
• Evolving Graph Engine
o Shared CommonGraph
o Addition delta batches

• CommonGraph Primitives

7. CommonGraph System

Our Idea:
• Transform deletions to additions using CommonGraph
• Finding the common edges between snapshots
• CommonGraph Approach à

o Solve the query on the CommonGraph
o Add the missing edges and incrementally update the results

3. Solution

CommonGraph Query Evaluation:
• Work Sharing Query Evaluation

o Find each snapshots from CommonGraph
o Significantly lower number of additions
o Better performance comparing to the Direct-Hop

approach with less additions

5. Work Sharing Algorithm

CommonGraph: Graph Analytics on Evolving Data
Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, Rajiv Gupta
University of California, Riverside

• Approaches for query evaluation on Evolving Graphs
o Naïve Approach
o Incremental Approach
o CommonGraph Approach

• Naïve approach is not efficient because à
o Solve the query on each snapshots independently

• Naïve approach is not efficient because à
o Deletion operation is significantly more expensive than

addition operations

2. Problem

CommonGraph Query Evaluation:
• Direct Hop Query Evaluation

o Find each snapshot directly from the CommonGraph
o Higher number of Addition
o Better performance comparing to conventional

method with only additions

4. Direct Hop Algorithm
• Finding the best scheduling in Work-Sharing algorithm

o Creating the Triangular Grid
o Steiner Tree Algorithm

6. Scheduling

• Benchmarks

• Input Graphs

• Performance

8. Evaluation

• Dynamic Graph Systems
o Streaming Graph Processing
o Evolving Graph Processing

1. Background

Algorithms EdgeFunction (𝒆(𝒖, 𝒗))

BFS 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,min 𝑉𝑎𝑙 𝑢 + 1, 𝑣𝑎𝑙 𝑣)
SSWP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,min 𝑉𝑎𝑙 𝑢 , 𝑤𝑡 𝑢, 𝑣)
SSNP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,max 𝑉𝑎𝑙 𝑢 , 𝑤𝑡 𝑢, 𝑣)
SSSP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 , 𝑉𝑎𝑙 𝑢 + 𝑤𝑡(𝑢, 𝑣))

Viterbi 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 , 𝑉𝑎𝑙 𝑢 /𝑤𝑡(𝑢, 𝑣))

Fig.3 The mutation and computation cost of the addition vs. deletion

Input Graphs |Nodes| |Edges| Avg degree
LiveJournal (LJ) 4M 70M 28.26
DBpediaLinks (DL) 18M 170M 18.85
WikipediaLinks (Wen) 13M 400M 64.32
Twitter (TTW) 41M 1.5B 70.51

Fig.1 Evolving graph processing for three different snapshots of a graph

Fig.2 Shortest path will change when we add and delete some edges

Session 8C: Graphs B
1:00-2:05 PM Wed

0

0.05

0.1

0.15

0.2

0.25

0.3

75K 150K 225K 300K 375K

Ti
m

e
(S

ec
on

ds
)

Addition Deletion

Computation Cost of the Additions vs.
Deletions in KickStarter for SSSP

Graph Mutation Cost of the Additions vs.
Deletions in KickStarter

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

75K 150K 225K 300K 375K

Ti
m

e
(S

ec
on

ds
)

Addition Deletion

Fig.4 Finding the CommonGraph between two snapshots of a graph

A B A B A B

Graph at Time 𝑡 Graph at Time 𝑡 + 1 Graph at Time 𝑡 + 2

Add 5 Edges
Delete 5 Edges

Add 3 Edges
Delete 4 Edges

A B A B A B

Graph at Time 𝑡 Graph at Time 𝑡 + 1 Graph at Time 𝑡 + 2
Add 5 Edges

Delete 5 Edges
Add 3 Edges

Delete 4 Edges

Shortest Path
Between A and B

Shortest Path
Between A and B

Shortest Path
Between A and B

Graph at Time 𝑡 Graph at Time 𝑡 + 1 Graph at Time 𝑡 + 2

Intermediate
CommonGraph 1

Intermediate
CommonGraph 2

CommonGraph

Common
Graph Vertex value

arrays

Graph
Updates

𝝙 edges in evolving batches

Query
Results

Query on
Snapshots

CSR
Format

Query
Evaluation
Schedule

0

1

2

3

4

5

6

7

8

9

LJ DL Wen TTW LJ DL Wen TTW LJ DL Wen TTW LJ DL Wen TTW LJ DL Wen TTW
BFS SSSP SSWP SSNP Viterbi

Sp
ee

du
p

Direct-Hop Work-Sharing

CommonGraph achieves 1.38× − 8.17× improvement in performance over
Kickstarter across multiple benchmarks.

• Sensitivity to the Different Number of Snapshots

• Sensitivity to Batch Size

9. Sensitivity Analysis

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
on

ds
)

Snapshots

 KickStarter Direct-Hop Work-Sharing

TTW-SSWP

For the fewer number of snapshots,
the Direct-Hop algorithm works better

than Work-Sharing.

Work-Sharing outperforms Direct-Hop when we
increase the number of snapshots beyond 23 to

35 for different benchmarks.

0

2

4

6

8

10

12

75000-50 93750-40 125000-30 187500-20 375000-10

Ti
m

e
(S

ec
on

ds
)

Batch Size - Snapshots

KickStarter Direct-Hop Work-Sharing

TTW-SSWP

For the bigger batch size, the direct-hop algorithm works better compared to the work-
sharing, and for the smaller number of the batch size, the work-sharing works better.

Version control API Description

get_version (number) Retrieve a snapshot

diff (snapshot, snapshot) Identifies difference between two snapshots

new_version (∆!, ∆") Create a new snapshot and update common graph

Query API API function

edge_function (edge) Algorithm specific edge function

schedule (vertex_id, mode) Schedule active vertex

update (vertex_id) Atomic update function

𝐺! 𝐺!"# 𝐺!"$

𝐺%

𝐺!"&

Δ!" Δ!#

Δ!$ Δ!% Δ!& Δ!'

Δ!(Δ!) Δ!* Δ!"+ Δ!"" Δ!"#

Δ!# + Δ!'Δ!" + Δ!$

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺#

𝐺%

𝐺!"&

𝐼𝐶𝐺&

Δ!(Δ!) Δ!"" Δ!"#

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺# 𝐼𝐶𝐺$

𝐺%

𝐺!"&

𝐼𝐶𝐺&

𝐼𝐶𝐺' 𝐼𝐶𝐺(

Δ!" Δ!#

Δ!$ Δ!% Δ!& Δ!'

Δ!(Δ!) Δ!* Δ!"+ Δ!"" Δ!"#

𝐼𝐶𝐺# 𝐼𝐶𝐺$ 𝐼𝐶𝐺&

𝐼𝐶𝐺' 𝐼𝐶𝐺(

Step1: Creating
Triangular Grid

Step2: Identify Steiner
Tree

Step3: Bypass nodes
with indegree and

outdegree of 1

Fig.8 Algorithm for Identifying Minimum Cost Query Evaluation Schedule

Fig.7 Two Trees Corresponding to Query Evaluation Schedules with Different Costs

𝐺) 𝐺)"# 𝐺)"$

𝐼𝐶𝐺#

𝐺%

5 𝑎𝑑𝑑

𝐼𝐶𝐺$
5 𝑎𝑑𝑑

4 𝑎𝑑𝑑

3 𝑎𝑑𝑑

4 𝑎𝑑𝑑 5 𝑎𝑑𝑑

𝑇𝐺

𝐺) 𝐺)"# 𝐺)"$

𝐼𝐶𝐺#

𝐺%

5 𝑎𝑑𝑑

𝐼𝐶𝐺$
5 𝑎𝑑𝑑

4 𝑎𝑑𝑑

3 𝑎𝑑𝑑

4 𝑎𝑑𝑑 5 𝑎𝑑𝑑

𝑇𝑟𝑒𝑒!

𝐺) 𝐺)"# 𝐺)"$

𝐼𝐶𝐺#

𝐺%

5 𝑎𝑑𝑑

𝐼𝐶𝐺$
5 𝑎𝑑𝑑

4 𝑎𝑑𝑑

3 𝑎𝑑𝑑

4 𝑎𝑑𝑑 5 𝑎𝑑𝑑

𝑇𝑟𝑒𝑒"

22
Additions

21
Additions

Fig.5 CommonGraph Direct Hop approach for three snapshots

Fig.6 CommonGraph Work Sharing approach for three snapshots

Fig.9 Evolving Graph Engine

Graph at Time 𝑡 Graph at Time 𝑡 + 1 Graph at Time 𝑡 + 2

Graph at Time 𝑡 Graph at Time 𝑡 + 1

CommnGraph

