window size
P throughput or mean packet arrival rate per slot
¢ 2 mean packet arrival rate to a new CRI
= wxA
O(z) 2 probability of no packets in a new CRI (i.e. an idle root slot)
= Pr{i|z}=¢e"
p(x) = probability of no packet collisions in a new CRI root slot
= Pr{c|z}=(1+=z)e "
Q(z,2) 2 probability generating function of the STA or MTA

epoch (i.e. SWA CRI) length
Q(C)(CL', z) 2 probability generating function of the STA or MTA

epoch length, conditioned on a collision in the root node
Q(z,z) — p(x)z
1 —p(z)

However, a ‘looser’ notation for random variables is used here, with the same basic symbol referring
to a random variable (e.g. (), its probability generating function (e.g. G(z, z)) and the derivatives
w.rt. z (e.g. G"(z,2)), and its mean (e.g. G(z)). With this notation, the symbol Q(z) is used to
denote the mean epoch length of the STA or MTA, instead of the symbol L(z) adopted in [1].

2 Delay Analysis for Window Size of 2

2.1 Distribution of CRI Length with the STA or MTA

Before deriving the distribution of the packet delay during the CRI, G, it is useful to obtain the
distribution of the LCFS CRI length, which is denoted here by W:

W 2 time from the beginning of the (¢ + 1)’th window,
which is the start of the ’th window’s CRI, until the

2’th window’s packets are all successfully transmitted.

The CRI length W will consist of a fixed window access STA or MTA epoch length @3, plus
an interruption, of random length I, for every unfinished slot after the first two slots of the epoch
(which is the maximum progress that can be accomplished given a window of size 2 before it is
interrupted by the next CRI). In Figure 2, examples of the LCFS CRI lengths for slots 7, i 4+ 1,
i+ 2 etc. are shown as W(i), W(i 4+ 1), W(i + 2), etc. respectively. In this illustration, the i’th
epoch length takes the value 5, and thus the 2’th CRI is interrupted 3 times. Each interruption,
I, ends when the most recent window’s CRI has ended. In this example, the tagged packet of

3see Appendix A for the distributions of these random variables

interest is sent in the 4’th epoch slot, and thus the packet delay during the CRI, GG, consists of the
first two slots plus an interrupt I and single slot for each of the 2 additional epoch slots required
after the first 2.

Denote the probability generating functions (PGFs) of the distributions of W and I by W(z, z)
and I(z, z) respectively, and let W() denote the random variable W conditioned on a collision
in the root node, with corresponding PGF W(C)(x,z). Then W(®) always ends on a window
boundary, and the interruptions I are either equal to one slot (corresponding to no collision at the
newly initiated CRI root node, with probability p(z)), or I is a geometrically distributed string of
intervals W (¢) ending with a no-collision CRI root node slot:

I.2) = pe)z+ (1= p(x) 31— p(x)"ple) [WO(@» z)]
p(z)z
T— (1= p(x) W) (z, 2)

Noting that
W(z,z) =p(e)z + (1 —p(2)) W) (z,2),

the above equation yields an expression for W(z, z) in terms of I(z, z):

p(z)z
I(z,2)

To obtain another expression for W(z, z) in terms of I(z, z), note that

Wz, 2) = p(x)z + (1 — p(x))2*S(z, 2)

W(z,z)=1+p(z)z —

where S(z, z) is the PGF of the sum of a random number N of independent, identically distributed
random variables (I + 1) (each with PGF zI(#,z)). The random number N is the number of
unfinished STA or MTA epoch slots after the first two, given a collision in the first root node of
the epoch:

N =0Q® -2,

and (I 4+ 1) corresponds to a random interrupt length plus the single epoch slot gained after this
interrupt. The PGF of S(z, z) can therefore be written [2] as the PGF of N evaluated at zI(z, z):

Q(c)(:t,z)

22

S(z,2) =

z=zI(z,z)
and the equation for W(z, z) becomes:

W(z,2) = p(a)z + (1 - p(=)=’ [w]

(1 - p(2))=?

Expanding the above, substituting the expression for W(z, z) from equation (1), and simplifying,
the following implicit equation for I(z, z) is obtained:

12(1',z): Q(z, zI(x, 2)). (2)

Moments of the LCFS CRI length W can be obtained by differentiating equations (1) and (2)
w.r.t. z and setting z = 1. Differentiating equation (2) yields:

z=zI(z,z)

2I(z,) (z,2) = Q'(z, 2I(z, 2)) |z]'(z,2) + I(z, 2)

and noting that I(z,1) = 1, I'(z,1) = I(z) and Q'(x,1) = Q(z), the mean interrupt length is
given by:

(3)
Note that this is equivalent to:
T(z) = Q(x) +1(=) [Q(=) — 1],

which can be derived intuitively by noting that a mean interruption is equal to the mean epoch
length plus a mean interruption for the mean of every unfinished slot of an augmented epoch after
the first two. The augmented epoch is a normal epoch plus one slot to account for the extra
interruption possible each time a CRI terminates on a window boundary.

Differentiating equation (1) yields:
I'(z,2)[1+ p(x) = W(z,2)] + I(z, 2)[p(z) = W'(2)] = p(2)
and setting z = 1, the mean LCFS CRI length is given by:

W(z) = p(e)l(z)
= 762(_I) (1+z)e™" (4)
2-Q(x)

It can be seen that the capacity of the LCFS scheme is the lowest upper bound on the through-
put such that the mean CRI length is finite, i.e. the throughput for which @(z) = 2. This is the
same capacity as for the SWA channel access method studied in [1], as would be expected; the
SWA and LCFS schemes traverse the same sequence of conflict resolution trees — the only differ-
ence is a permutation of the order in which the nodes are visited. Figure 3 shows the mean CRI
length W (2A) and Figure 4 shows the mean interrupt length 7(2)) as a function of throughput
for the LCFS/STA and LCFS/MTA (unbiased) schemes with a window size of 2, based on the

equations for @Q(z) given in Appendix A.

2.2 Distribution of Delay During the CRI with the STA
2.2.1 Method 1: Using Distribution of STA Epoch Length

To derive the packet delay during the CRI, GG, the same basic approach of [1] is followed here i.e.
the recursive structure of the STA and the LCFS interruptions are exploited to obtain a simple
functional equation for GG. In this subsection, it is assumed only that the distribution of the STA
epoch length @ is given. In the following subsection, another method is outlined assuming that
the distribution of delay during an SWA /STA epoch is also given.

In this section, a CRI conditioned on a tagged packet being present is assumed. Thus, the
probability of a CRI (containing the tagged packet, with packet rate z) root node being idle is
zero, of being a success is ®(z), and of having a collision is 1 — ®(z).

The following random variables are defined:

G 2 delay during the CRI, GG, given a root node collision
Go 2 delay during the CRI, given the tagged packet takes the left branch
Gm 2 delay during the CRI, given the tagged packet takes the right branch
G = delay during the CRI, given the CRI begins
in the second slot of a window instead of the first
W> 2 LCFS CRI length, given the CRI begins

in the second slot of a window instead of the first

Then using the notation from [1], e.g. Pr{(s,) | L} to express the probability of a left success
node and a right idle node given the tagged packet takes the left branch in the STA,

Gz, z) = Pr{(s,i)|L}z+Pr{(s,Z)|L}z2+_Pr{(c,)| L}2GS ()2, 2) (5)
G®(z,z) = Pr{(i,s) | R}z + Pr{(i,s) | R}z Wi"(2/2, 2)I(z, 2)z
+Pr{(-,¢) | R}z Walz/2, 2)I(z, 2)GS) ()2, 2). (6)

The equation conditioned on the tagged packet taking the left branch states that the delay until
transmission within the CRI will be either one slot (no initial collision), two slots (an initial
collision but no collisions in the left node), or one slot for the initial root node collision plus
another delay within a LCFS CRI conditioned on starting with a collision in the second slot of the
window with packet rate z/2.

The equation conditioned on the tagged packet taking the right branch states that the delay
will be either one slot (no initial collision), or will be the sum of the left branch LCFS CRI length
starting in the second slot of the window instead of the first, plus a random interrupt I as defined
in the previous section, plus the delay in the right branch CRI starting in the 2nd slot of a window.
The interrupt [is added because the left branch CRI will always terminate at the end of a window,
allowing a fresh CRI to be initiated before the given CRI can be resumed.

An expression for ch)(:c/Q, z) can be found by observing that ch) = G(9) 4 T since after the
initial collision in slot 2, the window boundary imposes an extra interruption I before the next
node (normally served in slot 2 when considering G(C)) can be visited:

GS(2)2,2) = GO (z)2,2)I(xz, z) = [G(""’/ f’_zzl)zxféf;/ 2)2] I(z,z) (7)

An expression for Wa(z/2,z) can be derived from first principles in a similar manner as for
the expression for W(z, z) in Section 2.1. This time, W, consists of a fixed window access STA
epoch length @, plus an interruption I for every unfinished slot after the first single slot of the
epoch (which is the maximum which can be accomplished before the next window boundary):

Q(z/2,2) —P(CL‘/Q)Z]
(1—p(z/2))z

Wa(x/2,2) = p(x/2)z + (1 — p(x/2))z [

z=zI(z,z)
Simplifying the above,
Q(z/2,21(z, z))

Wa(x/2,2) = T(z,2) , (8)

which allows an expression for WQ(ZT)(:L‘/Q, z) to be obtained:

Wa(x/2,2) — @(:L‘/Q)Z.

(1) _
Wy (z/2,2) = —5(2)2)

Substituting (7) and (9) into (5) and (6),

GB(a,2) =)z +B(z/2)(1— 0(2/2))2* + (1 - d(2/2))2 [G("”/Z_Z)zx%;”/”z] I(z, 2)
1’/2)2]

GM(a,z) =)2+ (1 (ﬂ%ﬂ@ﬂ)[wﬂﬂ2” I(z,2)

o
o(z/2)

+ (1= ®(2/2)):Wa(2/2, 2) [G("‘Z/f’_zlb(x/é) /2)‘2] 22, 2).

Substituting the above into
v 1 (L) 1 1(R)
Gz, z) = 56 (z,2)+ 56 (z, z),

and simplifying, an expression for G(z, z) is:

G(z,2) = z% [1+ Wg(:ﬁ/?,z)I(w,z)] [G(m/2,z)[(w,z)+@(m/2)z [1 . I(m,z)H
+ ®(z) [z - % [z2 + I(z, z)z?’H . (10)

This can be interpreted as the sum of the initial root node slot, plus nothing (if the tagged packet
takes the left branch) or the length of the left branch CRI starting in slot 2 plus an extra interrupt
interval since the left branch CRI ends at a window boundary, plus the time until transmission
within either the left or right branch CRI starting in slot 2. This latter time is equal to the
delay starting in slot 1, plus an extra interrupt time I, with a correction term to account for the
interrupt wrongly added when the root node is a success. The final term is a correction in the
case of no collision in the initial root node of the CRI.

It is possible to obtain moments of the delay G within a CRI by differentiating equation (10).
Differentiating and setting z = 1, the mean delay is obtained:

G(z) =1+ G(x/2) + I(z)(1 —e™"/?) + % [WQ(:E/?) + T(a?)] - % [3 —}-7(1’)] e”

An expression for I(z) is given in equation (3). Note that to find W(2/2), equation (8) can be
differentiated to obtain:

Ws(2/2) = Qz/2) + T(x) [Qz/2) - 1], (11)
where the above simply says that the average CRI length starting in slot 2 is equal to the average

epoch length plus an extra mean interrupt length for the mean number of unfinished epoch slots
after the first. Substituting (11) into the equation for G(z) above,

G(z) = 1+ G(2/2) + T(2)(1 — e=*/2) + %@(m) Ty +1] - % T@)+3] e (12)

Using the above, it is possible to obtain a series expansion of é(x) in powers of z, but the process
is laborious due to the form of I(z) in equation (3); it has a power series Q(z) in the denominator,
implying that several combinations of three power series must be multiplied and similar terms
equated to obtain a power series expansion of é(x)

Instead, the expression was evaluated recursively by setting G(107°) = 1 and Q(10~%) = 1 and
using the recursive form of the equation for @(1’) given in Appendix A.1. Note that the value of
I(x) is a constant during the recursion i.e. is evaluated once at the the parameter value z before
the recursion since the interrupts must resolve a fresh window of packets. However, the arguments
of G(x/2), Q(x/2), e and e~%/? do vary and equal /2", n integer, during the recursion. The
total mean packet delay [T(2) + G(2X)], with T(2) = 1, is shown in Figures 5 and 7 as a function
of the packet throughput per slot and compared with the total delay for SWA channel access given
in Appendix C. It can be seen that the LCFS method imposes a slightly higher mean packet delay,

but the difference is negligible, especially at high load.

Differentiating equation (10) again w.r.t. z and setting z = 1, the following is obtained:

G'(x,1) = G"(x/2,1)+ I"(x,1) [g - @(.1'/2)] + %Wé’(x/?, 1)+ 27(x) [E(I/Q) — ®(x/2)

+ (24 Wa(2/2) + T(2)] [G(2/2) + T(2)(1 - @(2/2))| + Wa(2/2)
+ T(2) [1 + WQ(m/Q)] — &(x) [4 +3T(z) + %I“(:p, 1)] . (13)
To obtain an expression for I"(z, 1), equation (2) is differentiated again to get:

IR S CICRC) »

and to obtain an expression for Wy'(x/2, 1), equation (8) is differentiated again:

Wi (2/2,1) = Q"(z/2,1) [T(x) + 1] L) [@@/2) - 1] + 2T (2) [1 - @(m)] . (15)

All equations necessary to obtain the standard deviation of the total packet delay have now
been derived. The variance of the total packet delay will be the sum of the variances of the random
variables T" and G since they are independent; the standard deviation of the total packet delay
with w = 2 is therefore given by:

o= wl”—; + Gz, 1)+ G(z) — G (2). (16)

Figures 6 and 8 compare the above LCFS/STA standard deviation to the standard deviation of
the total delay with the SWA/STA scheme as derived in Appendix C. It can be seen that the
LCFS method results in a significantly higher standard deviation, as would be expected since the
SWA/STA scheme is essentially first-come first-serve.

2.2.2 Method 2: Using Distribution of Delay During an SWA /STA Epoch

Here, it is assumed that the distribution of delay during the epoch of transmission for the
SWA/STA method is given. This delay will be referred to here as Gg, with the distribution
as derived in [1] given in Appendix B.

The following probability is defined:

g2(z) 2 probability that the tagged packet is sent in the 2nd slot

1
- [e‘x/Q — e_x] .
2

Then the PGF of the LCFS delay during the CRI can be expressed as:

Gs(z,z) —®(x)z — gz(l‘)z2:|
(1= @(x) — g2(x))2*

since the LCFS delay is the SWA/STA delay within the epoch, plus an additional interruption I
for every slot after the first two.

, (17)

z=zI(z,z)

G(x,2) = ®(x)z + ga(2)2? + (1 — B(x) — ga(x))2? [

Differentiating equation (17) w.r.t. z and setting z = 1, the mean delay during the CRI for the
LCFS/STA method becomes:

G(z) = Gs(z) + () [65(@ Fe T - 2] , (18)

which when evaluated yielded identical results to those using equation (12) and shown in Figures 5
and 7. Differentiating equation (17) again w.r.t. z and setting z = 1 results in:

G'(x,1) = Gz 1) [1+7(x)]2+@5(x) [27($)+1“(x,1)]

+7(2) [2677 — 4G(@)] + T(2) 2672 —2] + 1", D) [e77 =2 . (19)

Equation (19) was evaluated using (14) and the recursive equations given in Appendix B for G's

and G4, and was confirmed to give identical results to those given by equation (13) using Method

1.

2.3 Distribution of Delay During the CRI with the MTA
2.3.1 Method 1: Using the Distribution of MTA Epoch Length

For the MTA, we consider the general biased splitting case with a probability 7 of taking the left
branch and 7 = 1 — 7 of taking the right branch. The derivation method is similar to that for
the STA, but using the MTA epoch length, @, and accounting for level skipping. The following is
obtained:

GM(a,z) = Pr{(s,i) | L}z +Pr{(s,0) | L}2* + Pr{(e,) | L}2GY) (=,)
G (z,z) = Pr{(i,s)| R}z + Pr{(i,s) | R}zW " (nz, 2)I(z, z)z
{((7x, 2
+ Pr{(i,c) | R}2*I(z,) [%}

4 Pr{(i,¢) | R}oW (nz, 2)I(2, 2)GS 7z, 2).

The last two lines above differ from the equation for the STA to account for the MTA level
skipping. In particular, the second last line says that in the case of an idle left node when the

10

tagged packet takes the right branch and has a collision, the delay will be two slots for the root
and left node, plus an interruption due to the window boundary, plus the delay which would be
obtained starting in a root slot 1 with a collision but with the first node removed for level skipping.

Substituting the appropriate probabilities, using
G(z,2) = 7G (2, 2) + TG F)(z, 2),
and simplifying, an expression for G(z, z) is:
G(z,z) = wmz [G(?T:L‘, 2)I(x,z) + @(nz)z [1 — (=, z)”
+ 7z [WQ(ﬂ':L', 2)I(z, 2)G(7z, 2)I (2, 2) + (T2)Wa(7wz, 2)zI(z, 2) [1 — I(z, z)”

+ 7P(ma) [zzl(:ﬁ, 2)G(Tz, z) [1 — I(z, z)] — ®(7x)22 (2, 2)2 [% — I(z, z)]]

z

+ &(2z) [z — w22 7P (x, z)] . (20)

The above equation can be derived intuitively. The first term is the left branch delay starting in
slot 2, which is G plus an added interrupt term I and correction not to add I for the case of a
success in the second slot (as for the STA). The second term accounts for the right branch; it is
the sum of: the left branch CRI length, an added interrupt time due to the window boundary,
and the right branch delay starting in slot 2 (which is equal to G plus an added interrupt time 7),
with the same type of correction term to account for when the right branch node is a success. The
third term is a correction to account for level skipping when the left node is idle and the right is
taken by the tagged packet — it says that rather than add an extra interrupt term to the delay
G, just subtract 1 slot from G, except for the case where G is just one slot, i.e. no collision in
the right node. The final term is an overall correction term to account for the case where the CRI
ends in the first initial slot — only one slot is counted instead of the two for taking the left branch
or the three plus interrupt for taking the right branch.

Differentiating the above equation and setting z = 1, the mean delay is:

Gz) = 1+ |Glre)+T(x)(1 - ®(re))]
+7 [Wz(m) +1(z) + G(7x) + I(x) [1 - <1>(m)] [1 - <1>(m)] — &(rz) [1 - <1>(m)”
—o(z) [7r +7 [2 + T(m)]]

which can also be derived intuitively; specifically, the second line (where the right branch is taken)
corresponds to the left branch CRI length, plus an interrupt, plus the mean delay in the right
branch starting at slot 2 (which is the mean delay G(7z) starting in slot 1 with: an added interrupt
if there was no level skipping and a collision in the right node; or with a slot removed if there was
level skipping and a collision in the right node). This equation simplifies to:

Glz) = l—e"+n [E(M) + T(2)(1 = e™)

+7 [WQ(W:L') —e T 4 T(l‘)(l —e ™)+ @(ﬁ(:) + T(l‘)(l — e_ﬂ) . (21)

11

This functional expression is hard to evaluate recursively because of the biased splitting. However,
the unbiased case can be evaluated in a similar manner as for the STA. The case of 7 = % yields
a mean delay in the CRI given by:

G(z) = 1+§(r/2)+7(r)(1—e‘x/2)+%[I(:L‘)—I—l] [Q/2) -] =7 (22)

where equation (11) has been used for an expression for W(z/2).

The total mean packet delay [T(2) + G(2))], with 7(2) = 1, is shown in Figure 5 for the
unbiased MTA and is compared to the total mean packet delay for SWA channel access given in
Appendix C. Just as for the STA | the LCFS channel access method imposes a slightly higher mean
packet delay, but the difference is also negligible, especially at high load.

2.3.2 Method 2: Using the Distribution of Delay During an SWA/MTA Epoch

Following the same technique as in Section 2.2.2 for the STA | an identical equation is obtained by
replacing Gg with Gy, the distribution of the SWA/MTA delay during the epoch of transmission
given in Appendix B. The first and second moments of delay during the LCFS/MTA CRI (with
unbiased splitting) are therefore:

G(z) = Gur(z) + I(2) [@M(z) feT 2] , (23)
and
G"(z,1) = GU(z,1) [1 + 7(1‘)] * Gl [27@) + I, 1)]
+ I(z) [QB_x - 4@(1‘)] + 72(.1') [Qe_x - 2] +1"(z,1) [e‘x - 2] . (24)

The mean using equation (23) was evaluated and found to be identical to the mean evaluated
using equation (22), as would be expected. Using the recursive equation given in Appendix B for
G4 (2, 1), the second derivative in equation (24) was evaluated and used in the following equation
for the standard deviation of the total packet delay for the LCFS/MTA (unbiased) scheme with
w=2:

w? — —2
o= \/ﬁ +G"(x, 1)+ G(x) — G ().

Figure 6 compares the above standard deviation with that of the total packet delay for the
SWA/MTA (unbiased) scheme, using the equations given in Appendix C. As for the STA, the
standard deviation with the LCFS method is substantially higher.

3 Delay Analysis for Window Size of 3
3.1 Distribution of CRI Length with the STA

Recall that with a window size of 3, if the first slot in the window results in no collision, the
following 2 slots are used to resume the last unresolved CRI. When non-idle CRIs end on window
boundaries, as is the case for the STA (since the CRI requires an odd number of slots), it is
possible to analyse the delay with the same approach taken for the window size of 2 in Section 2.

12

When non-idle CRIs do not necessarily end on window boundaries, as is the case for the MTA,
the analysis becomes exceedingly messy. For this reason, only the STA is considered here.

The CRI delay for a window size of 3 will consist of a fixed window access STA epoch length,
@, plus an interruption of random length, I, for each pair of unfinished slots after the first 3 slots
of the epoch (which is the maximum that can be accomplished before the execution of the CRI is
first preempted by the next window).

Using the same notation as in Section 2, since a non-idle CRI always ends on a window
boundary, the interruptions I are again a geometrically distributed string of intervals I¥(®) ending
with a no-collision CRI root node slot in the first slot of the window. This implies that equation

(1) still holds for the relation between the PGFs of I and the CRI length .

To derive a second relation between the PGFs of I and W, define an additional probability:

>

q3(2) probability of exactly 2 packets in the root CRI

and exactly 1 packet going to each of the left and right branches

1,2

= —e®

4 bl

which corresponds to the probability that the CRI is exactly 3 slots long, implying no extra
interrupt time is added to the STA epoch length in this case. Then W(z, z) can be expressed as:

Q(z,z) — p(x)z — Q3(:L‘)z3]
(1 —p(z) — q3(x))z?

Wiz, 2) = p(z)z + gs(2)2® + (1 = p(z) — g3(x))2°

z2=+/221(z,2)

The quantity in square brackets, when evaluated at /z, represents the PGF of the number of
extra interruptions (one per pair of unfinished epoch slots) conditioned on a CRI of greater than
3 slots, and consists of only integer powers of z because the STA epoch length is always odd (i.e.
Q(z, z) contains only odd powers of z). This PGF is evaluated at z2I(z, z) since this is the PGF
of the interrupt length plus the two useful slots gained for that interrupt.

Substituting equation (1) for W(z, z), the equation reduces to:
Pl 2) = Q(x, 2V (x, 2)). (25)
Differentiating the above and setting z = 1, the mean interrupt length is obtained:
2Q(z

T\ —)
””‘3—@wy (26)

which can be rewritten as:

- — - Qz)—1

) =) + 1) [4571
with the same interpretation as for a window size of 2, i.e. the mean interrupt is equal to the mean
epoch length plus a mean interrupt for the mean of each unfinished pair of an augmented epoch
length minus the first three slots. The augmented epoch length here is a normal epoch length plus

2 slots to force the CRI to experience a fresh interrupt and end on a window boundary.

13

The mean LCFS CRI length becomes:

W) = p(z)(z)
)| e
T (14 z)e™". (27)

As can be seen, the capacity is the same as for the fixed-size window SWA channel access method,
i.e. the throughput where @(a:) = 3, since the mean time to resolve a CRI must be less than the
time between new CRIs. The mean LCFS/STA CRI length, W (3)), is shown in Figure 3, and
the mean interrupt length, 7(3)\), is shown in Figure 4 as a function of the packet throughput per
slot.

3.2 Distribution of Delay During the CRI for the STA
3.2.1 Method 1: Using the Distribution of STA Epoch Length

The same approach is followed here as in Section 2.2.1 for a window size of 2, with the added
random variable definition:

Gs = delay during the CRI, given the CRI begins
in the third slot of a window instead of the first.

Then the following equations are obtained:

Gz, z) = Pr{(s,i)|L}z+Pr{(s,Z)|L}z2+_Pr{(c,)| L}2GS ()2, 2)
GB(z,z) = Pr{(i,s)|R}z—|—Pr{(f,s)|R]:zW2(i)(m/2,z)z
+Pr{(-,¢) | R}zWa(z/2, 2)G{)(2/2, 2).

The equation conditioned on the tagged packet taking the left branch is the same as that for
a window size of 2. When the right branch is taken, then either: with a left non-idle and right

success, the total delay will be 1 for the root slot, plus W2(Z> for the left CRI time starting in slot
2, plus only one extra slot since the left CRI will end at the beginning of slot 3 because the STA
epoch is of odd length; or with a right collision, the total delay will again be 1 for the root slot,
plus Wy for the left CRI time starting in slot 2, which always ends after slot 2, plus the right
delay starting in slot 3, ch). In the window = 3 case, no interrupt terms I(z, z) appear in this
equation because the left branch CRI ends after slot 2, allowing one more slot of the right branch
to be gained before the next window boundary.

An expression for ch) can be found by observing that ch) = G(®) 4 I, since after the initial
collision in slot 3, the window boundary imposes an extra interruption I before the next node is
visited:

G(z/2,2) — ®(2/2)z 7

() _ (e —
Gy (2)2,2) = GO (x/2,2) (=, 2) = a0 (2, 2)

An expression for Wa(2/2, z) is obtained in a similar manner as for the expression for Wz, z)
in Section 3.1. This time, W5 consists of a fixed window access STA epoch length @, plus an
interruption, I, for every pair of unfinished slots after the first two slots of the STA epoch (which

14

is the maximum that can be accomplished before the next window boundary). Since the STA
epoch length is always odd, this leads to the following:

2,z)— 2
Q/2,2) p(x/?))Z] I(z,2)z.
(1 —p(z/2))z i=/721(z,2)
The quantity in square brackets, when evaluated at \/z, represents the PGF of the number of extra
interruptions for each unfinished pair of epoch slots after the first two, with a last interruption
and slot added for the final single slot, which ends after slot 2. This expression reduces to:
x)2,21'%(x, 2))
IY2(z, 2) ’

Wa(e/2,2) = p(e/2)z + (1 - p(x/2))=”

Wa(x/2,2) = Q

(28)

All that remains is to find an expression for G(zc)(:v/Q,z), but this is easier said than done.
The problem is that this delay is a highly non-linear function of the power series expansion of
G(c)(z‘/Q, z) in terms of z, with the coefficients of the even powers of z remaining the same, but
with coefficients of the odd powers of z being multiplied by I(x,z). Instead of finding an exact

expression for ch)(x/Q, z), a pessimistic approximation is used here to obtain an upper bound for
the delay:

G\ (2)2,2) m r(z/2)22 + |G (x)2, 2) — r(z/2)2%| (=, 2)
where

r(x/2) = probability the tagged packet is sent in the 2nd slot of

a CRI with packet rate /2, given a collision in the root

et - []

This is pessimistic because all coefficients of powers of z greater than 2 in G(C)(:(:/Q, z) are multiplied
by I(xz,z), instead of just the coefficients of odd powers of z. However, since the probability of
delay being 4 or more slots is expected to be small (actually, consider the probability of delay of 6
or more slots because the probability of delay of 4 slots is zero since the 4’th is a fresh CRI slot),
this should be a reasonably tight upper bound.

Using this upper-bounding approximation,

GI(z,2) ~ ®(z)z+ &(x/2)(1 — B(x/2))22 + (1 — B(z/2))z [5(4’(901/‘?(1:(?/(;/2)%]

+ (1 - 8(z/2)): [G(r/z)= 2G/Y: (Z(ng/@ ~ B(z/2)): K
Wa(z/2,2) — <I>(.7:/2)z]
1— ®(z/2)
G(z/2,2) —®(z/2)z]| ,
1— ®(z/2)] I(w,2).

z,z)

GB(z,2) = @(r)z+(1_q>(x/2))q>(z/2)22[

+ (1 —®(2/2))zWa(2/2, z) [
Substituting the above into

G(z,z) = %G(L)(J;,z) + %G(R)(:[:, z),

15

and simplifying, a pessimistic approximation of G(z, z) is:

(®(z/4) — ®(z/2)) [1 Iz, z)H

+ Z%WQ(:K/Q, 2) [G(z/?, Iz, 2) + ()2, 2)z [1 Iz, z)”

N | =

G(z,z) = z% [G(m/?,z)[(z,z) +®(z/2,2)z [1 - [(1‘,z)] +

+o(z) [z . %(zz + z3)] . (29)
This expression is similar to that for a window size of 2, but with G + I pessimistically approxi-
mating the delay in the left branch CRI starting in slot 2 (with no interrupt I added if there is no
collision in the left branch node or if the tagged packet is sent in the 2nd slot of the left branch
CRI), and with no extra interruption added to the left branch CRI length W, starting in slot 2
since it ends after a slot 2.

Differentiating the above and setting z = 1, an upper bound on the mean delay in the CRI is:
— — 1= 3 1 1— 3
G(z) <1+ Gl(2/2) + 51(x) [2- S/ - 56_”4] + 5 Walw/2) - 5e7 (30)

An expression for I(z) for a window size of 3 is given in equation (26). To find W4 (z/2), equa-
tion (28) is differentiated to obtain:

Wa(z/2) = Qz/2) + T(x) [=25

which says to add an extra mean interrupt for the mean of every pair of epoch slots unfinished
after the first two (with only one subtracted to have an integer number of interrupts and finish
after the 2nd slot).

The expression for the upper bound in (30) was evaluated recursively and the resulting total

mean packet delay [T'(3) + G(3))], with T(3) = %, is shown in Figure 7. Also shown is the total

mean packet delay for the SWA/STA scheme. It can be seen that the delays of the two are very
close, making this a very tight upper bound. In the next subsection an ezact expression for the
mean and standard deviation of delay is derived.

3.2.2 Method 2: Using the Distribution of Delay During an SWA /STA Epoch

When assuming that the PGF of the distribution of delay during the epoch of transmission for
the SWA/STA method, Gg(z, z), is given explicitly as a power series of z, it is possible to derive
an exact expression for the LCFS delay distribution. Here it is assumed that Gg(z,z) is of the
form:

Gs(z,z) = Z gi(z)2'
i=1
with the coefficients g;(x) that are derived in [1] given in Appendix B.
The PGF of the LCFS delay during the CRI is then equal to:

G(2:9) = 0@z + 020)2 + 0202 + 3 [g0(@)s" 4 g @ 1), (32)

=2

16

since there will be an added interrupt, I, for the next 2 slots after the first 3 slots, two added
interrupts I for the two slots after these, and so on. The coefficients g;(z) can be calculated
explicitly, and so it is possible to evaluate the moments of G(z, z). Differentiating equation (32)
and setting z = 1,

G(z) g1(z) + 2g92(x) + 3g3(z)

+ Y gule) |2+ (= DI(@)] + g2iga (&) |20+ 1+ (= DI(2)

(oo}

= Gs@) +1@) Y= 1) [g2i(2) + g2ia ()]

=2

Using the expression for I(z) in equation (26), the above exact expression for G(z) was evaluated
and the resulting total mean delay [T(3) + G(3)] is shown in Figure 7 as a dotted line. The
Figure shows this delay is almost indistinguishable from the total mean delay for the SWA/STA
method, and also that the upper bound in equation (30) is a good approximation.

Differentiating equation (32) again,

G'(x,1) = 2g2(1’)+6g3(1’)—|—§:[22'(22'—l)gQi(z)—|—2i(2i—|—1)g2i+1(x)]

=2

#3020~ (@) (31 = 2gu(e) + (3 — Dyaera(e)] + (= DI, 1) [g1(0) + g1 (0)]
=2
An expression for I”(z, 1) is obtained by differentiating (25) again to get:

I"(z,1) = 3%% [Q”(:p,l) [1+ %T(l.)]z_i_f(x)@(m)— iﬁx) [3+§($)H.

The above exact expression for G''(z, 1) was evaluated and used in the expression for the standard
deviation of the LCFS total packet delay with w = 3 and = = 3A:

w? — —2
o= \/ﬁ +G"(x, 1)+ G(z) — G ().

Figure 8 compares this standard deviation with that for the SWA/STA method; just as for the
window size of 2, it can be seen that the standard deviation with the LCFS method is substantially
higher.

17

4 Conclusions

A new LCFS window access algorithm has been described which eliminates the continuous sensing
problem; stations are required only to have a common clock with common window boundaries every
2 or 3 slots. Exact expressions for the packet delay distribution for the LCFS preemptive channel
access method have been derived using two different analytical approaches for the the STA and
MTA conflict resolution algorithms with a fixed window size of 2, and for the STA with a window
size of 3; the analysis becomes intractable for the MTA with a window size of 3. The second
approach (‘Method 2’) is preferred over the first approach (‘Method 1°) as it makes use of formula
developed in [1] for the components of the delay distribution for the STA and MTA under the
Simplified Window Algorithm (SWA) for channel access; this simplifies the analysis and makes it
possible to obtain exact expressions for moments of the LCFS delay distribution for a window size
of 3 (which is not straightforward using Method 1).

The mean and standard deviation of these delays were evaluated with both analytical ap-
proaches for validation, and compared to those of the SWA access scheme (an unbiased MTA
was assumed). The mean delay with the LCFS scheme is only marginally higher than the SWA
scheme, but the standard deviation of the delay is significantly higher. If variation of delay is not
a concern, the LCFS method may therefore be a good alternative to the SWA, with the price of
eliminating the continuous sensing problem being increased delay variation. Further work should
be carried out to compare the mean delay and delay variation of the LCFS algorithm with that
of algorithms employing limited sensing. It is likely that the LCFS method will yield lower mean
delays, and that its higher delay variation may not be significant (or may even be lower) when
compared to these algorithms.

References

[1] G.C. Polyzos, ‘A Queueing Theoretic Approach to the Delay Analysis for a Class of Conflict
Resolution Algorithms’, PhD Thesis, Computer Systems Research Institute, University of
Toronto, 1988 (also Technical Report CSRI-224, January 1989).

[2] A. Leon-Garcia, ‘Probability and Stochastic Processes for Electrical Engineering’, Addison-
Wesley Publishing Company, 1989.

18

STA example: epoch length=5
assume 3 packets
arrive in window

collision

/ \ m'th slot used
left right
HO) HO)

collision success

L egend

n simultaneous
transmission attempts

Success Success MTA example: epoch length = 6

assume 3 packets
arrive in window

root

collision
left / \ right
)

idle level skip

left A right
3

EONENECO

collision success

Figure 1: Sample paths of STA and MTA binary trees

19

epoch length for

i'th window
Q
-
tagged assume tagged packet
packet + transmitted in 4'th
arrival epoch slot
in I'th 102034
window
start of
CRI for
i'th window
'i i+1 i+2 i+3 | i+4 i+5 i+6 i+7 windows
slots
.
(i+2) (i+3) (i+4) (i+6) (i+7)
< W(i+1) P> - W(i+5) P
- P
I 'ﬂ |
- — >
W(i) (i'th CRI length)
- - |
T G

(tagged packet delay
during i'th CRI)

Figure 2: Example of LCFS CRI length (W) and delay within the CRI (G) for window size of 2

20

100 N n
Mean |]
CRI ¢ : |
length |
(slots)

10 7
| VLCFS/MTA (unbiased);|
) window = 2
1 | | | |

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 3: Mean CRI length for LCFS window access and window sizes of 2 and 3

21

100 [n

Mean |]

interrupt I' .
length
(slots)

10) -

- LCFS/STA; window = 3 .

- LCFS/STA; window = 2 .

| LCFS/MTA (unbiased);

window = 2
1 ! ! !

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 4: Mean interrupt length for LCFS window access and window sizes of 2 and 3

22

I
100 N n
r Window = 2]
Mean |]
packet | .
delay
(slots)
10 - LCFS/STA\ —
L \ i
i SWA/STA]
LCFS/MTA (unbiased) -
\\SWA/MTA (unbiased) 1
1 ! ! ! ! ! ! ! ! !

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 5: Comparison of STA and MTA mean packet delay for window size of 2

23

100

Window = 2

Standard

deviation [
of packet

delay

(slots)

10

'\SWA/MTA (unbiased)

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 6: Comparison of standard deviation of STM and MTA packet delay for window size of 2

24

| T

100 N 5

Mean | .

packet | i
delay

- LCFS/STA; window = 3 .
(slots)

r upper bound 4

10 _

e LCFS/STA; window = 2
SWA/STA; window = 2
1 | | | | | | | | |

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 7: Comparison of STA mean packet delay for window sizes of 2 and 3

25

100

Window = 2
Standard
deviation |]
of packet
delay
- LCFS/STA; window = 2, .
\
(slots) \

10 +SWA/STA; window = 2

LCFS/STA; window = 3 -

\SWA /STA; window = 3

0 005 .1 b2 25 3 .35 4 45 5
Throughput

Figure 8: Comparison of standard deviation of STA packet delay for window sizes of 2 and 3

26

A Appendix: Epoch Length Distributions

A summary of the functional equations used for the STA and MTA epoch lengths as derived in
[1] are included here. Further derivatives were obtained for use with the equations in Appendix B

and C.

A.1 STA Epoch Length
The functional equation for the STA epoch length is:

Qs(z,2) = 2Q5(2/2,2) + (2 =) (1 + 2)e ™7
and the corresponding equation for the mean is:
Qg(z) =14+2Qg(x/2) —2(1 4+ z)e™".

The above equation was used for the numerical recursions. The power series expansion of the
mean was used to validate the recursion method and to evaluate I(z) and is given by:

Qs(x) =) o’
=0

where:

21 —1
ag = 1, a; =0, and ai:(—l)lll @)

) =93 ...
iy TR

Differentiating the functional equation further w.r.t. z,
— —2 e
Ua,1) = 2Q4(2/2,1) + 4Q5(2/2) + 2Qa(/2) - 6(1 + a)e,
and

(e, 1) = 2Q¢(2/2,1) + 6Q4(2/2,1) + 6Qs(2/2)Q4(x/2,1) + 6Q5(2/2) — 6(1 + 2)e ™"

A.2 MTA Epoch Length
The functional equation for the MTA epoch length is:
Qum(z,2) = 2Qu (7, 2)Qur (T, 2)+ (2= 221+ 2)e " +(2—22) |Qu(Tx, 2) —2(14Tx)e ™ | ™™
and the corresponding equation for the mean is:
Qu(x) =14 Qpy(rz) + Qu(Tz) — 2(1+ 2)e % + (1 + Tz)e ™ — e~ ™.

For the unbiased MTA with 7 = =, the mean is:

1
2)
Q) =142Q,(2/2) + e™2((1 + 2/2)e™/? — 1) — 2(1 + 2/2)e~ /2,
and differentiating further,
G) = 2Q0(e/2,1) +4Qu (2/2) + 2Qn (2/2) — 6(1 + 2)e ™
+e7 ™2 3(1 4+ 2/2)e™"/2 = 2Q, (2/2) — 2|,

27

and

M) = 2Q(x/2,1) + 6Ql(2/2, 1) + 6Qy (¢/2) Q4 (2/2,1) + 6Qs (2/2)
—6(1+x)e™® — 3e7"2Q (2/2,1) — 67/ |Qpr(x/2) — (1 + 2/2)e /2| .

B Appendix: Distribution of Delay in the SWA Epoch of
Transmission

A summary of equations for the STA and MTA distributions of delay in the SWA epoch of
transmission as derived in [1] is given here. The equations were further differentiated for use in
the equations for the standard deviation in Appendix C.

B.1 Delay in the SWA /STA Epoch of Transmission
The functional equation is:
1 1
Gs(a,2) = =3 [Qs(a:/z,)+ 1] Gs(2/2,2)+ 0(a) |2 = 5(:* + %)
. The power series expansion is:

(z,2) = Zgl

where:

go(z) =0, gi(x)=e€"", ga(x) = :

[e—x/4 _ e—x/? +ze®

N

[e—x/Q _ e—x] . ga(z) =

N | —

si(@) = 3 [0+ Y aom(e/Don(e/2)] . 023

and where ¢;(z) are the coefficients of the STA epoch length PGF power series:

1,2

i) =0, a(e) = (1+2)e, aa(x) = Te,

q2i41 l‘) Z qdm $/2 q2i— m(r/2) 1= 2131"'

m=0

The mean delay is:
— — 1— 3
Gs(z) =1+ Gs(2/2) + 5Qs(2/2) — ge™7,

and differentiating again,

Gse,1) = Gs(2/2,1) + %Q's'(fﬁ/2,1)+és(r/2) Qs(2/2) = 1| + Qs(x/2) — 477

28

B.2 Delay in the SWA/MTA Epoch of Transmission
For the unbiased MTA, the functional equation is:
v 1 v 1 v —z/2 2| -z
Gu(z,z) = ZEGM(:L‘/Q,Z) + Z§GM(1‘/2, z) |:QM(CL‘/2, 2)+ (1= 2)e] + [z —z] e ",
with first moment:
_ _ 11—
Gu(2) = 1+ Cul2/2)+ 5 [QM(:c/z) _ e—m] _e,
and second derivative:

Gl (1) = Gl (o /2, 1)+ 5 Qs /2, V)G (2/2) (@ /242717 | 4Q g (/21227

C Appendix: Statistics of the SWA Packet Delay

C.1 The Mean

The mean SWA packet delay is the sum of the mean of its three component delays. For the STA
this sum is:

% + I(2) + Gra(z)

where L is the lag, i.e. the delay of the sliding windows before they are served by the next CRI,
and where T'A = S or M denotes either the STA or MTA tree traversal algorithm respectively.

For a window size w = 2, the value L(z) is given by:

For a window size w = 3,

C.2 The Standard Deviation
The standard deviation of the SWA packet delay is:

—2

2 _ _ .
orA = \/% + L'z, 1)+ L(z) — L™ (2) + G} 4(z,1) + Gra(z,1) — GQTA(:L’).

For a window size w = 2,

3[Qfa(e,1) = 2)" = 2[@ra(e) = 2] [Qfa(e,)+ 3Qfa(a,) = 6]
6 [@TA(JU) - 2]2

L'(z,1)=
For a window size w = 3,
2
(e)=1-2 [M] 41 [M] _ 1[%(1’:1)—6]
) - 2 3 .

2 @TA($)—3 @TA(JL')_3 @TA(I)_3

29

