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Abstract
When evaluating an iterative graph query over a large graph,

systems incur significant overheads due to repeated graph

transfer across the memory hierarchy coupled with repeated

(redundant) propagation of values over the edges in the

graph. An approach for reducing these overheads combines

the use of a small proxy graph and the large original graph in

a two phase query evaluation. The first phase evaluates the

query on the proxy graph incurring low overheads and pro-

ducing mostly precise results. The second phase uses these

mostly precise results to bootstrap query evaluation on the

larger original graph producing fully precise results. The

effectiveness of this approach depends upon the quality of

the proxy graph. Prior methods find proxy graphs that are

either large or produce highly imprecise results.

We present a new form of proxy graph named the Core
Graph (CG) that is not only small, it also produces highly
precise results. A CG is a subgraph of the larger input graph

that contains all vertices but on average contains only 10.7%

of edges and yet produces precise results for 94.5–99.9% ver-

tices in the graph for different queries. The finding of such

an effective CG is based on our key new insight, namely, a

small subset of non-zero centrality edges are responsible for
determining the converged results of nearly all the vertices

across different queries. We develop techniques to identify

a CG that produces precise results for most vertices and

optimizations to efficiently compute precise results of re-

maining vertices. Across six kinds of graph queries and four

input graphs, CGs improved the performance of GPU-based

Subway system by up to 4.48×, of out-of-core disk-based

GridGraph system by up to 13.62×, and of Ligra in-memory

graph processing system by up to 9.31×.

CCS Concepts: •Computingmethodologies→ Parallel
computing methodologies; • Information systems →
Computing platforms.
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1 Introduction
Graph analytics is employed in many domains (e.g., social

networks, web graphs) to uncover insights from connected

data. There has been much work resulting in scalable graph

analytics systems for GPUs, multicore servers, and clus-

ters [3–6, 9, 11, 13, 15, 16, 20, 23, 25, 27, 28, 30, 34, 36, 38, 43].

Real world graphs are irregular and large. Thus, significant

overheads are incurred due to movement of graph across the

memory hierarchy and repeated propagation of values over

the edges in the graph. These overheads are exacerbated due

to the iterative nature of graph analytics. Thus, in spite of

the numerous advances, efficient processing of large and

irregular graphs remains a challenge.

One approach [18, 42] for dealingwith the above challenge

employs a two-phase (2Phase) query evaluation as shown

in Figure 1. Here a small proxy graph corresponding to the

large original graph is identified once and then the combina-

tion of the proxy graph and original graph is used to evaluate

all future queries. Note that for graphs with a large number

Figure 1. Proxy Graph based 2Phase Evaluation.

https://doi.org/10.1145/3627703.3629571
https://doi.org/10.1145/3627703.3629571
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Figure 2. Speedups with CG over without CG for

Friendster (FR) [1] input graph with 2.586 billion edges.

of vertices, there is an equally large number of vertex-specific
queries (e.g., each vertex can serve as a source of a shortest
path query). The first phase evaluates the query on the proxy

graph incurring low overheads and producing mostly pre-

cise results (mostly green and some red values in Figure 1).

Then, the second phase uses these mostly precise results

to bootstrap query evaluation on the larger original graph

producing fully precise results (all green values in Figure 1).

Resuming query evaluation in the second phase from ver-

tices whose property values are impacted in the first phase,

guarantees that the 2Phase algorithm will produce correct

results for 100% of vertices [18, 42]. Given its generality, this

approach is applicable to different kinds of systems – GPU-

based Subway, in-memory Ligra, out-of-core GridGraph – as

shown in Figure 2. Moreover, the improvements are largely

complimentary to other platform specific optimizations in-

corporated in different graph processing systems. However,

for the above approach to be effective, the proxy graph must

fulfill two key requirements:

• RQ1: The proxy graph should bemuch smaller than
the original so that the first phase incurs substantially

reduced graph transfer overhead and performs little

redundant propagation of values over edges; and

• RQ2: Convergence over the proxy graph should pro-

duce query results that have mostly precise, i.e. most

have converged to the same values that are obtained

upon convergence over the original graph. Thus, the

second phase requires little effort to reach full conver-

gence (i.e., convergence for all vertices).

Prior methods [18, 42], Reduced Graph [18] and Abstrac-
tion Graph [42], are proxy graphs with significant limitations.

The first method by Kusum et al. [18] collapses parts of the

graph eliminating many vertices that cannot be queried and

produces a proxy graph that is too large (roughly 50% of

original size [18]). Although the Abstraction Graph [42] over-
comes the limitations of Reduced Graph and produces a small

proxy graph, it yields query results that are imprecise – it pro-

duces imprecise results for over 53% of the vertices. Similar

lack of precision is observed when graph sampling is used

Figure 3. # of Non-Zero Centrality Edges identified with

increasing number of queries for Twitter (TT) [7] graph.

Table 1. Average number of queries out of a total of 20

forward queries that select an edge added to CG.

G SSSP SSNP Viterbi SSWP REACH
TT 13.01 19.49 20.00 19.99 17.50

to to produce a small proxy graph [21, 29, 41]. Query-by-
sketch [39] identifies a self-contained subgraph (meta-graph).

However, it is limited to queries that find the shortest path
between two vertices. Our approach handles other kind of

queries beside shortest paths and it finds property values

from a source vertex to all destination vertices.
In this paper we develop a new approach for identifying

a proxy graph, called the Core Graph (CG), that satisfies

both the aforementioned requirements. That is, Core Graph

is both small and produces highly precise results. The CG

includes all the vertices from the original graph so that any

vertex-specific query can be evaluated and it contains only a

subset of edges.Which edges to include in the CG, and how to
identify these edges efficiently, is one of our key contribution.

Consider finding the CG for use by single-source shortest-

path (SSSP) queries. We note that the edge betweenness cen-
trality (ebc), which is defined as the number of the shortest

paths that contain an edge in a graph [24], can be used to

identify edges that are important to SSSP queries. Each edge

that has non-zero ebc value should be included in the CG

as it plays a role in establishing a shortest path between at

least a pair of vertices. If all non-zero centrality edges are

included in the CG, the graph remains well connected via

shortest paths, i.e. if there is a path between a pair of vertices

in the original graph, then the shortest path is also present

in the CG. However, identifying all edges with non-zero
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ebc values is extremely expensive – it requires computing

shortest paths from every vertex to every other vertex.

Our key insight is that most edges with non-zero between-
ness centrality can be identified by evaluating a small number
of queries corresponding to the highest degree vertices in the
graph. We can identify edges that lie along shortest paths

found via these queries. That is, each edge 𝑢 → 𝑣 such that

value of vertex 𝑣 equals value of vertex 𝑢 plus the weight

of edge 𝑢 → 𝑣 , lies along some shortest path. This simple

approach is not only inexpensive, since it selects edges along

shortest paths, it selects edges with non-zero centrality and

edges that provide well connectedness. Figure 3 shows that

as we solve increasing number of queries, inclusion of newly

discovered edges found to fall on shortest paths causes the

number of edges in the CG grow very slowly. That is, vast

majority of edges included play an important role in the eval-

uation of many different queries. Moreover, the data for TT
graph in Figure 3 shows that this observation is true across

many graph algorithms to a very large degree. Table 1 shows

that, when edges are identified using 20 forward queries

on TT, most edges are frequently selected for inclusion by

majority of the queries – similar behavior was also observed

for other input graphs. Therefore, in rest of the paper we limit
the number of vertices queried for identifying CG edges to 20.

Core graphs are useful for efficiently solving queries over

large graphs on different systems as they reduce the follow-

ing overhead costs: on a GPU where the full graph cannot be

held in GPU memory, the overhead of repeated graph trans-

fers between host and GPU memory is substantial; and on

a shared-memory out-of-core system where the full graph

cannot be held in the memory, the overhead of repeated

graph transfers from disk and memory is substantial. Re-

cent research has led to systems with reduced graph transfer

overheads for GPU-based [12, 17, 22, 32, 33] and Out-of-

Core [20, 31, 37, 42, 43] systems. Nevertheless, Core Graphs

can substantially improve performance of Subway [32] for

GPUs and GridGraph [43] for out-of-core processing. Even

for Ligra [34] where the entire graph is held in memory,

Core Graph can significantly reduce graph transfer to on-

chip caches. Our experiments show that, in all of the above

systems, CG also reduces value propagation over edges yield-

ing reductions in computation performed.

The key contributions of our work are as follows:

• Core Graph Identification and Exploitation: We

present algorithms for finding a core graph by solving

a small set of queries to identify most non-zero cen-

trality edges (§2.1). We exploit CG and present a new

optimization that improves the efficiency of the 2phase
evaluation while producing 100% precise results (§2.2).

• Experimental Results (§3): For the 2.586 billion FR
graph, across six kinds of queries, our approach yielded

CGs containing 5.42% to 10.45% edges and precise

results for 97.1–99.9% vertices. Across six kinds of

queries and four large input graphs our approach out-

performs Subway [32] by up to 4.48×, GridGraph [43]

by up to 13.62×, and Ligra [34] by up to 9.31× for

computing precise results for all vertices.

2 Core Graph Identification & Exploitation
In this section we introduce the notion of Core Graph and

present an algorithm for its identification. We analyze its

effectiveness in terms of its precision and sizes. We also de-

velop algorithms and optimizations to evaluate fully precise

results for a given query while also benefiting from Core

Graphs to speedup query evaluation.

2.1 Identifying a Core Graph
Consider an input graph, 𝐺 (𝑉 , 𝐸), where the edges in 𝐸 are

directed and weighted. An edge from vertex 𝑢 to vertex 𝑣 is

denoted by 𝑒 (𝑢, 𝑣) and𝑤 (𝑢, 𝑣) denotes its weight. A directed

path from 𝑢 to 𝑣 is denoted by 𝑝 (𝑢, 𝑣).

Vertex-Specific Queries. The graph algorithms we con-

sider solve different kinds of vertex-specific queries. A vertex

query 𝑄 (𝑠) originates at the source vertex 𝑠 ∈ 𝑉 and upon

its evaluation has computed the property values 𝑄 (𝑠).𝑉𝑎𝑙 (𝑣)
for all other vertices 𝑣 ∈ 𝑉 − {𝑠}.
Given a source vertex 𝑠 and a path 𝑝 (𝑠, 𝑣), the property

value of 𝑣 along the path, denoted as 𝑝 (𝑠, 𝑣).𝑉𝑎𝑙 (𝑣) is com-

puted from 𝑉𝑎𝑙 (𝑠) and the weights of edges along path

𝑝 (𝑠, 𝑣) using a propagation operator

⊕
. For example, given

the path 𝑝 (𝑠, 𝑣) = 𝑠 → 𝑢 → 𝑣 , 𝑝 (𝑠, 𝑣).𝑉𝑎𝑙 (𝑣) is given by

𝑉𝑎𝑙 (𝑠)
⊕

𝑤 (𝑠,𝑢)
⊕

𝑤 (𝑢, 𝑣).
For the class of graph queries we consider, given mul-

tiple paths 𝑝1, 𝑝2, · · · 𝑝𝑛 from 𝑠 to 𝑣 , the property value of

𝑣 corresponding to query 𝑄 (𝑠), denoted as 𝑄 (𝑠).𝑉𝑎𝑙 (𝑣), is
computed from 𝑝𝑖 (𝑠, 𝑣).𝑉𝑎𝑙 (𝑣) values for all 𝑝𝑖 ’s using a se-
lection operator, viz., one of:

𝑀𝐼𝑁𝑖 (𝑝𝑖 (𝑠, 𝑣).𝑉𝑎𝑙 (𝑣)) 𝑜𝑟 𝑀𝐴𝑋𝑖 (𝑝𝑖 (𝑠, 𝑣) .𝑉𝑎𝑙 (𝑣)).
Many graph algorithms fall in this category including the

six graph algorithms used in our evaluation.

Edge Centrality and Complete Core Graph. As a con-
sequence of evaluating a query𝑄 (𝑠), it is possible to identify
all edges belonging to solution paths (e.g., shortest paths).
That is, we can identify every edge that belongs to some so-

lution path 𝑝 (𝑠, 𝑣) such that 𝑝 (𝑠, 𝑣).𝑉𝑎𝑙 (𝑣) == 𝑄 (𝑠).𝑉𝑎𝑙 (𝑣).
This is because for any edge 𝑒 (𝑎, 𝑏) belonging to a solution

path 𝑝 (𝑠, 𝑣), property values of 𝑎 and 𝑏 are related as follows:

𝑄 (𝑠).𝑉𝑎𝑙 (𝑏) == 𝑄 (𝑠).𝑉𝑎𝑙 (𝑎)
⊕

𝑤 (𝑎, 𝑏).
All edges that belong to a solution path have non-zero

centrality values, i.e. they belong to at least one solution

path. For a given graph 𝐺 (𝑉 , 𝐸), we introduce the notion

of the Complete Core Graph that is defined as follows.

Given a graph 𝐺 (𝑉 , 𝐸), the corresponding Complete Core
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Graph 𝑐𝐶𝐺 (𝑉𝑐 , 𝐸𝑐 ) is a subgraph of 𝐺 which contains all

vertices from 𝐺 and all non-zero centrality edges in 𝐺 , i.e.,

𝑉𝑐 = 𝑉 ; 𝐸𝑐 = { 𝑒 (𝑎, 𝑏) | 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜 𝑓 𝑒 (𝑎, 𝑏) > 0 }
Since the above definition states that any edge with non-

zero centrality is included in 𝑐𝐶𝐺 , it implies that any path

𝑝 (𝑥,𝑦) for which 𝑝 (𝑥,𝑦).𝑉𝑎𝑙 (𝑦) is equal to 𝑄 (𝑥).𝑉𝑎𝑙 (𝑦) in
𝐺 , is also present in 𝑐𝐶𝐺 . Thus, the evaluation of any query

on 𝑐𝐶𝐺 produces results that are identical to those produced

by evaluating the query on 𝐺 .

Note that finding the 𝑐𝐶𝐺 does not require computing

the exact centrality value of each edge 𝑒 (𝑎, 𝑏) but rather it
simply requires identifying edges with non-zero centrality.

If upon solving some query 𝑄 (𝑠) we observe that
𝑄 (𝑠).𝑉𝑎𝑙 (𝑎)

⊕
𝑤 (𝑎, 𝑏) = 𝑄 (𝑠).𝑉𝑎𝑙 (𝑏)

then edge 𝑒 (𝑎, 𝑏) definitely has non-zero centrality. Never-

theless we observe that it is not practical to identify the

Complete Core Graph. By solving a single query 𝑄 (𝑠), we
can identify only the subset of non-zero centrality edges that

play a role in computing the solution of query𝑄 (𝑠). However,
to identify all non-zero centrality edges, in general all queries

must be evaluated. Therefore, next we present a heuristic

for finding an incomplete core graph that is nevertheless very

effective in producing highly precise results.

Our Core Graph Algorithm. Since our goal is to accel-

erate the solving of queries in the first place, we settle on

building an incomplete Core Graph that is computed by

solving a small set of selected queries (we found 20 vertices

are adequate) and use this graph to speedup the evaluation

of all future queries. Henceforth we refer to this incomplete

core graph simply as the Core Graph (𝐶𝐺) which contains a

subset of all non-zero centrality edges. As shown in earlier in

Figure 3, when we identify sets of non-zero centrality edges

of different queries, there is very large overlap in these sets

which implies that most of the non-zero centrality edges

being found belong to many soultion paths. We will soon

show that our approach for building the 𝐶𝐺 produces exact

results for most vertices, further confirming the inclusion of

most non-zero centrality edges in𝐶𝐺 , while the exact results

for remainder of vertices require further computation using

the original full graph to account for the non-zero centrality

edges that are missing from𝐶𝐺 and belong to some solution

path for the query being evaluated.

– Forward and Backward Queries. Our work is aimed at

large graphs with power law degree distribution. For such
graphs, it is known that high degree vertices are good prox-

ies for high centrality vertices [10]. Thus, a small number of

highest degree vertices are used to identify edges with non-

zero centrality. Given a chosen high-degree vertex ℎ, we can

find high centrality edges by solving query 𝑄 (ℎ) and then

testing each edge for non-zero centrality. In a directed graph,

we actually solve two queries corresponding to each chosen

high-degree vertex ℎ: 𝑄 (ℎ, 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑) and 𝑄 (ℎ,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑).

Algorithm 1 Finding 𝐶𝐺 wrt high degree vertices in 𝐻 .

1: Input: Graph 𝐺 (𝑉 , 𝐸) and High-Degree Vertex Set 𝐻

2: Output: 𝐶𝐺 (𝑉 , 𝐸𝑐 ), 𝐸𝑐 contains edges chosen from 𝐸

3: for each ℎ ∈ 𝐻 do
4: 𝐸

𝑓
𝑐 (ℎ) = Identify ( 𝐺 (𝑉 , 𝐸), Direction 𝑓 )

5: 𝐸𝑏𝑐 (ℎ) = Identify ( 𝐺𝑅 (𝑉 , 𝐸𝑅), Direction 𝑏 )

6: 𝐸𝑐 = 𝐸𝑐 ∪ 𝐸
𝑓
𝑐 (ℎ) ∪ 𝐸𝑏𝑐 (ℎ)

7: end for
8: for all 𝑣 ∈ 𝑉 do
9: if OutDegree(v)≠ 0 ∧ OutEdges(v) ∩𝐸𝑐 (ℎ) = 𝜙 then
10: Add an out edge of 𝑣 to 𝐸𝑐 (ℎ)
11: end if
12: end for
13: function Identify ( 𝐺 (𝑉 , 𝐸), Direction 𝑑 )

14: Evaluate Query 𝑄 (𝑠) on 𝐺 (𝑉 , 𝐸)
15: for all 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
16: if 𝑄 (𝑠) updates 𝑄 (𝑠) .𝑉𝑎𝑙 (𝑢) then
17: if (𝑄 (𝑠) .𝑉𝑎𝑙 (𝑢)

⊕
𝑤 (𝑢, 𝑣) = 𝑄 (𝑠) .𝑉𝑎𝑙 (𝑣)) then

18: if (𝑑 == 𝑓 ) then
19: 𝐸𝑐 (ℎ) = 𝐸𝑐 (ℎ) ∪ { 𝑒 (𝑢, 𝑣) }
20: else ▷ ( 𝑑 == 𝑏 )

21: 𝐸𝑐 (ℎ) = 𝐸𝑐 (ℎ) ∪ { 𝑒 (𝑣,𝑢) }
22: end if
23: end if
24: end if
25: end for
26: end function

The forward query identifies non-zero centrality edges that

lie along paths originating atℎ and leading to some other ver-

tex. The backward query identifies non-zero centrality edges

that lie along paths originating at some other vertex and

leading to ℎ. By computing both forward and backward
queries we are able to preserve pairwise reachability
among vertices, via ℎ, to a very large extent and thus
producing a well connected 𝐶𝐺 .

– Additional Connectivity Edges. Once non-zero centrality

edges corresponding to a small set of high degree vertices

have been found, we ensure that every vertex with non-zero

out-degree has at least one edge included in the core graph

to make the graph well connected. If no outgoing edge is
included, we add one. For SSSP (SSWP) lowest (highest)
weight edges are chosen as they are more likely to belong

to shortest (widest) paths. This approach ensures that each

vertex is connected to the 𝐶𝐺 .

Algorithm 1 shows the above computation. The algorithm

repeatedly uses different high degree vertices in 𝐻 to find

additional non-zero centrality edges. Finally, it ensures that

at least one out edge of each vertex with non-zero out degree

is added to 𝐸𝑐 . Note that, when the incomplete Core Graph
as constructed above is used to solve a new query, it will

produce exact results for some vertices but not for all vertices.

Next we illustrate the above algorithm and observations.
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(a) Full Graph (G).

7→ ∗ 1 2 3 4 5 6 7 8 9

7 ∞ ∞ 2 5 9 3 0 ∞ ∞

(b) Non-Zero Centrality Edges for 𝑆𝑆𝑆𝑃 (7, 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑).

∗ → 7 7

1 18

2 3

3 ∞
4 ∞
5 ∞
6 ∞
7 0

8 24

9 11

(c) Non-Zero Centrality Edges for 𝑆𝑆𝑆𝑃 (7, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑).

(d) Core Graph derived from (b) and (c).

Figure 4. Illustration of Alg. 1 Starting from Full Graph.

Example of Finding Core Graph.We build a core graph

for the shortest path problem for the example graph in

Figure 4(a). The red and blue edges in Figures 4(b) and

(c) are non-zero centrality edges found by solving queries

SSSP(7,forward) and SSSP(7,backward). The core graph ob-

tained by combining the two is shown in Figure 4(d). The

Table 2. All Shortest Paths Found: Using the 𝐺 with 17

Edges (Top) vs. Core Graph 𝐶𝐺 with 8 Edges (Bottom).

G 1 2 3 4 5 6 7 8 9

1 0 15 20 23 27 21 18 ∞ 7
2 ∞ 0 5 8 12 6 3 ∞ ∞
3 ∞ ∞ 0 3 7 ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ 0 4 ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ 25 27 0 ∞ ∞ ∞
7 ∞ ∞ 2 5 9 3 0 ∞ ∞
8 6 21 26 29 32 5 24 0 13
9 ∞ 8 13 16 20 14 11 ∞ 0

CG 1 2 3 4 5 6 7 8 9

1 0 15 20 23 27 21 18 ∞ 7
2 ∞ 0 5 8 12 6 3 ∞ ∞
3 ∞ ∞ 0 3 7 ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ 0 4 ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
7 ∞ ∞ 2 5 9 3 0 ∞ ∞
8 6 21 26 29 33 27 24 0 13
9 ∞ 8 13 16 20 14 11 ∞ 0

Algorithm 2 Finding 𝐶𝐺 for an Unweighted Graph.

1: Input: Original Graph 𝐺 (𝑉 , 𝐸) and Query Set 𝑆

2: Output: High Centrality Edges 𝐸𝑐

3: Qid[*]← 0 for each vertex

4: 𝐸
𝑓
𝑐 ← 𝐸𝑏𝑐 ← 𝜙

5: for 𝑠 ∈ 𝑆 do
6: 𝐸

𝑓
𝑐 = 𝐸

𝑓
𝑐 ∪ Traverse ( 𝑠 , 𝐺 (𝑉 , 𝐸) )

7: 𝐸𝑏𝑐 = 𝐸𝑏𝑐 ∪ Traverse ( 𝑠 , 𝐺𝑅 (𝑉 , 𝐸𝑅) )
8: end for
9: 𝐸𝑐 = 𝐸

𝑓
𝑐 ∪ Reverse ( 𝐸𝑏𝑐 )

10: function Traverse ( 𝑠 , 𝐺 (𝑉 , 𝐸) )
11: 𝐶𝐺𝐸 = 𝜙

12: Fifo.Push(𝑠);

13: while ! Fifo.Empty() do
14: 𝑢 ← Fifo.Pop()

15: for all 𝑒 (𝑢, 𝑣) ∈ 𝐺𝑟𝑎𝑝ℎ.𝑂𝑢𝑡𝑒𝑑𝑔𝑒𝑠 (𝑢) do
16: if Qid(v) ≠ 𝑠 then
17: ▷ add 𝑒 (𝑢, 𝑣) to 𝐶𝐺𝐸
18: 𝐶𝐺𝐸 = 𝐶𝐺𝐸 ∪ { 𝑒 (𝑢, 𝑣) }
19: if Qid(v)=0 then
20: Fifo.push(v)

21: Qid(v)← 𝑠

22: end if
23: end if
24: end for
25: end while
26: return ( 𝐶𝐺𝐸 )

27: end function
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Table 3. #Edges, #Vertices, and In-Memory Size of Graphs from SNAP [2]: Friendster – FR; Twitter – TT; Twitter – TTW;

PokeC – PK. Algorithms: SSSP-single source shortest path; SSNP-single source narrowest path; Viterbi; SSWP-single source
widest path; REACH-reachability from a single source; andWCC-weakly connected component which uses 𝐶𝐺 as REACH.

G | E | | V | G Size
(MB)

FR [1] 2,586,147,869 68,349,467 20,963

TT [7] 1,963,263,821 52,579,683 15,916

TTW [19] 1,468,365,182 41,652,231 11,914

PK [35] 30,622,564 1,632,804 252

CG Size (MB)
SSSP SSNP Viterbi SSWP REACH
2,436 1,777 1,789 1,777 834

1,680 1,421 1,425 1,425 762

1,353 1,784 1,146 1,762 656

60 51 36 51 21

Table 4. % of Total Edges in the Specialized and General

Core Graphs Computed from 20 High-degree Vertices.

Overall average is 10.7%.

CG SSSP SSNP Viterbi SSWP REACH
FR 10.45% 7.27% 7.33% 7.27% 5.42%

TT 9.36% 7.71% 7.73% 7.71% 7.02%

TTW 10.10% 13.77% 8.34% 13.58% 8.34%

PK 21.85% 18.05% 12.14% 18.18% 12.13%

two tables in Table 2 show results of all shortest path queries

computed using the original graph (𝐺) and the core graph

(𝐶𝐺). Note that most of the results in the two tables are

identical. Only four results shown in red do not match.

First, the reachability for vertex pairs (6, 4) and (6, 5) is
present in 𝐺 but not in 𝐶𝐺 causing the query SSSP(6), when

computed using𝐶𝐺 , to result in values of vertices 4 and 5 to

be∞. However, since no outgoing edge for vertex 6 is present,
we will add the lowest weight outgoing edge from 6 to 4 to the
core graph. This will cause the values for vertices 4 and 5 to

change to 25 (precise) and 29 (imprecise).

Second, though reachability for pairs (8, 5) and (8, 6) is
satisfied by both graphs, in 𝐶𝐺 the lengths of the paths is

longer than the shortest paths in 𝐺 . Since 𝐶𝐺 contains a

subset of 𝐺 ’s edges, shortest path length for a vertex pair

computed using 𝐺 can only be shorter than for 𝐶𝐺 .

CG for Unweighted Graphs Next we present a heuris-
tic for building a core graph for evaluating queries on un-
weighted graphs. Examples of queries that fall in this cate-

gory include Reachability–REACH and Weakly Connected

Components–WCC. Since such queries rely on reachability,

we can identify non-zero centrality edges via forward and

backward breadth-first-trees corresponding to a set of high-

degree vertices. Next, we describe an algorithm for finding a

small core graph that captures reachability characteristics of

an unweighted graph.

When constructing a core graph that captures reachability

via forward and backward BFS-traversals, same edges can

be chosen by traversals originating at different high-degree

vertices to the extent possible in order to produce smaller

core graphs. Algorithm 2 takes advantage of this sharing in

identifying core graph edges. It maintains Qid(v) containing

Table 5. Average % of Vertices for which CG Produces

Precise Results for 10 Queries.

G SSSP SSNP Viterbi SSWP REACH WCC
FR 97.1% 99.9% 99.9% 99.9% 99.9% 99.4%

TT 99.6% 99.9% 99.9% 99.9% 99.9% 99.9%

TTW 99.4% 99.9% 99.9% 99.9% 99.9% 98.7%

PK 94.5% 99.9% 99.9% 99.9% 99.9% 99.3%

the id of the high-degree query vertex that is the first to

add an incoming CG edge of 𝑣 in the set of core graph edges

𝐶𝐺𝐸. When an edge 𝑒 (𝑢, 𝑣) is encountered whose source and
destination vertex Qid’s are different, the edge is added to

the graph but all core graph edges emanating from 𝑣 onward

are reused by queries labeling vertices 𝑢 and 𝑣 .

Studying the Precision and Sizes of Core Graphs. We

carried out a study based upon five different kinds of queries

and four graphs to evaluate the effectiveness of core graphs.

The kinds of queries include SSSP–shortest path, SSNP–
narrowest path, Viterbi, SSWP–widest path, and REACH–
reachability. The graphs are described in Table 3.

– Core Graph Sizes. In Table 4 we present the percentage

of all edges that are present in specialized core graphs for

SSSP, SSNP, Viterbi (where lower weight edges are more

important), and SSWP where higher weight edges are more

important. Finally in REACH, weights play no role. For the

three large input graphs – FR, TT, TTW – the core graphs

contain 7.27% to 13.77% of total edges. For the smaller PK
graph this number is higher. The average over all core
graphs found is 10.7%.
– Precision of Results. Though the core graph contains a

very small fraction of edges from the full graph, it truly cap-

tures its essence. When we evaluated ten random queries

for every combination of graph algorithm and input graph,

we found that on average for 94.5–99.9% of the vertices
the core graph produces precise results (i.e., same result

as the one produced by the full graph). This data is given in

Table 5. Across four kinds of queries (SSNP, Viterbi, SSWP,
REACH) CG generated imprecise results for only a tiny num-

ber of vertices – a maximum of 310, 40, 36, and 79 vertices

for FR, TT, TTW, and PK respectively. For SSSP the fraction
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of vertices with imprecise results is the highest with average

percentage errors in the values for these vertex values being

2.27%, 6.35%, 5.71%, and 3.79% for FR, TT, TTW, and PK. Fi-
nally, note that we also provide precision of WCC which is

computed using the REACH’s 𝐶𝐺 .

Limitations. The above observations hold for irregular

graphswith power-law distribution. For other kinds of graphs,

core graphs may have different forms and different degree of

precision. Also, we have examined six graph properties, there

may be other properties for which high precision may be

difficult to attain. Finally, as mentioned earlier, our work con-

siders monotonic algorithms for vertex-specific queries. In

the remainder of the paper we present an algorithm that ex-

ploits core graphs to speedup performance of multiple graph

processing systems. However, this algorithm was applied to

monotonic graph algorithms. Successful use of core graphs

in context of non-monotonic algorithms such as PageRank

remains an open problem.

2.2 Exploiting Core Graphs in Query Evaluation
The exact evaluation of a query results requires a two phase

approach where the first phase evaluates the query on the

small in-memory core graph (CG) and then uses the results

obtained to bootstrap the evaluation of the query on the

full graph (G). Starting from all vertices whose values are

impacted in the first phase, the second phase resumes propa-

gation of values over the full graph to obtain precise results

for all vertices. Since most results are computed precisely

in the first phase efficiently using the small CG, the work

performed during the second phase is greatly reduced.

Next we present a new optimization over the above ap-

proach to improve the efficiency of the second phase. The

key idea behind this optimization is as follows. After the

first phase has completed, we introduce a step that is able

to identify some (but not all) of the vertices whose values

are already precise and hence will not change in the second

phase. For each such vertex 𝑣 , the incoming edges of 𝑣 are

removed from the full graph 𝐺 because any propagation via

these edges will not change the value of vertex 𝑣 and hence

would be wasteful. Next we present a theorem that allows

us to identify some (but not all) vertices with stable values

following first phase. We first present the above results in

context of the shortest path problem and later show that

these results apply to many other graph algorithms.

Given a full graph 𝐺 (𝑉 , 𝐸) and a high degree vertex ℎ

in 𝑉 such that forward and backward shortest path queries

𝑆𝑆𝑆𝑃𝑓 (ℎ,𝐺) and 𝑆𝑆𝑆𝑃𝑏 (ℎ,𝐺) are evaluated to identify the

corresponding core graph 𝐶𝐺 (𝑉 , 𝐸𝑐 ). Now consider the first

phase evaluation of user query 𝑆𝑆𝑆𝑃𝑓 (𝑠,𝐶𝐺) on 𝐶𝐺 (𝑉 , 𝐸𝑐 )
that computes, for each vertex 𝑣 reachable from 𝑠 , the short-

est path length 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 . The following theorem pro-

vides the condition under which 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 is precise.

Theorem 1: The computed value 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 is precise if
one of the following conditions is true:

(a) 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 == 𝑑𝑖𝑠𝑡 (𝑠, ℎ).𝐺 − 𝑑𝑖𝑠𝑡 (𝑣, ℎ).𝐺
(b) 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 == 𝑑𝑖𝑠𝑡 (ℎ, 𝑣).𝐺 − 𝑑𝑖𝑠𝑡 (ℎ, 𝑠).𝐺

Proof: To prove the above, we rely on the triangle inequality
over the shortest path property as given in [14].

According to the triangle quality for shortest path property:

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 + 𝑑𝑖𝑠𝑡 (𝑣, ℎ).𝐺 ≥ 𝑑𝑖𝑠𝑡 (𝑠, ℎ).𝐺
𝑜𝑟 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 ≥ 𝑑𝑖𝑠𝑡 (𝑠, ℎ).𝐺 − 𝑑𝑖𝑠𝑡 (𝑣, ℎ).𝐺 (1)

Since 𝐶𝐺 is a subgraph of 𝐺 :

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 ≥ 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 (2)

Therefore from (1) and (2) we conclude that:

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 ≥ 𝑑𝑖𝑠𝑡 (𝑠, ℎ).𝐺 − 𝑑𝑖𝑠𝑡 (𝑣, ℎ).𝐺
Thus, if we observe that

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 == 𝑑𝑖𝑠𝑡 (𝑠, ℎ) .𝐺 − 𝑑𝑖𝑠𝑡 (𝑣, ℎ).𝐺 (a)

then 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 must be precise.

Similarly, we use another triangle inequality as follows:

𝑑𝑖𝑠𝑡 (ℎ, 𝑠).𝐺 + 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 ≥ 𝑑𝑖𝑠𝑡 (ℎ, 𝑣).𝐺
𝑜𝑟 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 ≥ 𝑑𝑖𝑠𝑡 (ℎ, 𝑣).𝐺 − 𝑑𝑖𝑠𝑡 (ℎ, 𝑠).𝐺 (1)

Since 𝐶𝐺 is a subgraph of 𝐺 :

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 ≥ 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐺 (2)

From (1) and (2) we conclude that if:

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 ≥ 𝑑𝑖𝑠𝑡 (ℎ, 𝑣).𝐺 − 𝑑𝑖𝑠𝑡 (ℎ, 𝑠).𝐺
Therefore, if we observe that

𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 == 𝑑𝑖𝑠𝑡 (ℎ, 𝑣).𝐺 − 𝑑𝑖𝑠𝑡 (ℎ, 𝑠).𝐺 (b)

then 𝑑𝑖𝑠𝑡 (𝑠, 𝑣).𝐶𝐺 must be precise. □

As shown in [14], the graph triangle inequality abstraction

given below applies to many different graph properties.

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑣1, 𝑣2) ⊕ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑣2, 𝑣3) ⪰ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑣1, 𝑣3)
Here ⊕ depicts an abstract addition and ⪰ represents an ab-

stract greater than or equal operator. While operators vary

across the different algorithms, the proposed optimization

applies many graph algorithms such as widest path, narrow-

est path, breadth-first search, and others.

Algorithm 3 shows the 2Phase evaluation of a query on a

GPU. In the initialization step (lines 3 to 8) of this algorithm,

the host receives the query vertex and initializes the vertex

values such that the values of the outgoing neighbors are

computed using the source vertex value and these outgoing

neighbors form the initial frontier. Next the host transfers
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Algorithm 3 2Phase Algorithm for evaluating query for

source vertex 𝑠 in input graph 𝐺 (𝑉 , 𝐸).
1: Input: 𝑠 , 𝐺 (𝑉 , 𝐸), and 𝐶𝐺 (𝑉𝑐 = 𝑉 , 𝐸𝑐 )
2: Output: Query Result – 𝑉𝑎𝑙𝑠 (∗)
3: ▷ Initialization: Initialize 𝑉𝑎𝑙 Array on Host

4: 𝑉𝑎𝑙𝑠 (𝑠) ← 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑖𝑡𝑉𝑎𝑙

5: ∀𝑣 ∈ 𝑂𝑢𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑠), 𝑉𝑎𝑙𝑠 (𝑣) ← 𝑉𝑎𝑙𝑠 (𝑠)
⊕

𝑤 (𝑠, 𝑣)
6: ∀𝑣 ∈ 𝑉 −𝑂𝑢𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑠), 𝑉𝑎𝑙𝑠 (𝑣) ← 𝐼𝑛𝑖𝑡𝑉𝑎𝑙

7: Transfer from Host to GPU:

8: 𝑉𝑎𝑙𝑠 (∗), 𝑂𝑢𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑠), & 𝐶𝐺 (𝑉𝑐 , 𝐸𝑐 )
9: ▷ Core Phase: Process Core Graph on GPU

10: Active← 𝑂𝑢𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑠)
11: while Active ≠ 𝜙 do
12: Active← Process ( Active, 𝐶𝐺 (𝑉𝑐 , 𝐸𝑐 ) )
13: end while
14: ▷ Completion Phase: Process Full Graph on GPU+Host

15: Active← Impacted Vertices in 𝑉

16: while Active ≠ 𝜙 do
17: Active← Process ( Active, 𝐺 (𝑉 , 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 (𝐸)) )
18: end while
19:

20: ▷ Push 𝑉𝑎𝑙𝑠 ’s of Vertices in Active Over outEdges
21: function Process ( Active , 𝐺𝑟𝑎𝑝ℎ )

22: newAct← 𝜙

23: for all 𝑢 ∈ Active do
24: for all 𝑒 (𝑢, 𝑣) ∈ 𝐺𝑟𝑎𝑝ℎ.𝑜𝑢𝑡𝐸𝑑𝑔𝑒𝑠 (𝑢) do
25: if 𝑁𝑒𝑒𝑑𝑒𝑑 (𝑢, 𝑣) then
26: 𝑐ℎ𝑎𝑛𝑔𝑒 ← EdgeFunction ( 𝑒 (𝑢, 𝑣) )
27: if 𝑐ℎ𝑎𝑛𝑔𝑒 ∨ FirstPhase2Visit(𝑣) then
28: newAct← newAct ∪ { 𝑣 }
29: end if
30: end if
31: end for
32: end for
33: return newAct

34: end function

the initial value array, the frontier, and the core graph to the

GPU to begin query evaluation.

On the GPU, the two phases of query evaluation are: Core
Phase (lines 9 to 13) and Completion Phase (lines 14 to 18).

During the Core phase, the query evaluation is carried on the

much smaller CG and when this phase stabilizes, the second

phase begins. In the Completion phase, starting from the

vertices that are impacted in first phase, and this time using

G, with incoming edges of all the precise vertices removed by

Reduced(E), once query is evaluated till the values stabilize

and the final result of the query becomes available.

In the completion phase, all reachable vertices must be

visited at least once to ensure that their values are push along

outgoing edges in FG that were excluded from CG. This is

achieved by ensuring that upon first visit to a vertex in this

phase, it is always added to the frontier even if its property

value has not changed (call to FirstPhase2Visit(), line 27).

The first phase is fast and effective as it is an in-memory

phase which produces precise results for over 94% of the

Table 6. Push Operations for Four Algorithms. Here,

CASMIN(a; b) sets a = b if b < a atomically using

compare-and-swap; CASMAX is similarly defined.

Alg Needed (𝑒 (𝑢, 𝑣))
EdgeFunction (𝑒 (𝑢, 𝑣))

SSWP 𝑉𝑎𝑙 (𝑣) < 𝑚𝑖𝑛(𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣))
𝐶𝐴𝑆𝑀𝐴𝑋 (𝑉𝑎𝑙 (𝑣),𝑚𝑖𝑛(𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣)))

SSNP 𝑉𝑎𝑙 (𝑣) > 𝑚𝑎𝑥 (𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣))
𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑚𝑎𝑥 (𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣)))

SSSP 𝑉𝑎𝑙 (𝑣) > 𝑉𝑎𝑙 (𝑢) +𝑤𝑡 (𝑢, 𝑣)
𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢) +𝑤𝑡 (𝑢, 𝑣))

Viterbi 𝑉𝑎𝑙 (𝑣) < 𝑉𝑎𝑙 (𝑢)/𝑤𝑡 (𝑢, 𝑣)
𝐶𝐴𝑆𝑀𝐴𝑋 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢)/𝑤𝑡 (𝑢, 𝑣))

REACH 𝑉𝑎𝑙 (𝑣) < 𝑉𝑎𝑙 (𝑢)
𝐶𝐴𝑆𝑀𝐴𝑋 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢))

WCC 𝑉𝑎𝑙 (𝑣) > 𝑉𝑎𝑙 (𝑢)
𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢))

vertices. The second phase is efficient because most needed

computations have already been completed and the edge

functionwith atomic operation to propagate values is applied

for incoming edges of a small number of vertices.

Note that the 2Phase algorithm is general and can be used

to enhance the performance of range of existing systems

including out-of-core systems like GridGraph [43] and even

in-memory systems like Ligra [34]. In context of in-memory

system like Ligra, the Core Phase reduces overall computa-

tion performed while in the context of an out-of-core system

like GridGraph an in-memory Core Phase reduces the cost

of both computation and I/O performed during the second

out-of-core phase. For simplicity, we maintain separate core

graph and full graph representations and simply switch from

core graph to full graph when we transition to second phase.

3 Experimental Evaluation
We evaluate the benefits of core graphs in improving the

performance of query evaluation for the following systems:

• Subway [32] system’s synchronous algorithm for eval-

uating queries with reduced data transfer on a GPU;

• GridGraph [43] disk-based out-of-core graph process-

ing system with 8GB available memory exceeded by

all graph sizes and 4×4 grid partitioning; and

• Ligra [34] in-memory graph processing system with

push-based algorithms.

The evaluation employs Specialized CGs for SSSP, SSNP,
Viterbi, and SSWP while General CG is used to evaluate

reachability (REACH) and Weakly Connected Components

(WCC). The CGs were derived from evaluation of queries

for 20 highest degree vertices in each graph. The choice

of 20 was made after it was observed that evaluation of

additional queries contributed very few new edges to the

CG. This behavior is shown in Figure 3. Four input graphs
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Figure 5. Benefit of CG to Subway [32] – 2Phase Values Normalized to Subway: Graph Generation Time - GEN; Data

Transfer Time - TRANS; Computation Time - COMP; and # of Push Atomic Updates - ATOMIC.

Table 7. Average Execution Times in Seconds for Core

Graph based 2Phase Subway [32] across 10 Queries.

G Specialized CGs General CG
SSSP SSNP Viterbi SSWP REACH WCC

FR 9.77s 6.89s 10.54s 8.68s 2.12s 5.79s

TT 9.55s 5.54s 6.85s 6.97s 2.22s 4.01s

TTW 9.91s 8.03s 16.3s 8.25s 1.40s 5.61s

PK 0.19s 0.14s 0.24s 0.16s 0.03s 0.09s

from Table 3 are used. The default weight generation tool

from Ligra is used to generate weights ranging from 1 to the

𝑙𝑜𝑔(𝑛) + 1 (where, 𝑛 = |𝑉 |).
Experiments were run on NVIDIA Tesla K80 GPU and a

16-core server with AMD Opteron(tm) Processor 6376 and

256GBmemory, running on CentOS 7.9. The baselines are the

original Subway, GridGraph, and Ligra systems and same

settings are used for CG-based 2Phase runs. We perform

in-memory evaluation of the query on the core graph in

the first phase. The in-memory evaluation on a GPU can be

carried out using any of the existing algorithms [6, 13, 15, 16,

28, 38], in our experiments we use [28]. For GridGraph first

phase is performed over unpartitioned graph. Data presented

represents averages based upon execution of ten random

queries for each graph and algorithm combination.

For the largest FR graph the one time cost of identify-

ing the core graphs using Subway [32] for the most (least)

expensive Viterbi (REACH) queries is around 14 (7) minutes.

3.1 Speedups over Subway on a GPU
Table 7 and Figure 6 present the executions times of the

2Phase and corresponding speedups over Subway respec-

tively. The time for first phase is no more that 8% of the total

query evaluation time. Our 2Phase approach enabled by use

of core graphs delivers consistent speedups across all input

graphs and all algorithms. For first four benchmarks that

depend upon edge weights speedups range from 4.48× to
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Figure 6. Speedups Over Subway Due To Bootstrapping

Initial Result from CG and AG.

1.79× and for the last two that do not use edge weights the

speedups range from 4.35× to 2.47×. We would also like to

point out that when we ran a 2Phase Subway using the Ab-

straction Graphs [42], as Figure 6 shows, significantly smaller

small speedups or even small slowdowns are observed due

to AGs low precision.

These performance benefits are due to reductions in graph

generation (GEN), data transfer (TRANS), and computation

(COMP) – percentage reductions are given in Figure 5. Since

the first phase involves in-memory processing, it does not

incur graph generation cost and only one time cost of load-

ing the small CG. Because the first phase produces precise

results for most of vertices (recall Table 5), the processing

of edges in the second phase is reduced. For the first four
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benchmarks we observe substantial reductions (over 50%

in most cases) in all three categories and hence consistent

speedups, 4.48–1.79× (2.51× mean), are observed across all

benchmarks and graphs. For the last two benchmarks, since

most edges are processed once, the reductions in the costs

of graph generation and data transfer is typically smaller in

comparison to reduction in computation cost. Thus, lower

speedups of 2.89–1.31× (2.02×mean) are observed. Although

our primary objective was to demonstrate the effectiveness

of core graphs in reducing GEN and TRANS overheads, we

observe that atomic updates are also reduced significantly

(ATOMIC in Figure 5). The reason for these reductions is as

follows. In the first phase fewer atomic updates are needed

because CG has fewer edges. In the second phase fewer edges

function updates are performed because values at nearly all

vertices are already precise (recall data in Table 5).

3.2 Speedups over GridGraph and Ligra
We also evaluated the benefits of core graph based 2Phase ap-
proach on a non-GPU shared-memory platform. In particular,

we considered the GridGraph [43] out-of-core system where

a partitioned graph is held on disk and Ligra [34] in-memory

system where the entire graph is held in memory.
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Figure 7. Speedups Over GridGraph Due To

Bootstrapping Initial Result from CG and AG.

For GridGraph, the first phase of computation is per-

formed in-memory after loading the CG from disk and then

the second phase performs partition-based processing. The

active frontier for second phase is set to all the vertices

whose values have been changed by the first phase. This

ensures that maximal amount of updates are performed in

the first iteration. This policy generally leads to fewer itera-

tions. During the second phase disk IO savings come due to

Table 8. Average Execution Times in Seconds for Core

Graph based 2Phase GridGraph [43] across 10 Queries.

G Specialized CGs General CG
SSSP SSNP Viterbi SSWP REACH WCC

FR 274.4s 39.0s 200.5s 39.1s 11.0s 98.8s

TT 116.3s 24.8s 163.5s 23.2s 7.1s 24.2s

TTW 78.5s 27.4s 108.2s 29.8s 6.5s 34.4s

PK 3.2s 1.5s 3.0s 1.5s 0.3s 0.8s

Table 9. Benefit of CG to GridGraph [43]: Average %

reduction in the # of iterations requiring disk IO.

G SSSP SSNP Viterbi SSWP REACH WCC

FR 23.5% 96.4% 44.4% 97.1% 95.6% 0%

TT 29.3% 94.8% 33.3% 94.1% 93.1% 42.0%

TTW 36.7% 94.7% 36.1% 94.5% 93.8% 0%

PK 27.5% 96.5% 47.0% 96.8% 92.4% 28.6%

two reasons: fewer iterations may be performed compared

to baseline GridGraph; and during an iteration blocks with

no active edges may arise more frequently and hence their

fetch from disk will be skipped due to the selective scheduling
optimization in GridGraph.

For GridGraph, we specified 4×4 grid for partitioning the

graphs and 8 GB of available memory which is less than all

graph sizes (except PK). Since same memory configuration

was used for all graphs, larger graphs experienced more IO

and hence greater benefits from use of CGs. Figure 7 shows

speedups observed for larger graphs are greater than for

smaller ones. Note, speedups for FR>TT>TTW>PK due to

higher disk IO savings. Fewer iterations in second phase

are shown in percentage reduction terms in Table 9. The

speedups for queries with high precision (SSNP, Viterbi,
SSWP, REACH) speedups range from 13.62× to 1.35×. The
speedups for SSSP andWCC are modest because the number

of iterations in second phase is closer to number of iterations

performed by the baselineGridGraph. Note that forWCC on

FR there is no change in the number of iterations yet there is

no slow down because fetches of more blocks of edges can be

skipped in the second phase. For SSSP on PK there is a slight

slow down because cost of first phase offsets the benefits to

second. Finally, we observe that speedups achieved when

AGs are used are relatively small ranging from 1.58× to a

slowdown of 0.57×. We also note that bootstrapping initial

result from CG is superior to AG. Note that higher speedups

for AGs in [42] are due to additional optimizations besides

"bootstrapping an initial result" from AG.

Ligra [34] runs on a server where the graph fits in mem-

ory and thus gains from CGs can be expected from reduced

computation, and enhanced locality in the caches due to the

smaller CG. For weighted graphs, as shown in Figure 8, the
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Figure 8. Speedups Over Ligra Due To Bootstrapping

Initial Result from CG and AG.

Table 10. Average Execution Times in Seconds for Core

Graph based 2Phase Ligra [34] across 10 Queries.

G Specialized CGs General CG
SSSP SSNP Viterbi SSWP REACH WCC

FR 926.6s 358.1s 677.5s 405.1s 59.6s 377.7s

TT 137.7s 151.8s 186.4s 84.1s 28.3s 102.5s

TTW 235.4s 111.1s 130.5s 98.6s 25.2s 425.7s

PK 3.6s 1.8s 2.2s 2.4s 0.5s 1.2s

2Phase approach delivers speedups of 4.42–2.71× for SSWP
queries (with highest first phase precision) and for SSSP
queries (with lowest first phase precision) speedups of 1.44–

1.08× were observed. For REACH speedups are even higher.

Average speedups across all queries are higher for larger

graphs (e.g., FR) and least for the smallest graph (PK). Note
that to save memory needed for CG and FG, while preserving

efficiency, the edge lists can be organized to separate critical

and non-critical edges so that latter can be easily skipped

during the first phase. We observe that in comparison to CGs,

AGs deliver significantly lower speedups over Ligra: high-
est speedup of 1.70× for AGs vs. 9.31× for CGs. As we can
see, AGs frequently result in slowdowns over Ligra. Finally,
Table 11 shows that significant reduction in computation

(dynamic edges processed) causes the Ligra performance to

improve due to CGs.

The data presented thus far did not make use of the trian-

gle inequality optimization thus requiring no major changes

to existing systems. We added the optimization to Ligra and

Table 11. Benefit of CG to Ligra [34]: Average % Reduction

in Edges Processed (EDGES-RED).

G SSSP SSNP Viterbi SSWP REACH WCC

FR 10.2% 26.1% 56.0% 50.4% 94.8% 40.9%

TT 46.2% 29.6% 36.4% 19.0% 93.1% 42.5%

TTW 52.5% 35.2% 51.9% 39.7% 92.1% 41.0%

PK 52.7% 39.1% 75.0% 44.3% 88.2% 36.8%

Table 12. Impact of Triangle Inequality on Ligra Speedups.

G SSNP Viterbi SSWP

FR
SPEEDUP 4.24× 4.40× 7.30×

EDGES-RED 70.95% 78.71% 93.23%

TT
SPEEDUP 6.06× 4.52× 6.01×

EDGES-RED 89.95% 80.48% 88.80%

TTW
SPEEDUP 2.86× 2.78× 3.20×

EDGES-RED 84.29% 80.75% 83.40%

PK
SPEEDUP 1.79× 1.83× 1.87×

EDGES-RED 85.67% 86.71% 83.72%

reevaluated performance for the two largest input graphs,

FR and TT. We consider the three algorithms identified in

[14] for which the triangle inequality is the most effective.

The new speedups shown in Table 12 for SSWP, Viterbi, and
SSNP are substantial improvements over prior speedups for

the two largest graphs.

3.3 Results for R-MAT Graphs
In addition to real data sets, we also used three generated

R-MAT [8] graphs shown in Table 13(a).

• RMAT1 uses the same (a,b,c,d) parameters as used by

Graph500 [26] and randomly generated edge weights

with uniform distribution between 0 and 1 of single

precision floats.

• RMAT2 is more dense, more locally connected, and

with fewer long-range connections than RMAT1. This

leads to smaller CGs than for RMAT1.

• RMAT3 is less dense, more globally connected, and

with more long-range connections than RMAT1. This

leads to larger CGs than for RMAT1.

Because these three R-MAT graphs are large (larger than FR
data set), we used PaRMAT [15], a multi-threaded R-MAT

graph generator, to generate them. Table 13 (b) and (c) show

the small CG size and high precision of query results obtained

from CG respectively. We observe that CGs sizes for R-MAT

graphs are small, in fact even smaller than those for graphs

considered earlier. The CGs for R-MAT graphs also deliver

high precision ranging from 91.4% to 99.9%. Table 14 shows

the speedups we obtained for Subway, Ligra, and GridGraph.



EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaolin Jiang, Mahbod Afarin, Zhijia Zhao, Nael Abu-Ghazaleh, and Rajiv Gupta

Table 13. R-MAT Graphs with 2.72 billion edges
and 71.8 million vertices.

(a) Parameters and In-Memory Graph Size.

G Parameters (a, b, c, d) Size (GB)
RMAT1 (0.57, 0.19, 0.19, 0.05) 22.0
RMAT2 (0.67, 0.14, 0.14, 0.05) 22.0
RMAT3 (0.47, 0.24, 0.24, 0.05) 22.0

(b) % Edges in CGs.

G SSSP SSNP Viterbi SSWP REACH
RMAT1 2.78% 2.70% 12.61% 2.70% 3.95%

RMAT2 1.68% 1.65% 7.82% 1.65% 3.17%

RMAT3 3.05% 2.98% 21.29% 2.89% 5.17%

(c) Precision of Queries Results.

G SSSP SSNP Viterbi SSWP REACH WCC
RMAT1 96.5% 99.9% 95.3% 99.9% 99.9% 99.9%

RMAT2 97.8% 99.9% 91.4% 99.9% 99.9% 99.9%

RMAT3 95.2% 99.9% 99.4% 99.9% 99.9% 99.9%

Table 14. Speedups for R-MAT graphs.

G SSSP SSNP Viterbi SSWP REACH WCC
Subway

RMAT1 2.32× 3.94× 1.02× 3.07× 2.81× 2.74×
RMAT2 2.51× 3.99× 0.97× 3.51× 2.28× 2.31×
RMAT3 2.42× 2.97× 0.89× 3.55× 4.46× 3.83×

Ligra
RMAT1 1.27× 1.47× 0.80× 3.52× 15.5× 1.50×
RMAT2 1.64× 1.30× 0.96× 2.76× 12.2× 2.32×
RMAT3 1.25× 1.35× 0.77× 1.98× 15.6× 1.61×

GridGraph
RMAT1 1.41× 5.24× 1.00× 5.22× 17.2× 2.55×
RMAT2 1.40× 4.72× 0.95× 5.17× 20.7× 1.90×
RMAT3 1.31× 3.81× 0.97× 4.55× 12.4× 1.62×

As we can see for these graphs with different characteristics,

we also observed significant speedups. The only exception

is Viterbi algorithm for which, due to lower precision and/or

larger CG sizes, the costs of using core graphs often exceeds

the benefits of using them.

3.4 Abstraction Graphs & Sampled Graphs vs. CGs
We also studied the precision of Abstraction Graph (AG) con-

structed according to the algorithm in [42]. The algorithm

orders the edges according to increasing edge weights. First,

pass over the edges adds those edges to the AG that connect

two weakly connected components. Next pass includes ad-

ditional edges till upper limit on number of allowed edges

is reached – once again preference is given to lower weight

Table 15. Precision of AGs of sizes: (AG) equal to CG; (2AG)

double of CG. % Vertices with Precise Results for 10 Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR
AG-P 22.3% 52.4% 35.9% 52.7% 25.5% 9.4%

2AG-P 36.2% 63.9% 62.7% 63.9% 44.6% 58.1%

TT
AG-P 34.4% 43.2% 27.9% 43.2% 26.9% 6.1%

2AG-P 50.6% 61.6% 55.0% 63.4% 55.7% 6.2%

TTW
AG-P 29.0% 60.3% 23.7% 55.4% 43.5% 54.0%

2AG-P 46.0% 77.9% 46.9% 77.7% 53.1% 67.8%

PK
AG-P 46.8% 69.9% 14.4% 71.8% 49.5% 59.6%

2AG-P 73.5% 83.9% 44.7% 85.6% 62.3% 75.5%

Table 16. Precision of SGs of sizes: (SG) equal to CG; (2SG)

double of CG. % Vertices with Precise Results for 10 Queries.

G SSSP SSNP Viterbi SSWP REACH WCC

FR
SG-P 9.8% 15.2% 11.8% 12.7% 35.2% 38.1%

2SG-P 11.2% 19.7% 15.1% 17.2% 39.7% 42.5%

TT
SG-P 8.7% 10.5% 15.5% 6.3% 41.8% 33.5%

2SG-P 11.8% 14.1% 17.1% 10.1% 49.2% 35.3%

TTW
SG-P 10.4% 11.2% 18.8% 15.9% 34.8% 47.9%

2SG-P 12.8% 14.8% 21.5% 18.1% 38.2% 51.7%

PK
SG-P 11.1% 14.9% 14.6% 17.8% 30.6% 48.5%

2SG-P 15.0% 17.6% 19.5% 21.5% 32.7% 58.4%

edges. For fair comparison, we constructed AGs with equal

number of edges as corresponding CGs and then compared

their precision. The precision of AGs is given in Table 15. As

we can see, the precision of AGs ranges from 6.1% to 69.9%

while the precision of CGs ranges from 94.5% to 99.9%. We

also doubled the size of AGs (relative to CGs) to see study

how the precision improves. However, as shown by the rows

labeled 2AG in Table 15, though precision improves to 6.2%

to 83.9%, it is still far lower than that of CGs. The reason for

high precision of CGs is preservation of key characteristics:

power-law degree distribution and relative vertex degrees.

Sampling techniques have been developed to scale down

graph size [21, 29, 41]. We generated Sampled Graphs (SGs)

using random walks [41] and used them in place of CGs for

two phase evaluation of queries. The precision data of this

approach is given in Table 16. We observe that overall the

precision of SGs is even lower than AGs. This is because sam-

pling does not guarantee creation of well-connected graphs.

In contrast, CGs provide highly precise results for the

following reasons. First, since CGs are built from query re-

sults, they include paths formed by non-zero centrality edges

giving us good connectivity. Second, as shown by a repre-

sentative plot in Figure 9, the degree distributions of FG and

CG are similarly power law. Third, as shown in Table 17,

although the degrees of high degree vertices in CG are re-

duced, their relative degrees remain unchanged (e.g., the top

1000 vertices in CG and full graph are exactly the same).
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Figure 9. Power Law Degree Distribution of Full Graph vs.

Core Graph: FR for SSSP.

Table 17. Degree of Overlap in Sets of Topmost 100,000

Highest Degree Vertices between FGs and CGs for SSSP.

G Common High Degree Vertices
Top 1,000 Top 10,000 Top 100,000

FR 1,000 9,997 99,931

TT 1,000 10,000 99,997

TTW 1,000 10,000 99,988

PK 1,000 10,000 98,988

4 Related Work
A Proxy Graph used for evaluating all future queries.
We discuss relevant works that derive a smaller graph for

a large graph to speedup evaluation of queries. Input reduc-
tion [18] employs property preserving graph transformations

to reduce graph size and then uses 2Phase processing. How-
ever, transformations eliminate vertices and graph size re-

ductions are limited. Smallest reduced graph had around 50%

of the edges and it can only be used to evaluate queries for

subset of vertices in the full graph. Abstraction Graph [42]

delivers a small proxy graph; however, it lacks precision as

shown in Table 15. In contrast, core graphs are much smaller
(5.42–10.45% for FR) and yet produce accurate results for over
94% vertices, and leaving less work for the second phase. Graph
Sampling scales down the size of a graph [21, 29, 41] while

preserving global graph characteristics. However, our ex-

perimental results in Table 16 show that the ability to solve

arbitrary queries with high precision is lost as the sampled

graph may not be well-connected thus eliminating paths

between vertices.

Query specific pruning for Point-to-Point queries.Our
work focuses on evaluating vertex queries that originate at a

source vertex and then compute property values for all other

vertices that are reachable from it. Another class of queries,

point-to-point queries, compute a property value between

a source and destination vertex pair. As the first step graph

pruning is performed and then the query is evaluated on the

pruned graph [39, 40]. Unlike Core Graph, pruned graphmust

be recomputed for each new query. Due to limited scope of

a point-to-point query, pruning parts of the graph that do

not fall on paths from source to destination significantly

reduces graph size. However, since our work is for point-

to-all queries, pruning would only reduce the graph size

minimally. Next we provide comparison with two specific

point-to-point query algorithms.

Query-by-Sketch (Qbs) [39] is a three-phase (offline la-

belling, query specific online sketching, and searching) al-

gorithm for finding shortest path between two vertices
(i.e., shortest path point-to-point query). Though core graph

and Qbs speedup query evaluation over large graphs, Qbs
has major limitations. First, a sketch is query specific and

thus must be computed online for each query while the core

graph is found once and used for all queries. Second, core

graph is general as it solves many kinds of queries as op-

posed Qbs that is for only shortest path query. Third, we

evaluate demanding queries that compute property values

from one source vertex to all other reachable verticeswhileQbs
evaluates a single point-to-point query. For the queries we

evaluate, a sketch is expected to be very large fraction of the

graph. Finally, not only is online sketching expensive, if the

sketch produced is large in size, then computation of short-

est path takes a long time. For TTW labelling and sketching

takes 1,345 seconds and the sketch is large (0.76GB). However,
core graph construction is relatively efficient and done once.

Pruning and Prediction (PnP) [40] is another method for

evaluating point-to-point queries. This algorithm employs

bidirectional BFS originating from source (forward) and des-

tination (backward) to first prune the graph for a given query

and then perform remainder of the query evaluation. The

pruning is query specific like the query sketch used by Qbs.

Query specific transient graphs generated on-the-fly.
Transient graphs are generated to minimize data transfer

cost multiple times during the evaluation of a query. There

are two contexts in which such work has been done: works

considering graphs that do not fit in GPU memory; and out-

of-core systems for graphs that do not fit in the memory of

a single machine. Both these approaches can benefit from

Core Graphs to reduce data transfers – between host and

GPU-memory vs. disk and machine memory.

A number of approaches have been developed to reduce

data transfer in context of a GPU [12, 17, 22, 32, 33]. Among

them Subway is the most promising – it on-the-fly generates

and loads transient active subgraphs covering the frontier

from one iteration to next. Across iterations, the reachable

graph is loaded at least once. In contrast, a core graph is loaded
in its entirety once and computes precise results for over 94%
of vertices without requiring graph transfers.
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On shared-memory machines when graphs cannot fit in

memory, out-of-core partition-based processing is used [20,

31, 37, 42, 43]. Partitions are loaded from disk one at a time

and processed. Typically the disk IO represents 70% of the

runtime cost [37]. To reduce disk IO, [37]maximizes thework

performed on one partition before loading the next partition.

Wonderland [42] organizes edges across partitions according

to their weights so fewer passes, and faster convergence, can

be obtained. Nevertheless, the cost of disk IO is high. Out-of-
core systems benefit from our approach since first phase loads
the core graph and computes precise results for over 94% of
vertices without additional IO.

5 Concluding Remarks
We identified core graphs with 10.7% of edges on average that

rapidly yield precise results for 94.5–99.9% of vertices. An op-

timized second pass efficiently computes the precise results

for rest of the vertices. The generality of the CG based ap-

proach allows it to be applied across existing systemswithout

requiring anymajor modifications to them.We demonstrated

this by enhancing three different systems. Significant perfor-

mance improvements for these systems were observed – up

to 4.48× in Subway [32], up to 13.62× inGridGraph [43], and

up to 4.97× in Ligra [34]. Applying the triangle inequality

optimization gave additional speedups. While these results

were for real data sets corresponding to power law graphs,

we also observed performance improvements for generated

R-MAT graphs with varying charateristics.
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