
CommonGraph: Graph Analytics on Evolving Data

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, Rajiv Gupta University of California, Riverside

Session 8C: Graphs B 1:00-2:05 PM Wed

1. Background	2. Problem	3. Solution	
 Dynamic Graph Systems Streaming Graph Processing Evolving Graph Processing 	 Approaches for query evaluation on Evolving Graphs Naïve Approach Incremental Approach CommonGraph Approach Naïve approach is not efficient because → Solve the query on each snapshots independently 	 Our Idea: Transform deletions to additions using CommonGraph Finding the common edges between snapshots CommonGraph Approach → Solve the query on the CommonGraph Add the missing edges and incrementally update the results 	
Graph at Time t Graph at Time $t + 1$ Graph at Time $t + 1$ Add 5 Edges Add 3 Edges	- 2 Addition Deletion Addition Deletion O.3 Addition Deletion		

Version control API	Description
get_version (number)	Retrieve a snapshot
diff (snapshot, snapshot)	Identifies difference between two snapshots
new_version (Δ_+ , Δ)	Create a new snapshot and update common graph

Query API	API function		
edge_function (edge)	Algorithm specific edge function		
schedule (vertex_id, mode)	Schedule active vertex		
update (vertex_id)	Atomic update function		

Innut Granh		ndesl	Fdges	Avg degree
Viterbi	CASMIN(Val(v), Max(Val(u), wt(u, v))) $CASMIN(Val(v), Val(u) + wt(u, v))$ $CASMIN(Val(v), Val(u)/wt(u, v))$			
SSSP				
55111				

it Graphs				
	LiveJournal (LJ)	4M	70M	28.26
	DBpediaLinks (DL)	18M	170M	18.85
	WikipediaLinks (Wen)	13M	400M	64.32
	Twitter (TTW)	41M	1.5B	70.51

CommonGraph achieves $1.38 \times - 8.17 \times$ improvement in performance over Kickstarter across multiple benchmarks.

For the bigger batch size, the direct-hop algorithm works better compared to the worksharing, and for the smaller number of the batch size, the work-sharing works better.