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Abstract

Deep Neural Networks (DNNs) have been shown to be
vulnerable to adversarial examples, which are slightly per-
turbed input images which lead DNNs to make wrong pre-
dictions. To protect from such examples, various defense
strategies have been proposed. A very recent defense strat-
egy for detecting adversarial examples, that has been shown
to be robust to current attacks, is to check for intrinsic con-
text consistencies in the input data, where context refers to
various relationships (e.g., object-to-object co-occurrence
relationships) in images. In this paper, we show that even
context consistency checks can be brittle to properly crafted
adversarial examples and to the best of our knowledge, we
are the first to do so. Specifically, we propose an adaptive
framework to generate examples that subvert such defenses,
namely, Adversarial attacks against object Detection that
evade Context consistency checks (ADC). In ADC, we for-
mulate a joint optimization problem which has two attack
goals, viz., (i) fooling the object detector and (ii) evading
the context consistency check system, at the same time. Ex-
periments on both PASCAL VOC and MS COCO datasets
show that examples generated with ADC fool the object de-
tector with a success rate of over 85% in most cases, and at
the same time evade the recently proposed context consis-
tency checks, with a “bypassing” rate of over 80% in most
cases. Our results suggest that “how to robustly model con-
text and check its consistency,” is still an open problem.

1. Introduction
Deep Neural Networks (DNNs) have been shown to

be highly expressive and have achieved state-of-the-art
(SOTA) performance on a wide range of computer vision
tasks, such as object detection and classification. However,
in 2014, Szegedy et al. [22] found that DNNs are vulnera-
ble to carefully crafted and usually, visually inconspicuous
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(to humans) perturbed inputs named adversarial examples,
which lead DNNs to make incorrect predictions. Since then,
an arms race between the generation of adversarial exam-
ple attacks and defenses to thwart them, has taken off. Re-
searchers have proposed attacks and defenses in image and
video classification [20, 11, 12, 24, 28, 8, 25, 10], and object
detection [3, 21, 30, 13].

Among existing defense mechanisms, checking intrin-
sic context consistencies within the input data has recently
been showcased to be very effective, in various tasks. For
example, spatial consistency has been used to detect adver-
sarial attacks against semantic segmentation [26]; tempo-
ral consistency has been used to detect adversarial attacks
against video classification [8, 25]; object-object context
along with other kinds of context has been used to detect ad-
versarial examples against objection detection [13]; audio-
visual correlation has been used to detect adversarial exam-
ples against audio-visual speech recognition [15].

While these context-consistency-based defenses are
shown to be effective against SOTA attacks, whether they
can resist more advanced adaptive attacks remains unex-
plored. We hypothesize that if the context is (or can be)
extracted using a neural network and the consistency checks
are also performed using neural networks, then adaptive at-
tacks could be feasible via a more complex optimization
formulation. Specifically, we expect that it would be fea-
sible to use existing optimization techniques to compute
adversarial examples that can (a) fool the DNNs to make
wrong prediction (e.g., misclassify an object) and (2) fool
the consistency check modules thus bypassing the defense.
This is shown diagrammatically using an example in Fig. 1.

In this work, we conduct the first study on compos-
ing adaptive attacks against context-consistency-based de-
fenses. Using the very recent context-aware object detector
proposed in [13] as an exemplar of defense, we demonstrate
the feasibility of attacking context-consistency based mod-
els. We analyze two types of attack scenarios that are as
follows. In a white-box attack scenario, we assume attack-
ers have full knowledge of the consistency check modules.
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Figure 1: Motivation for our proposed approach. (a) A benign image where a detector detects the stop sign and intersection. (b) Only the
stop sign is perturbed and detected as a speed limit; however, a context-aware adversarial defense like [13] is able to easily detect that a
speed limit sign does not occur at an intersection, and thus the attack fails. (c) Our goal is to not only perturb the stop sign into a speed
limit sign, but also perturb other parts of the image so that it is contextually consistent, e.g., the intersection to objects that co-occur with
the speed limit sign like other cars. Such an attack would be difficult to detect using methods like [13]. While we do not explicitly perturb
the other objects, the proposed method will add perturbations such that the detections in the overall image become contextually consistent.

In our gray-box attack scenario, we assume attackers are
aware of the consistency check mechanism (e.g., the neu-
ral network architecture), but have no access to either the
parameters of the modules or the training data.

Specifically, we develop a framework that we call ADC
for “Adversarial attacks against object Detection that evade
Context consistency checks” to develop white box based ad-
versarial examples. To generate these white-box adaptive
attacks in ADC, we formulate a joint optimization prob-
lem where the loss function is composed of two parts: (a)
the loss function of the DNN prediction, and (b) the loss
function relating to the consistency check. One particu-
lar challenge in solving the joint optimization problem is
that in current context aware defenses, the context is ex-
tracted from the intermediate layers of the DNN, while the
consistency checks are done with separate DNN module(s).
For instance, the context-aware object detector proposed
in [13] extracts context profiles from internal Gated Recur-
rent Units (GRUs) and checks for relationship inconsisten-
cies using a bank of auto-encoders. To solve this challenge,
we propose a 3-step optimization technique.

With respect to the gray-box adaptive attack, our aim is
to expand ADC to investigate the transferability of “context-
aware” attacks. Specifically, since we do not have full ac-
cess to the consistency check modules, we train a surrogate
defense module and then solve the joint optimization prob-
lem with the surrogate module. Then, we test the generated
attacks with the gray-box model.

The main contributions of our work are as follows:

• To the best of our knowledge we are the first to in-
vestigate adaptive adversarial attack against consistency
check based defenses.

• We develop a framework, ADC, for generating practi-
cally viable adaptive adversarial examples against con-
text consistency based defenses. To generate adversarial
examples using ADC, we formulate a joint optimization
problem, and find the approximate solution efficiently by

solving three sub-optimization problems in a pipeline.
• We conduct extensive experiments on the large-scale

PASCAL VOC and MS COCO dataset. Our method
yields very high fooling rates against the object detection
system while simultaneously, evading the context con-
sistency check with high success rates, for three typical
attack goals [3, 21, 30]: mis-categorization, hiding and
appearing attacks.

2. Related Work

To craft adversarial examples, early methods [22, 6, 9]
either take one step to apply perturbations to the input
along the sign of gradient of the designed misclassifica-
tion loss function, or take multiple small steps iteratively
while adjusting the direction after each step. Some notable
works that considered both attacks and defenses include
[17, 2, 7, 27, 4, 1].

One promising defense strategy explored recently, is to
leverage violations of intrinsic consistencies that are ex-
pected to exist in the input data (i.e., context) to detect ad-
versarial examples. Specifically, context relates to relation-
ships that are typical in the training samples; adversarial
examples are expected to cause violations in such relation-
ships. Xiao et al. [26] show via an empirical study that
the surrounding spatial context information in semantic seg-
mentation has different characteristics for benign and adver-
sarial examples, and proposed a spatial consistency-based
adversarial detection method. Jia et al. [8] define an excep-
tion frame as one whose prediction label differs from the
labels of adjacent frames and showed that exception frames
are more likely in adversarial video inputs than in benign
video streams. Xiao et al. [25] proposed to use temporal
consistency to detect adversarial examples in video. Ma et
al. [15] found that the correlation between audio and video
in adversarial examples is lower than benign examples due
to the added perturbations. Yin et al. [29] abstracted a
pseudo-language to describe the scene and utilizing natu-



ral language processing technique to measure the overall
context consistency for a given image. Wang et al. [23]
proposed a context consistency check mechanism to detect
adversarial attacks against ReID systems.

In a very recent work, Li et al. [13] construct the context
profile, which captures four types of relationships among
region proposals (i.e., spatial context, object-object con-
text, object-background context, and object-scene context)
in the object detection task to detect adversarial perturba-
tions. Based on the observation that the context profile of
each object category is usually unique, they use a bank of
auto-encoders to learn the benign context profile distribu-
tion for each category and detect adversarial attacks as con-
text consistency violations (i.e., high reconstruction error of
auto-encoders) during testing. Experiments show that the
detection ROC-AUC is over 0.95 for various adversarial at-
tacks. Although their method has been very successful with
most attacks that are currently prevalent, in this paper, we
show that it is possible to design context-aware attacks that
can defeat such systems. To the best of our knowledge, we
are the first to propose adaptive attacks to evade consistency
check based defenses in object detection.

3. The ADC Framework
In this section, we describe how we design our ADC

framework to generate adaptive attacks against object de-
tection systems with a context-inconsistency-based adver-
sarial example detection mechanism. We first give a brief
introduction of how a context-inconsistency-based attack
detection mechanism like [13] works. Then we describe the
threat model in detail. Subsequently, we formulate an opti-
mization problem to jointly fool the detector and evade the
context consistency check (referred to as joint optimization)
to generate our white-box adaptive attack and describe how
we find approximate solutions to this optimization problem
via a three-step strategy. Lastly, we describe the strategy we
use in ADC to realize a gray-box adaptive attack.

3.1. Context-inconsistency-based attack detection

In this subsection, we illustrate how context-
inconsistency-based attack detection mechanisms work In
general, these defense mechanisms extract some context
profiles from the input data and check whether the ex-
tracted context profiles match some known distributions.
If a testing time context profile does not fit into a known
distribution, then an anomaly is detected. Such an anomaly
could be introduced by previously unknown data or
adversarial attacks.

Take the SCEME model proposed by Li et al. [13] as an
example. SCEME aims to defend the Faster RCNN [19] ob-
ject detector against adversarial examples. Given an input
image, Faster RCNN will output a set of region proposals,
each of which is associated with bounding box information,

and a category probability vector. To detect adversarial at-
tacks, SCEME extracts a context profile for each proposed
region.Each context profile is a vector of intermediate fea-
tures, computed based on a fully connected context graph,
where each node is a region proposal and edge weights are
learned from the training data. Because each category of
objects is likely to have distinguished object-object rela-
tionships, SCEME uses an auto-encoder to learn the benign
distribution of context profiles for each category. To de-
tect context inconsistencies, the context profile is input to
the auto-encoder associated with the predicted category. A
high reconstruction error of the auto-encoder implies an ab-
normal context profile and thus, the corresponding region
would be marked as containing adversarial perturbations.

3.2. Problem definition and threat model

In this subsection, we generalize and formulate the
problem of attacking an object detector with context-
inconsistency-based attack detection, such as the model
proposed by Li et al. [13]. We denote the input scene im-
age as I , the object detection function as ObjDet(·), and the
detection results as RI = ObjDet(I) = [r1, r2, . . . , rN ],
whereN is the total number of proposed regions over I . For
simplicity of exposition, we will use R instead of RI here-
after. To detect adversarial attacks, the context-consistency
checker extracts a context profile for each proposed re-
gion. Therefore, for each region proposal, we have the pre-
dicted category label denoted as ci, the bounding box co-
ordinates denoted as bi, and the context profile denoted as
fi, i.e., ri =< bi, ci, fi >. If we use C = [c1, c2, ..., cN ]
to denote the predicted categories of all region proposals,
B = [b1, b2, . . . , bN ] to denote corresponding bounding
boxes, and F = [f1, f2, . . . , fN ] to denote all context pro-
files, then R =< B,C, F >. Because each category of ob-
jects is likely to have distinguished object-object relation-
ships, we denote the function of the attack detector (i.e.,
auto-encoder) associated with each category c ∈ L (L is the
complete category set) as AttDetc(·). For each region, we
can further calculate the reconstruction error of a context
profile as ei = AttDetci(fi).

We aim to perform targeted attacks where the perturbed
object is misclassified to an attacker desired category. Com-
pared to untargeted attacks, targeted attacks are harder and
potentially provide more insights since subversion to cer-
tain target categories could be harder to bypass the context-
consistency checks than others. We consider two threat
models in designing ADC.
• White-box adaptive attack where we assume attackers

have full knowledge about the context-consistency check
mechanism, i.e., ObjDet(·) and AttDetc(·),∀c ∈ L are
known functions to attackers.

• Gray-box adaptive attack where we assume the attack-
ers are aware of the context-consistency check mecha-



Figure 2: Our proposed ADC framework. There are two attack goals in ADC: a) fooling the object detector; b) bypassing the context-
inconsistency checks. The first goal is achieved with the optimization problem defined in step 1 which perturbs the input image to make
the object detector output the target classification labels. The second goal is achieved with the two optimization problems defined in step 2
and step 3. In step 2, the context profile features fi are perturbed to make the attack detector (auto-encoders) output low anomaly scores.
In step 3, the input image is further perturbed to output the target perturbed context profiles and the target classification labels. Note that in
gray-box attack, the ObjDet(·) and AttDetc(·) are trained separately by the attacker, and it is not the same model used by the defender.

nism, e.g., the definition of context profile and the use of
the auto-encoder bank. However, they have no access to
either the parameters of the models or the training data.
In other words, ObjDet(·) and AttDetc(·),∀c ∈ C are un-
known functions to attackers, but the attackers could esti-
mate these functions based on their own training samples.

3.3. Joint optimization for white-box attack

Our hypothesis is that if the context profile is extracted
and checked using a neural network, and the parameters of
the neural network are known (i.e., the white-box attack sce-
nario), then we should be able to search for adversarial per-
turbations that can both fool the object detector and satisfy
context-consistency constraints using joint optimization. In
this subsection, we describe how to realize our white-box
adaptive attack. Specifically, we will use the SCEME model
as an example to show how we calculate context-aware per-
turbations that can both fool its object detector and bypass
the inconsistency check applied by its auto-encoder bank.

3.3.1 Formulation

Fooling the object detector. To fool the object detector to
misclassify the victim object into a target label, perturba-
tions should be calculated such that the labels of the cor-
responding regions are flipped from cs to ct, where cs de-
notes the ground truth label of the victim object, and ct de-
notes the target label assigned by the attacker. We use C∗

to denote the target labels for all the region proposals where
ground truth labels are used for untargeted objects and label
ct are used for the targeted object. We use ∆Ifool to de-
note the perturbation needed to fool the object detector. To
provide imperceptibility of the perturbation, the Lp norm
(e.g. L1, L2, Linf and etc.) of ∆Ifool is constrained to
be lower than a chosen threshold viz., τfool. Therefore, the
optimization problem can be formulated as in Eqn. 1. The

classification loss Lcls is the cross-entropy loss between the
predicted probability vectorPC from the object detector and
the target label C∗. Note that, in the optimization process
we do not change the bounding box coordinates of the re-
gion proposals.

minimize
∆Ifool

Lcls(PC , C
∗), PC ← ObjDet(I + ∆Ifool)

subject to ‖∆Ifool‖p ≤ τfool
(1)

Bypassing the context-inconsistency checks. To bypass
context-inconsistency checks, perturbations should be cal-
culated such that the context profiles of all region proposals
should have below threshold anomaly scores (i.e., all auto-
encoders in SCEME exhibit low reconstruction errors). We
use ∆Ibypass to denote the perturbation needed on the im-
age pixels, to bypass the context-inconsistency check. The
optimization problem can be formulated as in Eqn.2. The
reconstruction loss Lrecon is the smooth L1 loss as used
in [13] between the original context profile and the context
profile reconstructed with the auto-encoders and τbypass is
the threshold that bounds the perturbation. Note that the
auto-encoder used for each context profile fi could be dy-
namically chosen according to the predicted category ci.

minimize
∆Ibypass

∑
fi∈F

Lrecon(fi,AttDetci(fi)),

F ← ObjDet(I + ∆Ibypass)

subject to ‖∆Ibypass‖p ≤ τbypass

(2)

Joint optimization formulation. If we denote the perturba-
tions on the input image I as ∆I , then the overall optimiza-
tion problem formulation, that would yield a perturbation
that fools the object detector, while at the same time evades
the context-inconsistency checks is given by Eqn. 3. In this
equation, α is a parameter that is used to achieve a good
trade-off between fooling the object detector and evading



the consistency check. ∆I is the total adversarial perturba-
tion applied on the image, which combines the fooling and
bypassing perturbations. τ is the threshold which bounds
the total perturbation that can be applied (to ensure imper-
ceptibility).

minimize
∆I

Lcls(PC , C
∗) + α

∑
fi∈F

Lrecon(fi,AttDetci(fi)),

Pc, F ← ObjDet(I + ∆I)

subject to ‖∆I‖p ≤ τ
(3)

3.3.2 Three-step strategy

Unfortunately, the joint optimization problem in Eqn. 3 can-
not be solved directly, for two reasons: (1) the anomaly
detector AttDetc(·) could be dynamically chosen according
to the predicted category of each region proposal and (2)
the anomaly detection networks could be disconnected from
the object detection network and in such cases (as in [13]),
back-propagation over the pair of networks (object detec-
tion and anomaly detection) is infeasible. To overcome
these key challenges, we propose a three-step optimization
to search for an approximate solution, as depicted in Algo-
rithm 1.

In step one (Lines 1-4 in Algorithm 1), we use existing
attack techniques like IFSGM [9] to search for perturba-
tions ∆Ifool that can cause the target object to be misclas-
sified (i.e., solving Eqn. 1). t is the iteration counter for
IFSGM. We denote the perturbed image calculated in step
one as I ′ = I + ∆Ifool. Similar to [2], NormProjection(·)
is to project the perturbation back to the norm ball so that
the Lp norm of the perturbation is under the pre-defined
threshold τfool. For example, if the Linf norm is used, then
NormProjection(x) is equal to τfool if x > τfool, and is equal
to −τfool if x < −τfool

1, and is equal to x otherwise.
Next, we extract the context profiles F (which consists of

node features, and relationships between region proposals
as edge features [13]), from the perturbed image I ′ (Line 6
in Algorithm 1) . In step two (Lines 7-11 in Algorithm 1)
, we search for perturbations ∆F , such that the perturbed
context profiles yield low reconstruction errors (i.e., solving
Eqn.4).

minimize
∆F

∑
fi∈F

Lrecon(fi + ∆fi,AttDetci(fi + ∆fi))

subject to ‖∆fi‖p ≤ τF ,∀∆fi ∈ ∆F
(4)

We denote the perturbed context profiles as F ∗ = F + ∆F ,
and will use these as the target context profiles in step three.
Note that Eqn.4 is different from Eqn. 2; in Eqn. 2 the

1Note that appropriate thresholds are used when this function used at
different places in the algorithm.

Algorithm 1: White-box Adaptive Attack
Input : I , C∗, ObjDet(·), AttDetc(·), ∀c ∈ L
Output: Adversarial example I ′

1 I ′ = I
2 for t← 1 to T1 do
3 ∆Ifool ← solve Equ. 1 with I ′ and C∗

4 I ′ = I + NormProjection(I ′ + ∆Ifool − I)
5 end
6 F ← ObjDet(I ′)
7 F ∗ = F
8 for t← 1 to T2 do
9 ∆F ← solve Equ. 4 with F ∗

10 F ∗ = F + NormProjectionF (F ∗ + ∆F − F )
11 end
12 I ′′ = I ′

13 for t← 1 to T3 do
14 ∆I ′bypass ← solve Equ. 5 with I ′, C∗ and F ∗

15 I ′′ = I + NormProjection(I ′′ + ∆I ′bypass − I)
16 end
17 return I ′

optimization is on the input image instead of extracted the
context profiles. Similarly, Eqn. 2 involves both the object
detector and the auto-encoder bank instead of only the auto-
encoder bank in Eqn.4. In step three (Lines 12-16 in Algo-
rithm 1) , with the target context profiles F ∗ and the target
category labels C∗, we search for perturbations ∆I ′bypass so
that the perturbed image with this additional perturbation
i.e., I ′′ = I ′+ ∆I ′bypass, will output both the target category
labels C∗ and the target context profiles F ∗ (i.e., solving
Eqn 5).

minimize
∆I′

bypass

∑
fi∈F

Lreg(F, F ∗) + βLcls(PC , C
∗)

PC , F ← ObjDet(I ′ + ∆I ′bypass)

subject to ‖∆Ifool + ∆I ′bypass‖p ≤ τ

(5)

3.4. Leveraging transferability for gray-box attack

The proposed framework can be extended to a gray-box
setting. As noted in Fig. 2, in this setting, the attacker needs
to train its own model for the context-aware object detec-
tion. We assume that the attacker has access to data similar
to that used by the defender, i.e., data comes from the same
distribution and label space; however, the samples used to
train the models on the attacker’s side is different from that
on the defender’s side. This makes the optimization prob-
lem mentioned above more challenging as the object detec-
tion and context profiles are expected to have higher uncer-
tainty. This is analyzed experimentally in § 4.3.

4. Experimental Analysis
We conduct comprehensive experiments on two large-

scale object detection datasets to evaluate attacks generated



Figure 3: (a)The reconstruction error distributions of the context profiles from benign samples, adversarial samples generated by the
baseline non-adaptive method, and adversarial sample generated by ADC method. The adversarial examples are generated in the white-
box setting. We observe that ADC method is able to perturb the context profiles and mimic the benign context profile distributions.(b)The
reconstruction error distributions of the context profiles from benign samples, adversarial samples generated by the baseline non-adaptive
method in the white box setting, and adversarial sample generated by ADC method in the gray-box setting. We observe that when the
attacker has no access to the oracle models, the context profile distribution leant with surrogate models is very similar to the ground truth
benign context profile distribution. The context profiles transfer well across models, so as the perturbation on the context profiles.

Table 1: Attack performance for three attack goals on the PASCAL VOC dataset.

Attack Method
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
Non-adaptive attack (baseline) 97.02% 98.57% 90.51% 19.92% 30.14% 43.62%

Adaptive attack (ours) 88.63% 98.57% 68.20% 90.51% 87.20% 96.39%

by ADC in both white-box and gray-box settings. Inspired
by previous works [3, 21, 30], we evaluate our approach
with three attack goals:

• Mis-categorization attack where the object detector is to
mis-categorize the perturbed object as belonging to a dif-
ferent category.

• Hiding attack where the object detector is to fail in rec-
ognizing the presence of the perturbed object, which hap-
pens when the confidence score is low or the object is
recognized as background.

• Appearing attack where the object detector is to wrongly
conclude that the perturbed background region contains
an object of a desired category.

For the mis-categorization attack and the appearing at-
tack, we perform targeted attacks and randomly choose the
target category labels, in our experiments.

We evaluate the performance of ADC with two metrics.
Recall that we have two goals: (a) to fool the object detector
to achieve the mis-categorization attack, the hiding attack,
or the appearing attack; and (b) to bypass the consistency
checks of the attack detectors (i.e., the auto-encoder bank).

• Fooling rate is the metric for the former goal, and indi-
cates how many attacks from all the tried ones, succeed
in fooling the object detector.

• Bypass rate is the metric for the later goal, and quantifies
how many attacks from those that fool the object detector,
bypass the context consistency checks.

An image is detected as natural/benign if the reconstruc-
tion errors of all the context profiles in the image, are lower

than the threshold. It is detected as containing adversar-
ial perturbations, if the reconstruction error of any context
profile in the image is higher than the threshold. In other
words, the maximum reconstruction error computed from
the image (referred to as reconstruction error for simplicity
hereon), is used to decide whether the image has violated
the context consistency check or not. To report the bypass
rate, we need to fix the threshold. The threshold for the re-
construction error is chosen so as to make the false positive
rate equal to 0.1; here, the false positive rate is the probabil-
ity that a benign image is wrongly detected as perturbed.

4.1. Implementation details

Datasets. We use both PASCAL VOC [5] and MS
COCO [14]. PASCAL VOC contains 20 object categories.
Each image, on average, has 1.4 categories and 2.3 in-
stances. VOC07trainval and VOC12trainval are used as the
training set, and the the testing is carried out on VOC07test.
MS COCO contains 80 categories. Each image, on aver-
age, has 3.5 categories and 7.7 instances. coco14train and
coco14valminusminival are used for training, and the test
evaluations are carried out on coco14minival. Note that
COCO has few examples for certain categories. Similar
to [13], we evaluate with the 11 categories that have the
largest numbers of extracted context profiles.
Attack Implementations. To launch our adaptive attack,
we add perturbations on the whole image, which is typical
for digital attacks. We will show the experimental results
on adding perturbations to individual object regions in § 4.4.
The hyper-parameters T1, T2, and T3 are empirically chosen



Table 2: Attack performance for three attack goals on the MS COCO dataset

Attack Method
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
Non-adaptive attack (baseline) 93.07% 97.27% 78.13% 11.89% 11.19% 19.35%

Adaptive attack (ours) 86.90% 90.82% 66.36% 83.67% 75.52% 86.08%

to be 10, 1, and 1 separately. The step size for updating the
perturbation on the input image is 1 and that for updating
the perturbation on the context profile is 0.1. Linf is used
and the τ is set to be 10, and is the same as in previous
works [16, 18, 12]. τF is set to be 0.1. β is set to be 1.

4.2. Evaluation of white-box attack performance

Baseline. To understand the performance of the proposed
context-ware adaptive attack method, we use a vanilla non-
adaptive attack method as the baseline where the perturba-
tion is calculated purely according to Eqn. 1 (i.e., simply
aiming to fool the object detector without bypassing the
context-consistency checks).
Visualizing the reconstruction error. We plot the recon-
struction error calculated from benign images, perturbed
images with the non-adaptive method, and perturbed im-
ages with the adaptive method in Fig. 3(a), with mis-
categorization as the attack goal. We observe that the dis-
tribution of reconstruction errors of benign images differs
from the distribution of perturbed images. Specifically, the
reconstruction errors of the perturbed images are generally
higher because context is violated in these cases. This is
why, the context consistency check based detection works
in [13]. After we apply the perturbation with the proposed
adaptive attack method, the reconstruction error of the per-
turbed images is low and the distribution is very similar to
the that of the benign images. We also plot the distribu-
tion figure per target attack category in the supplementary
material and we have consistent observations for all the cat-
egories. Therefore, we conclude qualitatively that the adap-
tive attack method is context-aware and offers promise in
bypassing the context consistency check.
Adaptive attack performance. To quantitively evaluate
the adaptive attack performance, we report the fooling rate
and the bypass rate on both PASCAL VOC and MS COCO
in Tab. 1 and Tab. 2. We observe that ADC achieves a lower
fooling rate compared to the non-adaptive baseline attack.
For example the fooling rate of mis-categorization attack
on the PASCAL VOC dataset decreases from 97.02% to
88.63%. However, ADC significantly outperforms the base-
line method in terms of the bypass rate. For example, only
19.92% of the baseline mis-categorization attacks evade the
context-inconsistency based attack detection, while 90.51%
of the mis-categorization attacks launched by ADC evade
this attack detection. We observe that on the MS COCO
dataset, ADC improves the bypass rate from less than 20%
(with the baseline) to more than 75% for all the three attack

goals (mis-categorization, hiding and appearing), which
corresponds to over a 55% improvement.

4.3. Evaluation of gray-box attack performance

In gray-box attack, we use VOC12trainval as the train-
ing set to train a surrogate system (object detector + auto-
encoder bank) and use VOC07test to train the target sys-
tem’s model. We generate perturbations by solving the op-
timization problem with the surrogate neural networks and
the test it on the target system.
Visualizing the reconstruction error. We calculate the
reconstruction error with the target system and plot the
distributions in Fig. 3(b). The attack goal is also mis-
categorization. We observe that although the perturbations
are calculated with the surrogate system, they seem to trans-
fer well onto the target system and the distribution of the
reconstruction error of the perturbed images mimicked that
of the benign images quite well.
Adaptive attack performance. We report in Tab. 3 the
fooling rate and bypass rate of both white-box and gray-
box adaptive attacks for all the three attack goals. We ob-
serve that compared to the white-box attack, the fooling
rates of gray-box attack for all the three attack goals are
slightly lower. However, we observe that, the bypass rates
in gray-box setting are comparable to the white-box setting.
This together with Fig. 3(b), implies that the context pro-
file distribution learnt with surrogate models is very similar
to the ground truth benign context profile distribution. The
context profiles transfer well across models, and so do the
perturbations on the context profiles.

4.4. Ablation study

Next, we explore if we can bypass the context consis-
tency check by perturbing only the target object region (de-
fined by the ground-truth bounding box). By constraining
the perturbation region, we have less power on perturbing
the context profiles. The results are shown in Tab. 4. Com-
pared to whole-image perturbations, although the single-
object perturbations are able to retain comparable bypass
rates, they lead to much lower fooling rates. The fooling
rates of mis-categorization, appearing, and hiding attacks
drop from 88.63% to 66.74%, from 68.20% to 34.54%,
and from 98.57% to 88.63%, respectively.This result is
aligned with the expectation that (a) perturbing a single
object is more likely to cause context violations in mis-
categorization and appearing attacks and thus the attacks
are less likely to succeed, and (b) hiding attacks are more



Table 3: The gray-box attack performance for three attack goals on the PASCAL VOC dataset

Threat Model
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
White-box 88.63% 98.57% 68.20% 90.51% 87.20% 96.39%
Gray-Box 88.05% 85.33% 68.09% 92.34% 86.57% 96.38%

Table 4: Attack performance when attacking only the target object region for three attack goals on the PASCAL VOC dataset

Attack Region
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
Whole Image 88.63% 98.57% 68.20% 90.51% 87.20% 96.39%
Target Object 66.74% 88.63% 34.54% 88.70% 89.33% 95.15%

Figure 4: The attack success rates on MS COCO dataset for im-
ages with different number of objects. We observe that when more
objects present, the attack success rates (fooling rate * bypass rate)
tend to decrease. The reason could be with more objects, it is
harder to perturb the target object and all the other objects in a
context consistent way.

likely to succeed because they generally do not cause con-
text violations.

Figure 5: Two adversarial attack examples: (a) to misclassify
the selected car instance into TV monitor and bypass the context-
inconsistency check, ADC perturbed a background region into ta-
ble; (b) to misclassify the selected car instance into bicycle and
bypass the context-inconsistency check, ADC perturbed a back-
ground region into person.

4.5. Analysis Study

We explore what kind of attacks are harder to succeed
compared to others. Specially, we test whether the num-
ber of objects in the images affect the attack performance.
Here we define a new metric, attack success rate, which de-

scribes how many attacks out of all the tried ones succeed
in both fooling and bypassing (i.e., captured by fooling rate
multiplied by bypass rate). As shown in Fig. 4, we observe
that when more objects are present, the attack success rates
tend to decrease. We suspect the reason is that with more
objects, it is harder to perturb the target object and all the
other objects in a context-consistent way.

We then dive deep into one adaptive attack example and
see how the context is perturbed. Fig. 5(a) attack goal is
to mis-categorize the selected car instance into a TV mon-
itor. After attacking with ADC, we observe that not only
the car instance is misclassified to TV monitor, the parking
lot is also misclassified as a table instance to make the con-
text more consistent and thus help to bypass the consistency
check. Similarly, in Fig. 5(b), when we try to mis-categorize
the selected car instance into a bicycle with ADC, we ob-
serve that a person instance appears, overlapping the “bicy-
cle” to make the context more consistent.

5. Conclusions
In this paper, we show that recent defense strategies that

use context consistency checks for detecting adversarial ex-
amples, can be subverted by appropriately crafted attacks
that jointly consider the objectives of fooling the object de-
tector and bypassing the consistency checks. We develop a
framework which we call ADC, to generate both adaptive
white-box and gray-box attacks, that are successful in this
joint endeavor. To the best of our knowledge, we are the
first to show this possibility, and our work highlights the
inadequacies in current context models for defending ad-
versarial examples. Our experiments on both the PASCAL
VOC and MS COCO datasets show very high rates of both
fooling the object detector (typically over 85 %) and evad-
ing the context consistency checks (typically over 80 %).
We believe that future research on building better context
models, possibly tailored to adversarial example defense,
may be needed to truly make such approaches robust.
Acknowledgments. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency
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Supplementary Material for “ADC: Adversarial attacks against object
Detection that evade Context consistency checks”

In this supplementary material, we provide: (a) the re-
construction error distribution plots of the context profiles
for each object category, (b) gray-box attack performance
on the MS COCO dataset, and (c) ablation study on the MS
COCO dataset.

A. Reconstruction error distribution
As shown in Fig3.(a) in the main paper, the reconstruc-

tion error distribution of the context profiles from ADC
perturbed images is very similar to that from benign im-
ages, and that is why ADC attack can evade the context-
inconsistency based defense. In other words, the proposed
ADC method achieves context-aware attacks to fool both
the object detector and the attack detector.

Note that in the defense system, there is one auto-
encoder for one category. What is plotted in Fig3.(a) is the
reconstruction error distribution for all the categories on the
PASCAL VOC dataset. We in this section present the re-
construction error distribution per object category. Fig. 6
shows the results. As we can see, our previous observation
holds for each category (subplot), i.e., the distribution of
the ADC generated images mimics that of the benign im-
ages for each object category. This further proves that ADC
can generate context-aware attacks that are able to bypass
context-consistency checks.

B. Gray-box attack performance on MS
COCO dataset

We present in the main paper the gray-box attack per-
formance on the PASCAL VOC dataset. For completeness,
in this section, we show the gray-box attack performance
on the MS COCO dataset. The surrogate system is train
on coco14valminusminival. As shown in Table 5, gray-box
attack the MS COCO dataset achieves very similar results
compared to white-box attack, which is aligned with what
we observe on the PASCAL VOC dataset.

C. Ablation study on MS COCO dataset
We show in the main paper that by constraining the per-

turbed area to the target object region, the attack perfor-
mance is worse, which implies that context-aware attack
need to perturb not only the target region, but also other
regions to achieve context consistency. In this section, we
present a same ablation study on the MS COCO dataset.
The results are shown in Table 6. Similar to the results on
the PASCAL VOC dataset, hiding attack is not affected by

much, implying hiding attacks do not need to perturbations
over other regions; however, mis-categorization and appear-
ing attack performance is lower when the other regions are
not perturbed.



Figure 6: Reconstruction error distribution plot for each category.

Table 5: Gray-box attack performance for the three attack goals on the the MS COCO dataset.

Threat Model
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
White-Box 86.90% 90.82% 66.36% 83.67% 75.52% 86.08%
Gray-Box 76.25% 90.82% 60.51% 83.86% 75.89% 85.98%

Table 6: Attack performance when only attacking the target object region for the three attack goals on the MS COCO dataset.

Attack Region
Fooling Rate Bypass Rate

Mis-categorization Hiding Appearing Mis-categorization Hiding Appearing
Whole image 86.90% 90.82% 66.36% 83.67% 75.52% 86.08%
Target object 67.22% 90.82% 43.14% 88.04% 80.93% 89.48%


