
CS 204 Lecture Notes on Elementary Network Analysis

Mart Molle
Department of Computer Science and Engineering

University of California, Riverside CA 92521
mart@cs.ucr.edu

October 18, 2006

1 First-Order “Fluid Flow” Models

1.1 Graph Theoretic Representation of a Network

Starting from the basic concepts from graph theory, we can create simple network models from which we
can derive some fundamental properties of the system without having to work too hard. nor make too many
restrictive assumptions.

1.2 Network Topolgy

Consider a graph G(N,E) with N nodes and E edges. Each node represents an external network user or an
internal packet switch that is part of the network infrastructure. Similearly, each edge represents a low-level
communications link that connects its source node to its destination node.

The network structure is represented by a (weighted) N×N adjacency matrix called the topology matrix,
C, whose (i, j)th entry ci,j is either zero, if there is no link from node ni to node nj , or the normalized
capacity of that link, otherwise. The choice of units is arbitrary, as long as we are consistent: we could use
bits/sec, packets/sec or something else.

1.3 Traffic Demand

From the perspective of the users, the internal structure of the network is not terribly important. Users
rely on the network to transport their data from its source to the corresponding destination. However, the
particular path through the subnet that is used for each end-to-end flow is irrelevant — as long as the quality
of service provided by the network is adequate. Futhermore, the network service provider(s) may decide to
change these paths at any time (without informing the affected users) in response to equipment failures,
transient traffic congestion, or other factors.

1

2

3

4

Topology Matrix: C

1 2 3 4

1 0 10 10 0

2 10 0 0 10

3 10 0 0 10

4 0 10 10 0

Figure 1: Sample 4-node network and its associated topology matrix



Molle: CS 204 Lecture Notes 2

Traffic Demand Matrix: !

1 2 3 4

1 0 1 2 2

2 2 0 3 7

3 1 1 0 2

4 4 3 1 0

sum: 7 5 6 11

Figure 2: N × N traffic demand matrix, Γ. Row i shows traffic generate rate source node i to every other
destination node. At the bottom of column j shows the total traffic generated by all sources for destination
node j.

For these reasons, the user traffic demand is described relative to an N×N fully connected virtual overlay
network, Γ, whose (i, k)th entry, γi,k represents the normalized rate at which source node ni generates traffic
that must be delivered by the network to destination node nk. Note that all diagonal entries must be zero,
since nodes don’t use the network to deliver traffic to themselves! However, every other entry γi,k could be
non-zero — even if the corresponding entry in the topology matrix ci,k is zero — because Γ is calculated as
if all traffic follows one-hop paths through the virtual overlay network.

1.4 Transforming the Model into a Line Graph Representation

Let us now shift the focus of our discussion to the attributes of the communication links rather than the
switches. For simplicity, let’s assume unless otherwise stated that we have a wired network. The broadcast
delivery property of wireless channels makes it messy to determine which nodes are directly connected to
a given link. In addition, let’s assume that all links are unidirectional and point-to-point. Even though
most wired network links are bi-directional, some network architectures are specifically designed to use
unidirectional links. Moreover, even if the links are bi-directional, the traffic on the link is usually quite
different between the two directions. For notational clarity, I will follow the convention where each node
is labelled by a distinct number (i.e., ni ∈ {1, 2, . . . } ≡ N), and each edge is labelled by a distinct letter
(i.e., lj ∈ {a, b, . . . } ≡ E). We also define the following conversion functions between these two labelling
conventions so that, if nodes 1 and 2 are connected by edge a, then we can say a ≡ edge(1, 2), 1 ≡ head(a)
and 2 ≡ tail(a).

To accomodate this change of focus, we will now transform the graph G, which represents the network
as a collection of switches, into its associated line graph G∗, which represents the network as a collection of
communication links, by applying the following simple rules:

• every edge in G is a node in G∗, and

• two nodes in G∗ are connected by an edge if and only if the corresponding edges in G meet at a common
vertex.

• More generally, if G is a directed graph, then so is G∗, and there is a directed edge from node li to
node lj in G∗ if and only if tail(li) ≡ head(lj) in G.

This line graph network representation offers several advantages over our original node-based model.
First, link bandwidth is the most critical resource in a network because it is constrained by the available
physical-layer technology and/or the subject of recurring monthly charges from an outside service provider.
Conversely switching (i.e., deciding where next to send each arriving packet based on its input port and the
information carried in its header) is essentially just a highly parallelizable table lookup problem that can
be solved by a one-time hardware purchase. Therefore, it is probably best to visualize the operation of the



Molle: CS 204 Lecture Notes 3

1

2

3

4

X
a

b

c

d

e f

g

h

ij

k

l

a b c d

e f g h

i j k l

Figure 3: The simple network of Fig. 1 expanded into a directed graph representation shown at left. External
node X has been added to serve as the source and sink of all end-to-end traffic; its link directions vary as a
function of the destintion. The corresponding line graph is shown at right, assuming node 3 is the destination.

network as packets visiting a sequence of communication links, as opposed to visiting a sequence of switching
nodes. While a packet is associated with a particular link l , it may be:

• waiting in the corresponding output queue at node head(l ) until link l is available,

• being transmitted over link l at the rate of c∗l bits per unit time, or

• traveling at the propogation velocity of the channel from node head(l ) to node tail(l ).

Second, some of the important features in commonly-used routing algorithms can only be expressed by
a switching function that depends on the packet’s input port. For example, suppose a packet addressed to
destination node n arrives on link li of a standard layer-2 transparent bridge. If n is an unknown address,
then the bridge must broadcast the packet to all ports except li. Otherwise, the switch first finds the output
port lj for address n in its forwarding database, and then sends one copy of the packet only to port lj — unless
li ≡ lj , in which case it must discard the packet. VLAN-capable bridges go even further, by partitioning the
switching function to create multiple disjoint logical layer-2 networks on the basis of port numbers, protocol
types, or explicit VLAN tags. Finally, many IP routers support very general control policies (using a set
of pattern-matching rules called an access-control list, or ACL) to control the types of traffic (based on
pattern-matching of IP addresses, protocols, port numbers, etc) that are permitted to enter or leave the
router through each interface.

Third, the line graph representation makes it easy to apply the (vast) research literature about queueing
network models and/or commputer systems performance analysis. In this case, complex systems are modelled
as a collection of resources (or service centers), together with a set of tasks (or customers) who visit a sequence
of resources to obtain service. In general, each resource corresponds to some individaul active processing
element, such as a CPU or disk drive, and there is a directed edge connecting one resource to another if
tasks leaving the first resource may proceed directly to the second one. It is assumed that each resource
has a limited capacity to process tasks, whereas the time for a task to move from one resource to another is
negligible. This is exactly the opposite of what we need for analyzing networks if we try to set up a model
where resources represent the packet switches, but it fits perfectly with the line graph representation.



Molle: CS 204 Lecture Notes 4

Routing Tables at each Node (only info for destination 3 shown)

Label Conversion Function: upper-left element not used; arrivals from destination node are bogus

link head tail

a X 1 Node 1: Node 2:

b X 2 a e h b f k

c X 3 a ? 0.6 0.4 b ? 1 0

d X 4 f 0 0 1 e 0 0 1

e 1 2 g 0 0 0 l 0 1 0

f 2 1

g 3 1

h 1 3 Node 3: Node 4:

i 4 3 c g j d i l

j 3 4 c ? 0 0 d ? 1 0

k 2 4 h 1 0 0 j 0 0 0

l 4 2 i 1 0 0 k 0 1 0

Figure 4: Local routing tables for each node of the sample four-node network using the line graph represen-
tation. For compactness, only the layer corresponding to destination node 3 is shown.

Global Routing Table R (only info for destination 3 shown) Also represents Adjacency Matrix for Line Graph

upper left quadrant represents routing table at node X

a b c d e f g h i j k l

a 0.6 0.4

b 1 0

c 0.33333 0.5 0 0.16667 0 0

d 1 0

e 0 0 1

f 0 0 1

g 0 0 0

h 1 0 0

i 1 0 0

j 0 0 0

k 0 1 0

l 0 1 0

Figure 5: Global routing matrix R for the sample four-node network using the line graph representation.
For compactness, only the layer corresponding to destination node 3 is shown.

1.5 Routing Matrix

In order to satisfy the user traffic generated by its customers, network service providers must map that traffic
demand, Γ, onto the physical network topology. Therefore, the network administrator must generate (either
manually, or by enabling some automated route-update protocol) a local routing table, R(n), for each node n
in the physical network graph. This local routing table enables node n to select an appropriate “next hop”
towards the final destination for each traffic flow. If we focus on the line-graph representation of the network,
then R(n) has one row per input link, one column per output link, and one layer per destination, as shown
in Fig. 4. The (i, j, k)th entry of this three-dimensional matrix, ri,j,k, gives the fraction of traffic arriving on
link li should be forwarded to link lj if its final destination is node k. Combining the local routing tables for
each node gives us the global routing matrix R for the network, as shown in Fig. 5.

We say that the routing matrix R supports sink tree routing if for every destination k, R forces all traffic
to follow a connected subtree of “inbound” edges directed toward node k at its root. Distance-vector IP
routing algorithms (such as RIP) as well as the well-known transparent bridging algorithm used by local
area network switches fit within this category. Bridges use the same tree for all traffic (up to the direction
of each edge), whereas RIP in general will use different sink trees for each destination. Since all traffic that
enters node n on its way to destination node k must follow the same fixed path from n to k, we see that:

• all rows of R(n) must be identical, since the routing cannot depend on a packet’s starting node nor



Molle: CS 204 Lecture Notes 5

b

e f h

l

Figure 6: Graphical representation of the input/output terms that affect flow conservation at link f for
traffic going to destination node 3.

through which incoming link it entered node n ; and

• each row of R(n) must contain the value one in a single column and zeros everywhere else, or multiple
paths to node k will be created.

Among all the local routing tables shown in Fig. 4, only R(3) has the required form to satisfy sink tree
routing. However, one could argue that R(4) should also be counted, since the only discrepancy to discard
any packets that would otherwise be trapped in a non-sensical “ping-pong” loop between links i and j.
Conversely, R(2) clearly violates the sink tree rule because it sends all traffic that arrived on link e to one
outgoing link and all other traffic to a different outgoing link.

We say that the routing matrix R supports bifurcated routing if some nodes, say n use multiple outgoing
links to forward traffic to a single destination, say node k. For example, R(1) in Fig. 4 shows that node 1
distributes locally-generated traffic going to destination 3 between its two available outgoing links. In such
cases, we assume that node n makes a series of local decisions on how to distribute traffic for destination k
between the available paths. Link-state IP routing algorithms (such as OSPF) fit within this category.

Clearly, line graph-based routing tables give us considerable flexibility in representing routing policies,
allowing us to include the packet’s current location n , its final destination k, and optionally the input link
by which it reach n as factors in the local routing decision at node n . Although the routing decision could
be further generalized to include the packet sender as another factor, at some point we exceed the “memory
limit” of this approach. For example, a completely memoryless routing table that does not consider how a
packet reached node n cannot prevent the “ping-pong” loop from link j to link i without blocking all packet
deliverys to node 3. Line graph-based routing tables can prevent such 2-hop loops, but cannot detect longer
cycles. For this reason, real networks add external mechanisms to avoid packet looping problems, such as
carrying a hop-count (or “time-to-live”) field in each packet header.

1.6 Calculating the Link Flows

Let Λ be the E×N matrix of link flows, whose (k, l )th element λk,l is the rate at which traffic for destination
k traverses link l . Since the flow calculation problem must be solved separately for each destination (since
packets intended for one destination are not interchangeable with packets intended for another), let us also
define the E-element row vector ~λ(k) ≡ {λk,l1 , . . . , λk,lE} to simply the notation in the formulas given below.

Given the end-to-end traffic demand matrix, Γ, and global routing matrix, R, we can find the link flows
by solving a set of simultaneous linear equations that enforce conservation of flow at every point in the
network.1 All the necessary information for deriving these flow conservation equations is contained in the

1This technique is widely used in circuit analysis, where it is called Kirchoff’s First Law of conservation of the electric charge



Molle: CS 204 Lecture Notes 6

 R
T
 - I flow Solution

balance vector

a b c d e f g h i j k l constraint

a -1 0 0.33333 0 0 0 0 0 0 0 0 0 0 2.0

b 0 -1 0.5 0 0 0 0 0 0 0 0 0 0 3.0

c 0 0 -1 0 0 0 0 1 1 0 0 0 0 6.0

d 0 0 0.16667 -1 0 0 0 0 0 0 0 0 0 1.0

e 0.6 0 0 0 -1 0 0 0 0 0 0 0 0 1.2

f 0 1 0 0 0 -1 0 0 0 0 0 1 0 3.0

g 0 0 0 0 0 0 -1 0 0 0 0 0 0 0.0

h 0.4 0 0 0 0 1 0 -1 0 0 0 0 0 3.8

i 0 0 0 1 0 0 0 0 -1 0 1 0 0 2.2

j 0 0 0 0 0 0 0 0 0 -1 0 0 0 0.0

k 0 0 0 0 1 0 0 0 0 0 -1 0 0 1.2

l 0 0 0 0 0 0 0 0 0 0 0 -1 0 0.0

normalize 0 0 1 0 0 0 0 0 0 0 0 0 6

condition

! 

"

! 

= "
*,3#

Figure 7: Matrix solution to link flows in the sample four-node network. For compactness, only the layer
corresponding to destination node 3 is shown.

line graph representation of the network (e.g., Fig. 3) and the associated routing probabilities (e.g., Fig. 5).
In general, for any link l ∈ E (i.e., a node in G∗) and any destination node k, the flow rate of destination-

k traffic in and out of link l must be balanced. For example, Fig. 6 shows the subgraph of direct inputs and
outputs to link f . Notice that head(f) = 2 and tail(f) = 1 so all input links connect through node 2, and
all outputs connect through node 1. Also, since neither endpoint of link f connects to the destination node,
the directions of both links b and a are inbound from X and hence b is the only externl link that affects this
flow balance condition.

Let us now consider what happens to the packets when they arrive at switch tail(l ). The hardware design
of a packet switch can use either input queueing or output queueing. In an input queueing design, the packets
first wait at their input port until their respective output link is available and then move to their respective
output port. Conversely, in an output queueing design the packets first move to their respective output
ports as quickly as possible, and then wait until the link is available. Output queueing is the overwhelming
design choice because it eliminates a performance bottleneck called “head of the line” blocking — where one
packet waiting for a busy output port can delay many packets behind it in the queue, even if their respective
output ports are idle. Thus, if we assume the packet switches use output queueing, then all traffic arriving
at node tail(l ) is immediately removed from link l and either moved to the appropriate output queue or
discarded because it violates some policy decision. Either way, the total output rate of destination-k traffic
from the link is clearly λk,l . Thus: ∑

i∈E,
tail(i)≡head(l )

λk,i · ri,l ,k = λk,l (1)

All of these flow-conservation equations can be combined to form a single matrix equation covering all
destination-k traffic:

~λ(k) ·R = ~λ(k) · I (2)

where I is the E×E identity matrix. It is easy to solve such systems of equations using Gaussian elimination,
but first we need to put it into standard form A~x = ~b, where A is a square matrix of coefficients, ~x is the
column vector of unknowns, and ~b is the column vector of right-hand sides. After some simple algebraic
manipulations, Eq. 2 may be rewritten into the required form:

[R − I]T · ~λ(k)T

= ~0 (3)

where ~0 is the all-zero column vector. At this point, we are almost finished. Unfortunately, the system
of equations shown here is linearly dependent because we can solve for any single flow given the others via

entering and leaving any junction point.



Molle: CS 204 Lecture Notes 7

conservation of flow, and indeed a careful look at Eqs. 2 and 3 shows that ~λ(k)T ≡ ~0 is one of many possible
solutions. Thus, the final step is to drop one of rows in Eq. 3 and replace it by the normalizing equation
defined by the Γ matrix. In this case, the flow from destination node k to external node X must be equal
to the kth column sum of Γ.

Figure 7 shows the result of applying this solution methodology to the destination-3 traffic in our 4-node
sample network.2 The normalizing equation forms an extra row below the terms as defined by Eq. 3.

1.7 Average Path Length

We define the average path length for traffic carried by a network to be the ratio of the total distance covered
(in hops) in delivering all traffic divided by the total amount of traffic delivered. Similar definitions can be
made for traffic going to a specific destination node, and for traffic going from a specific source to a specific
destination.

The denominator for this ratio (in the form of a rate) can be found from the end-to-end traffic demand
matrix, Γ, which includes all traffic but assumes one-hop delivery through some virtual overlay network.
Similarly, the numerator for this ratio can be found from the link flow matrix, Λ, which also includes all
traffic but counts it towards the flow of every link traversed.

Thus, the global path length for all traffic carried by the network is simply Λ/Γ, the sum of all entries in
the link flow matrix divided by the sum of all entries in the end-to-end demand matrix. Similarly, we can
find the average path length for destination-k traffic by summing the entries in flow vector ~λ(k) and dividing
by the kth column sum from Γ.

2Since MS Excel has a built-in function for carrying out matrix inversion but not for Gaussian elimination, the final solution
shown as the right-most column vector in the Fig. 7 was computed through the seeminly equivalent, but numerically less-stable,
formula ~xT = A−1~bT .


