
• Evolving Graph Engine
o Shared CommonGraph
o Addition delta batches

• CommonGraph Primitives

7. CommonGraph System

Our Idea:
• Transform deletions to additions using CommonGraph
• Finding the common edges between snapshots
• CommonGraph Approach à

o Solve the query on the CommonGraph
o Add the missing edges and incrementally update the results

3. Solution

CommonGraph Query Evaluation:
• Work Sharing Query Evaluation

o Find each snapshots from CommonGraph
o Significantly lower number of additions
o Better performance comparing to the Direct-Hop 

approach with less additions

5. Work Sharing Algorithm

CommonGraph: Graph Analytics on Evolving Data
Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, Rajiv Gupta
University of California, Riverside                   

• Approaches for query evaluation on Evolving Graphs
o Naïve Approach
o Incremental Approach
o CommonGraph Approach

• Naïve approach is not efficient because à
o Solve the query on each snapshots independently

• Naïve approach is not efficient because à
o Deletion operation is significantly more expensive than 

addition operations

2. Problem

CommonGraph Query Evaluation:
• Direct Hop Query Evaluation

o Find each snapshot directly from the CommonGraph
o Higher number of Addition
o Better performance comparing to conventional 

method with only additions

4. Direct Hop Algorithm
• Finding the best scheduling in Work-Sharing algorithm

o Creating the Triangular Grid
o Steiner Tree Algorithm 

6. Scheduling 

• Benchmarks

• Input Graphs

• Performance

8. Evaluation

• Dynamic Graph Systems
o Streaming Graph Processing
o Evolving Graph Processing

1. Background

Algorithms EdgeFunction (𝒆(𝒖, 𝒗))

BFS 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,min 𝑉𝑎𝑙 𝑢 + 1, 𝑣𝑎𝑙 𝑣 )
SSWP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,min 𝑉𝑎𝑙 𝑢 , 𝑤𝑡 𝑢, 𝑣 )
SSNP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 ,max 𝑉𝑎𝑙 𝑢 , 𝑤𝑡 𝑢, 𝑣 )
SSSP 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 , 𝑉𝑎𝑙 𝑢 + 𝑤𝑡(𝑢, 𝑣))

Viterbi 𝐶𝐴𝑆𝑀𝐼𝑁(𝑉𝑎𝑙 𝑣 , 𝑉𝑎𝑙 𝑢 /𝑤𝑡(𝑢, 𝑣))

Fig.3 The mutation and computation cost of the addition vs. deletion 

Input Graphs |Nodes| |Edges| Avg degree
LiveJournal (LJ) 4M 70M 28.26
DBpediaLinks (DL) 18M 170M 18.85 
WikipediaLinks (Wen) 13M 400M 64.32
Twitter (TTW) 41M 1.5B 70.51

Fig.1 Evolving graph processing for three different snapshots of a graph

Fig.2 Shortest path will change when we add and delete some edges
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Fig.4 Finding the CommonGraph between two snapshots of a graph
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Direct-Hop Work-Sharing

CommonGraph achieves 1.38× − 8.17× improvement in performance over 
Kickstarter across multiple benchmarks.

• Sensitivity to the Different Number of Snapshots

• Sensitivity to Batch Size

9. Sensitivity Analysis
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For the fewer number of snapshots, 
the Direct-Hop algorithm works better 

than Work-Sharing.

Work-Sharing outperforms Direct-Hop when we 
increase the number of snapshots beyond 23 to 

35 for different benchmarks. 
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For the bigger batch size, the direct-hop algorithm works better compared to the work-
sharing, and for the smaller number of the batch size, the work-sharing works better. 

Version control API Description 

get_version (number) Retrieve a snapshot 

diff (snapshot, snapshot) Identifies difference between two snapshots 

new_version (∆!, ∆") Create a new snapshot and update common graph 

Query API API function 

edge_function (edge) Algorithm specific edge function 

schedule (vertex_id, mode) Schedule active vertex 

update (vertex_id) Atomic update function 
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Fig.8 Algorithm for Identifying Minimum Cost Query Evaluation Schedule

Fig.7 Two Trees Corresponding to Query Evaluation Schedules with Different Costs
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Fig.5 CommonGraph Direct Hop approach for three snapshots

Fig.6 CommonGraph Work Sharing approach for three snapshots

Fig.9 Evolving Graph Engine
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