
Breaking edge shackles: Infrastructure-free collaborative mobile
augmented reality

Kittipat Apicharttrisorn
∗

kapic001@ucr.edu

University of California, Riverside

Riverside, CA, USA

Jiasi Chen

jiasi@cs.ucr.edu

University of California, Riverside

Riverside, CA, USA

Vyas Sekar

vsekar@andrew.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Anthony Rowe

agr@andrew.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Srikanth V. Krishnamurthy

krish@cs.ucr.edu

University of California, Riverside

Riverside, CA, USA

Abstract
Collaborative AR applications are gaining popularity, but have

heavy computing requirements for identifying and tracking AR de-

vices and objects in the ecosystem. Prior AR frameworks typically

rely on edge infrastructure to offload AR’s compute-heavy tasks.

However, such infrastructure may not always be available, and

continuously running AR computations on user devices can rapidly

drain battery and impact application longevity. In this work, we

enable infrastructure-free mobile AR with a low energy footprint,

by using collaborative time slicing to distribute compute-heavy AR

tasks across user devices. Realizing this idea is challenging because

distributed execution can result in inconsistent synchronization of

the AR virtual overlays. Our framework, FreeAR, tackles this with
novel lightweight techniques for tightly synchronized virtual over-

lay placements across user views, and low latency recovery upon

disruptions. We prototype FreeAR on Android and show that it can

improve the virtual overlay positioning accuracy (with respect to

the IOU metric) by up to 78%, relative to state-of-the-art collabora-

tive AR systems, while also reducing power by up to 60% relative

to a direct application of those prior solutions.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

Keywords
Mobile Augmented Reality, Energy Efficiency, Object Detection and

Tracking, Simultaneous Localization and Mapping

ACM Reference Format:
Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth

V. Krishnamurthy. 2022. Breaking edge shackles: Infrastructure-free collabo-

rative mobile augmented reality. InACMConference on Embedded Networked

∗
The corresponding author is currently a postdoctoral researcher at CyLab, Carnegie

Mellon University, PA, USA, and can also be reached at kapichar@andrew.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SenSys ’22, November 6–9, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9886-2/22/11.

https://doi.org/10.1145/3560905.3568546

Sensor Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3560905.3568546

1 Introduction
Collaborative or multi-user AR experiences are on the rise, with

examples including Pokemon Go’s Buddy Adventures mode [51],

Google’s Just a Line virtual graffiti drawing app [22], and Meta-AR-

App for education [64]. While many multi-user AR apps rely on

cloud/edge infrastructure for heavy computations and sharing of

information across devices, such infrastructure may be unavailable

in many cases (e.g., a search-and-rescue in a disaster zone or an

ad-hoc AR game at a beach). In the first example, AR users may

need to see virtual overlays around people needing rescue. In the

second, users may interact with virtual coins hidden behind real-

world objects (e.g., palm tree) in a hide-and-seek game. In both cases,

the virtual overlays (highlight around person, virtual coins) should

be viewed in the correct locations with respect to the real-world

objects by all the users; otherwise, a person might not be correctly

identified, or the virtual coin might not be hidden.

Realizing these types of collaborative AR apps requires several

steps. Step 1: An AR device must determine where to place a virtual

overlay, based on an analysis of the real world scene; Step 2:While

moving, the AR device must track its own pose (i.e., position and

orientation) and the pose of the virtual overlay, so that the overlay

is at the correct location on the display; Step 3: The AR devices

must communicate about the virtual overlays with each other, so

that the overlays appear at consistent locations on all their displays.

For Steps 1 and 2, today’s AR entails two sources of high-power

computation that can drain a device’s battery. For Step 1, deep

neural networks (DNNs) are used by recent AR work [7, 37, 38]

to correctly detect and classify objects with high accuracy (e.g., to
avoid cases like Fig. 1b where the virtual overlays are drawn over

the wrong real world objects due to incorrect detection).

For Step 2, simultaneous localization and mapping (SLAM) is

commonly used in AR [21, 33, 50] to allow a device to determine its

pose in the real world. While these computations work well when

executed on edge infrastructure, as shown in prior work [9, 13, 36]

and seen in our measurements, their high power consumption

makes them unsuitable for a direct application in infrastructure-

free settings. For example, SLAM [33, 42] consumes roughly 1.01

- 1.85 watts, while a DNN execution consumes 0.98 watts on a

Google Pixel 4 (comparable to or even higher than what is incurred

https://doi.org/10.1145/3560905.3568546
https://doi.org/10.1145/3560905.3568546

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

(a) Desired case (b) Undesired case
Figure 1: Virtual overlays are (a) correctly placed, (b) mis-
placed due to poor synchronization or inaccurate object de-
tection. The purple arrows point at the person of interest.

with video streaming [62, 71]). Although hardware offloading may

reduce power consumption of these computations, we focus on

software solutions that work on heterogeneous devices without

requiring hardware accelerators (e.g., GPU) [40, 55, 65].
A key observation we make is that many of the critical/high

energy computations are redundant across devices in collaborative

AR settings, unlike when each device operates independently. This

is because 1) AR devices detect and track a common set of physical

objects, and so only some (not all) of the devices need to re-detect

the objects using DNNs, and 2) AR devices move around a common

space, and so in principle, only some of them need to perform

localization independently using SLAM. Thus, having all battery-

operated AR devices perform these computations all the time is not

only expensive but also wasteful in terms of energy consumption.

To enable long-lived (power efficient) AR experiences when there

is no infrastructure support, we envision employing collaborative
time slicing, wherein not every device continuously runs all heavy

computations (DNNs and SLAM). Rather, such computations per-

formed by a primary device are re-purposed by others (secondary

devices); the role of the primary can be rotated as needed to distrib-

ute the energy drain. While seemingly a simple idea, it is very hard

to realize collaborative time slicing in practice, such that the AR ex-

perience (in terms of virtual overlay placement accuracy) is similar

to when all devices perform their own computations, expending

high power. Specifically, we encounter the following challenges.

Synchronizing moving AR devices in new areas. To place virtual

overlays with consistent positions and orientations in their views,

AR devices need to synchronize their 3D coordinate systems. This

is very difficult for two reasons. First, users can launch AR apps

from different locations, and thus the devices do not share a com-

mon initial reference point for synchronization. Second, AR devices

move independently and see the same scene from different view-

points at different times, so it is difficult to determine a common

coordinate system that all devices agree on. To address these chal-

lenges, we rely on spatiotemporal, repeat observations of the scene

from different viewpoints to try to estimate a shared coordinate

system [15–17, 39]. Our key observation is that when the users

view a scene, matters as much as what they view. In other words,

to construct the common coordinate system, two viewpoints that

are recent but less similar in appearance might be preferable to two

viewpoints that are older but more similar, since the scene may

have changed over time (see Fig. 3). Prior approaches [13, 15, 17, 39]

neglect this time factor, i.e., they assume a static real world.

Recovering from failures due to abrupt motion. After synchroniza-
tion, a tenet of collaborative time slicing is that the secondary AR

devices keep track of their own poses in the agreed-upon coordi-

nate system in a lightweight way. However, challenges in tracking

arise if there are changes in the appearance of an object in the FoV

or in an AR user’s pose. To cope with such disruptions, we design

triple-layered repair mechanisms, viz. view-based and location-

based local repairs, and primary-assisted collaborative repair. The

main idea is for a secondary to search for the object in view based

on its previously saved appearances; or failing that, to display the

virtual overlay at the object’s previous locations; or if all else fails,

to obtain updated object locations from the primary (tracking them

using the heavy computations) and map them to its own view.

Representing virtual overlays in 3D coordinates. As an AR device

moves around a 3D world, because the viewpoint (e.g., relative
distance and angle) from the device to the virtual overlay may

have changed, the pose of a virtual overlay needs to be updated

in 3D. This is challenging since the virtual overlay is not a real

3D object. We solve this problem, in a nutshell, as follows. The

2D object coordinates of the virtual overlay, provided by the DNN,

are mapped onto the 3D coordinates from SLAM on the primary.

These 3D coordinates are then shared with the secondary devices

so that they can consistently project the coordinates to the devices

according to their viewpoints. We believe that we are the first to

harmonize the usage of DNNs and SLAM to correctly maintain

virtual overlay poses as multiple devices move.

Contributions and Roadmap: In summary, our work makes the

following contributions:

• We identify fundamental challenges in existing systems to sup-

port infrastructure-free AR (§ 2).

• We design, arguably, the first infrastructure-free AR system

FreeAR (§ 3), which incorporates novel components to realize

robust coordinate system synchronization and virtual overlay

consistency. FreeAR’s lightweight mechanisms save power yet

ensure overlay placement accuracy across AR devices.

• We implement an end-to-end prototype on Android (§ 4), work-

ing on multiple smartphones without needing root access. Our

implementation adds more than 10,000 lines of code to the code

base [43]. Our code is available at the FreeAR website [6].

• We perform extensive experiments (§ 5) to evaluate and compare

FreeAR’s performance with two state of the art approaches, MAR-

VEL [13] which uses edge infrastructure, and MARLIN [7] which

performs power efficient on-device computations (no edge is in-

volved). Our evaluations in various representative scenarios show

that on average (i) FreeAR reduces power by 46% and improves the

object detection accuracy by 43% in terms of IOU, compared to

MARLIN, and (ii) FreeAR improves the object detection accuracy

by 78% in terms of IOU with an 18% increase in power, compared

to MARVEL (which benefits from edge infrastructure).

Ethics. This paper does not raise ethical concerns; human vol-

unteer experiments were performed with IRB approval.

2 Motivation and AR landscape
In this section, we provide a detailed example use case, current AR

methods, and energy measurements to motivate FreeAR’s approach.
Example: Consider a scenario (Fig. 1a) where AR-equipped

firefighters navigate a building to search and rescue trapped people.

When the lead firefighter (left AR device) finds a person, her AR

device automatically detects and highlights the person on its display

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

Features
System AR-

Core
[21]

AVR
[48]

Liu et
al. [37]

Edge-
SLAM
[9]

SPAR
[50]

MAR-
LIN [7]

MAR-
VEL
[13]

FreeAR

Energy efficient ✓ ✓ ✓

No edge infrastructure ✓ ✓ ✓

Multiple users ✓ ✓ ✓ ✓

Pose tracking ✓ ✓ ✓ ✓ ✓ ✓

Object detection ✓ ✓ ✓

Table 1: Comparison of FreeAR and related work

Operation Power (W) Operation Power (W)
OS+Camera+Screen 3.016 ± 0.239 Optical Flow (OF)

object tracking [10]
0.319 ± 0.072

IMU-based Tracking
(§ 3.3)

0.361 ± 0.151 Image-based Local-
ization (§ 3.3)

0.994 ± 0.438

WiFi P2P Send 0.166 ± 0.033 SLAM [33] 1.208 ± 0.164
WiFi P2P Receive 0.085 ± 0.027 DNN [58] 1.225 ± 0.308
Local Repair (§ 3.4.1) 0.650 ± 0.105 SLAM+DNN+OF 2.424 ± 0.402

Table 2: Energy expenditures for key operations in FreeAR.
Averaged measurements with Google Pixel 4, Google Pixel
4a 5G, Google Pixel 5, and Samsung S21.

with a red rectangular overlay and a purple virtual arrow. When a

supporting firefighter (right AR device) arrives, the person is also

highlighted on his display. If the person or a firefighter moves, these

overlays must be updated on the appropriate AR displays. Realizing

this requires the three computation steps listed in § 1; however,

these steps are done without communication infrastructure that

may be damaged, so the firefighters need to form an infrastructure-

free network among themselves to coordinate their activities.

Current AR landscape: Current AR systems fall short in the

above infrastructure-free scenario and cannot run solely on a light-

weight mobile device, where energy is of paramount importance.

This is because (a) they require infrastructure support (cloud/edge)

to provide consistent overlays [13, 21, 38], (b) they are unconcerned

with device energy because they can offload heavyweight compute

to the cloud/edge [9, 37, 48, 49], and/or (c) they do not allow for real

time coordination between multiple AR devices [9, 13, 37, 38, 49].

Canonical AR solutions: Google ARCore [21] allows for co-
ordination across devices, but requires access to the Google Cloud

Platform, which synchronizes different user views. Similarly, Liu

et al. [37] require edge support, offloading camera frames in order

to perform heavyweight computations (DNNs) to detect the per-

son in view. MARVEL [13] utilizes edge infrastructure, and unlike

FreeAR, requires specialized hardware (depth camera or LiDAR) to

generate an offline map for localization. MARLIN [7] focuses on

power efficient object detection with DNNs, and SPAR [50] enables

multi-user AR through SLAM without energy concerns. Related

work is summarized in Table 1 and § 6. In this work, we investigate

whether such computations and coordination can be done without

infrastructure on the devices with low power.

Energy costs: A seemingly natural way of enabling infrastruc-

ture free AR would be to have AR devices operate independently

and runDNNs (for step 1 in § 1, to detect the person) and SLAM (step

2, to keep track of the person and devices’ poses). Prior work, such

as [7, 37], run DNNs while the others [21, 33] run SLAM on nearly

every frame. We empirically measure the energy consumption of

such a strategy. We perform measurements on several smartphones

(Google Pixel 4/4a/5 and Samsung S21), using VINS-AR [33] as

the SLAM implementation, and EfficientDet [58] on Tensorflow

Lite as the DNN. As shown in Table 2, the energy expenditure of

running SLAM alone is 1.2 W, DNNs alone is 1.2 W, and SLAM

Coordinate
system

synchronization
(§ 3.1)

Virtual
overlay

consistency
(§ 3.2)

Secondary
transit to

low-power
mode

Abrupt motion leads to local
repair (§ 3.4.1, § 3.4.2)

Secondaries do
IMU/image-based

tracking
(§ 3.3)

Fast
bootstrap

(§ 3.5)

Primary has signi!cant energy drain

Local repair failure triggers
collaborative repair (§ 3.4.3)

Figure 2: FreeAR’s workflow: (red) synchronization phase,
(green) steady-state (low-power) phase.

with DNNs and object tracking simultaneously is 2.4 W (averaging

across the four different phone models mentioned above). The latter

case has both SLAM and DNNs running simultaneously to keep

track of existing virtual overlays and device poses, and to provide

new virtual overlays, respectively. Note that this is the average

energy consumed by a single device; with 𝑁 users would consume

approximately ≥ 2.4 × 𝑁 W of power.

A case for sharing: We thus observe a natural opportunity

for energy savings — sharing common information about the vir-

tual overlays’ poses, and avoiding redundant computations as men-

tioned in § 1. Returning to the example (Fig. 1a), the lead firefighter’s

AR device (left) could initially detect the trapped persons and high-

light the one needing immediate attention (with a virtual purple

arrow). It can then share this information to supporting firefighters,

having recently arrived, so that they do not have to repeat the

computations already done by the lead’s device. As the lead and

supporting devices move around in a common area with overlap-

ping viewpoints, they can share this information to each other and

re-purpose their computations to save overall energy. If one device

takes care of heavy computations for too long and drains significant

energy, it can hand over these tasks to another device.

Our goal is to design a system that is able to overcome the

practical challenges stated in § 1, but we cannot trivially apply

prior methods because of the absence of supporting infrastructure,

devices’ continuous mobility, and low-power requirements for the

longevity of the AR experience.

3 Design of FreeAR
As discussed, FreeAR uses collaborative time slicing to divide heavy-

weight computations across collaborating AR devices. In Fig. 2, we

depict the high level workflow of FreeAR’s functions and operations.
At the beginning of a slice, FreeAR incorporates a novel coordinate

system synchronization phase (or sync phase), where all devices

converge to a common coordinate system (§ 3.1), and make the

virtual overlays’ 3D poses consistent across all the devices (§ 3.2).

Thereafter, a chosen primary device runs SLAM and DNNs and

is able to update the device pose, physical object locations, and

the 3D virtual overlays as in traditional AR systems. On the other

hand, the secondaries transition to a low-power mode, and will

now track their locations in the converged coordinate system with

lightweight methods (IMU/image-based tracking), and render the

virtual overlays appropriately based on their own motion dynamics

(§ 3.3). If a secondary experiences abrupt scene changes, the virtual

overlays may be lost; then, FreeAR’s local repair kicks in for rapid

recovery (§ 3.4.1, 3.4.2). If local repair fails, FreeAR’s collaborative
repair is attempted (§ 3.4.3). FreeAR transitions to the next time

slice either when the repair repeatedly fails, or when the primary’s

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

input key
frame
from

secondary

possible
choice of
matched
primary
key frame

chair has been

moved afterward

current chair location

virtual cube (a) no
visual
similarity,
with
temporal
proximity

(b) with
visual
similarity,
no
temporal
proximity

(c) with
visual
similarity,
with
temporal
proximity

current chair

location

Figure 3: Performing coordinate system synchronization, the primary, choosing frames with (a) partial view or (b) misplaced
chair, places the virtual cube at a wrong location. (c) considering the full view of table and chair and the current chair location
leads to successful synchronization; hence, the virtual cube is placed correctly (on top right of the table).

energy drops, and it now chooses a new primary (§ 3.5). Next, we

provide a more in-depth view of FreeAR’s key components.

3.1 Coordinate system synchronization
The primary must be able to describe the 3D location and 3D ori-

entation (i.e., pose) of a physical object (and its associated virtual

overlay) to a secondary, for the latter to locate the same object in

space, and draw the virtual overlay at proper positions. Towards

this, the primary and secondary need a common coordinate system

to represent the poses of the virtual overlays, objects, and devices.

Prior methods: Centralized collaborative SLAM systems [28,

52, 70] allow multiple agents to coordinate in a common space by

establishing a common coordinate system at a central server, which

performs most of the heavy computations. On the other hand, de-

centralized systems [39] assume a pre-built map (database) of a

location that allows distributed agents to work together. Finally,

recent SLAM systems [16, 17] do not assume a central server or of-

fline maps, but assume that the agents observe common landmarks

at the same time to synchronize the coordinate systems.

Challenges: All the above systems fail to meet the requirements

we have. (1) Infrastructure-free settings must not assume a central

server, (2) impromptu operations (e.g., emergency response) cannot

assume pre-built offline maps, and (3) even if such an offline map

is available, the actual scene may already have changed (e.g., an
object has beenmoved), making the visual features in anAR device’s

view differ from the features stored in the map, thus causing the

coordinate system synchronization to fail. (4) Finally, AR users may

not observe the same scene at the same time (e.g., two firefighters

are looking for trapped people at different corners of the room).

Key ideas:We observe that to converge to a common coordinate

system, what we need is a common point with spatial and temporal

proximity in terms of the views of the primary and secondary.

That is, if we can find recent time instances where the primary

and the secondary had similar views, those views can be used

to synchronize them. Visual similarity between the primary and

secondary is important because the more the visual features that

are used to estimate the mapping (or homographic transformation

[45]) between coordinate systems, the more accurate the estimation

becomes [32, 66]. Fig. 3 shows an example where the primary and

the secondary have different views; the virtual cube originally in

the secondary’s coordinate system is transformed to that in the

primary’s coordinate system using the synchronization output. The

left frame is from a secondary. In Fig. 3a where the primary has

a partial view of the table and chair, only some of the objects’

visual features can be used to map to the secondary’s frame, which

has a full view of both objects. This mapping mismatch leads to

a large synchronization error; hence, the virtual cube is rendered

incorrectly in the primary’s view (e.g., to the left of the table). Thus,

this well-known technique for synchronizingmultiple SLAM agents

[16, 17] does not work well when both (primary, secondary) are in

motion unless pre-coordination is enabled to ensure similar views.

In addition to visual similarity, temporal freshness is also im-

portant since it increases the likelihood that the physical objects

observed by the primary and secondary will be at nearly the same

positions (not moved or moved very little). Recent systems [15–

17, 39] ignore this temporal aspect by unrealistically assuming that

(1) no objects in the scene have moved [15, 39] or (2) agents fully

observe the same objects (e.g., table and chair) at the same time

[16, 17]. In Fig. 3b, the primary has a full view of the table and chair;

however, a comparison between the frames from the primary and

secondary should consider not only what features are in the frames

(e.g., those of table and chair), but also where they are (e.g., chair
features are on the right side of the frames). Without this, the frame

in Fig. 3b where the chair is on the left side of the frame results in

poor synchronization, and thus causes a virtual cube to be rendered

incorrectly in the primary’s view.

In sum, only when both visual similarity and temporal freshness

are considered together is the synchronization very likely to be

successful, leading to the correct rendering of the virtual cubes in

both views. As an example in Fig. 3c, the primary is able to identify a

key frame that (1) has a full view of table and chair (visual similarity)

and (2) was captured not too long ago (temporal freshness), that

matches with a secondary’s frame. Using this match, it correctly

renders the virtual cube on top right of the table due to a tight

synchronization of the two coordinate systems.

Practical realization: Given this intuition, the secondary can

send its recent (to be discussed) camera view to the primary which

then searches through the history of its trajectory to find a set of

reference frames for synchronization. The primary then checks

the spatial correlation (visual) between the two sets of frames. It

then chooses the pair (one from each set) that provides the best

match to synchronize the coordinate systems of the two entities

(i.e., knowing their poses at those times, it creates a mapping).

To elaborate on the details of the above in practice, we leverage

a well known technique for homographic transformation called

Perspective-n-Point (PnP) method [32] (also used in [33, 39, 50])

as the underpinning of our synchronization method due to its low

latency and acceptable power consumption. As input to a basic PnP

operation (details to follow), (1) FreeAR chooses frames from the pri-

mary that are (a) similar in appearance and are (b) close in time to

an input frame sent by the secondary. We call this selection of suit-

able input frames improper frame avoidance. (2) If there are multiple

primary frames that are similar in space and time, FreeAR checks,

for each of these frames, how many feature correspondences fit

with the secondary’s frame; the more features that fit, the better

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

the synchronization. We call this variance suppression. Below, we
describe these two components in more detail.

Step 1: Improper Frame Avoidance. Coordinate system synchro-

nization is fairly heavyweight, so it takes place on the primary.

FreeAR’s primary has access to its own entire frame history, but

only to the most recent frame from a secondary; hence, it needs to

search for the best matches from its history to establish a mapping

with the secondary’s frame, so it computes two scores:

• A visual similarity score, 𝑣 [𝑖], where 𝑖 is the index associated with
the primary’s candidate frame. The similarity is based on work

in [19] where dictionaries of BRIEF visual features are matched

between the primary’s frame 𝑖 and the secondary’s frame. Note

that FreeAR uses selected key frames (e.g., those in which many

features are detected) for coordinate system synchronization

because they are less prone for visual distortion (e.g., less blurri-
ness), and the synchronization more likely succeeds. However,

even in the case of failure, FreeARwill attempt another iteration of

synchronization in the next time period (more details to follow).

• A time score that downweighs old frames, 0.99(𝑡−𝑡𝑖)/𝑠 , where 𝑡
is the current time, 𝑡𝑖 is the timestamp associated with frame 𝑖 ,

and 𝑠 is a normalization factor.

We then combine the visual and time scores to define the frame
proximity score (ps) for primary’s frame 𝑖 as

𝑝𝑠 [𝑖] = 𝑣 [𝑖] ∗ 0.99(𝑡−𝑡𝑖)/𝑠 (1)

and rank the frame indices 𝑖 in a descending order of this score.

Finally, we select the primary’s top-k frames that maximize 𝑝𝑠 [𝑖].
We choose the top 𝑘 frames to increase the pool of candidates for

high-quality matches, with further filtering below in Step 3.

Step 2: PnP synchronization method. The previous step returns

𝑘 candidate frames from the primary’s frame history for aiding

synchronization, given a secondary’s input frame. However, we still

need to estimate the homographic transformations [45] (estimated

spatial relations) between the coordinate systems of the primary

and the secondary. PnP is a well-known technique [57] to do this,

and so we only briefly summarize its usage here. First, it takes as

inputs the primary frame (𝑓𝑝 , determined by Step 1), the secondary

frame (𝑓𝑠), and the pose at 𝑓𝑠 (𝑇𝑓𝑠→𝑠) with respect to the secondary’s

coordinate system (𝑠). Second, it uses the intersection of the visual

features in 𝑓𝑝 and 𝑓𝑠 to compute the pose of the secondary’s frame

with respect to the primary’s coordinate system (𝑝), using PnP,

as 𝑇𝑓𝑠→𝑝 . Finally, it estimates a 4x4 homogeneous transformation

matrix𝐻𝑝→𝑠 = (𝑇𝑓𝑠→𝑝)−1 · (𝑇𝑓𝑠→𝑠), which is used to transform the

3D coordinates of an object from 𝑝 to 𝑠 as 𝑜𝑠 = 𝐻𝑝→𝑠 ·𝑜𝑝 , where 𝑜𝑝
and 𝑜𝑠 are the 3D vector coordinates of the object in the primary

and secondary’s coordinate systems, respectively. Details about

how we obtain 𝑜𝑝 are discussed in § 3.2.

Estimation of synchronization quality: The PnP solver fits a linear

model (𝐻𝑝→𝑠) from the 3D world points to visual features from

the 2D camera frame inputs. More of the visual features fitting

the linear model means that the linear model can consistently ex-

plain the observed data; thus, the synchronization is more likely

to be accurate. In other words, 𝐻𝑝→𝑠 more likely represents the

unknown ground truth transformation between the two coordinate

systems. To use this information, FreeAR counts the number of vi-

sual feature correspondences that fits the linear model (within a

tolerance threshold); this is called numInliers [57]. Recent work
on PnP solvers [30, 32, 69] reports that the more inliers there are,

the smaller the translation and rotation estimation errors become.

The primary runs the PnP solver for all the 𝑘 frames from Step

1 and returns the largest found numInliers value, along with the

corresponding 𝐻𝑝→𝑠 , to the secondary. The value of 𝑘 drives a

tradeoff between higher-quality synchronization and the compute

latency (≈ 𝑘 × 70𝑚𝑠). Guided experimentally, we choose 𝑘 = 3.

Step 3: Variance Suppression.Upon receiving𝐻𝑝→𝑠 and numInliers,
the secondary uses numInliers to determine whether to accept

the proposed synchronization. It only does so only if numInliers
is greater than in the previous synchronization attempts. If this is

true, it records both (a) 𝐻𝑝→𝑠 for transforming 3D points in the

primary’s coordinates (𝑝) to those in its own coordinates (𝑠), and (b)

numInliers for comparison in the next synchronization iteration.

Finally, FreeAR checks numInliers > threshold for all the secon-

daries; if so, their coordinate systems are synchronized with that

of the primary. We choose threshold = 5 because it is the minimum

number for PnP to be successful [32].

3.2 Consistent virtual overlay placement
A key requirement of AR is that all users have a consistent view

of a virtual overlay (in terms of its location, size, and orientation

in the 3D world). For example, an overlay should appear larger on

the display of a user closer to it, than of another who is further

away. Thus, after coordinate system synchronization, the primary

needs to share information about the physical objects in its view

(whose locations are fixed in the 3D world), along with the relative

positions of the virtual overlays with respect to these objects, with

all the secondaries, so that all users will have consistent views.

Prior methods: Virtual overlays given by DNNs are in 2D, and

AR users may observe the objects from different angles or distances,

and so the same objects appear differently in terms of sizes, shapes,

and orientations in different FoVs. Therefore, 2D virtual overlays

directly shared by the primary can easily be mis-represented at a

secondary’s view (e.g., as in Fig. 1b). SLAM generates key points in

3D, but cannot determine the locations for the virtual overlays from

their 2D representation. Current AR systems focus on either DNNs

[7, 37] or SLAM [9, 13, 50], but not both; others [23, 36] require

edge infrastructure to compute the location of the virtual overlay

on each user’s view. Objectron [2, 20], detecting objects in 3D on

mobile devices without edge infrastructure, in theory allows the

user devices to utilize the 3D object coordinates to determine the

correct placement of the virtual overlays, but it only works for a

single user, without any virtual overlay sharing mechanism.

Challenges: Unfortunately, prior systems do not meet FreeAR’s
requirements. First, there is no edge infrastructure to coordinate vir-

tual overlay placement. Second, we need a mechanism to represent

these virtual overlays in 3D, and then perform a transformation to

the 2D display of a different (secondary) user.

Key ideas and realization: Our vision is to harmonize the

outputs of the DNN with that of SLAM in order to ensure the con-

sistency of virtual overlay placement across primary and secondary

devices. During the synchronization phase, AR devices run both

DNNs and SLAM. DNNs provide information regarding physical

objects in the environment by extracting features in an image view

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Figure 4: SLAM and DNNs cooperation maps 2D features of
interest into 3D space allowing another AR user to view a
consistent virtual overlay (virtual cube).
and returning 2D locations (𝑢, 𝑣) where objects of interest (e.g., per-
son) likely appear. SLAM also extracts features of the environment,

but instead of looking at a single image, it tracks those features

in 3D continuously over time. By bundling information of feature

movement (from frame to frame) and estimates of device pose

changes using IMU, SLAM can estimate these features in the 3D

world (𝑥,𝑦, 𝑧). For each (𝑥,𝑦, 𝑧) in the FoV observing the 3D world,

we can project it to the 2D display as follows.[
𝑢, 𝑣, 1

]𝑇
=
[
𝐾
] [
𝑅 |𝑡

] [
𝑥,𝑦, 𝑧, 1

]𝑇
(2)

where 𝐾 is an intrinsic camera parameter matrix (from a camera

calibration), and 𝑅 and 𝑡 represent an estimated camera pose (rota-

tion and translation, respectively) [29]. To harmonize the DNN and

SLAM outputs, we consume a set of 3D points (𝑥,𝑦, 𝑧) output by
SLAM, and map them to their corresponding projected 2D points

(𝑢, 𝑣) in the current view. Then, we filter the (𝑢, 𝑣) by whether they
lie within the 2D coordinates of a virtual overlay output by DNNs

(e.g., a bounding box). The 3D coordinates (𝑥,𝑦, 𝑧) corresponding
to the filtered (𝑢, 𝑣) are considered the 3D coordinates of the object.

FreeAR exploits this association as illustrated in Fig. 4. The pri-

mary device (user A) has the 2D coordinates of the chair from

DNNs, which allows it to determine the 2D coordinates of the “blue

cube” virtual overlay relative to the chair. Then, FreeAR converts the

coordinates of the chair into 3D coordinates using SLAM and Eq. 2;

subsequently from this, we are able to estimate the 3D coordinates

of the virtual overlay, which are then conveyed to the secondaries.

Each secondary then maps the virtual overlay’s 3D coordinates

onto its own 2D view again using Eq. 2 with its own 𝑅 and 𝑡 , and

thus is able to place the virtual overlays properly on its display

(on the table). Specifically, with changes in FoVs (or pose changes),

(𝑥,𝑦, 𝑧) in Eq. 2 are fixed while 𝑅 and 𝑡 are updated; thus, 𝑢, 𝑣 is

projected into the view with proper sizing and orientation.

3.3 Lightweight device localization
Once the AR devices synchronize their coordinate systems and

display virtual overlays consistently across devices, a steady state

has been reached within the collaborative time slice. At this point,

the secondary devices turn off SLAM and DNNs to save power.

However, every secondary needs to continuously update its pose

relative to its own coordinate system because when the primary

shares new object information, the secondary will need to map it on

to its view (which has changed) correctly. Note that it is relatively

easy for the primary, which runs SLAM, to track its pose changes.

Prior methods: Previous systems [13, 53, 54] use an IMU to

estimate pose changes in the 3D world (referred to as IMU-based

tracking). However, this can accumulate drift and become inaccu-

rate over time (10-20 s) [31] and result in displacements of virtual

overlays from their correct positions. Recent systems such as [36]

use image-based methods without considering IMUs (referred to

IMU-based
tracking, 0.36W

Image-based
localization, 0.99W

𝒕𝟎: Start frame

𝒕𝟏: rotation 𝒕𝟐: limited translation 𝒕𝟑: significant translationDevice motions

Fixed
Virtual

cube
Fre

eAR
FreeAR

FreeAR

Figure 5: IMU-based and image-based localization results in
high accuracy and low power updates of AR device poses.

as image-based localization) wherein a device uses a recent image

frame (𝑖) to search for a correspondence (a similar frame 𝑗) in its

own trajectory history. Using these two frames (𝑖 and 𝑗), the device

can compute a homographic transformation from the known pose

at 𝑗 to the current unknown pose at 𝑖 . This transformation is used

to update the device pose, and is re-computed as the device moves

around. However, our measurements on different device models

(Table 2) indicate that image-based localization consumes 0.99 W,

which is 2.75 × higher power than IMU-based tracking (0.36 W);

utilizing the former continuously can cause undesired power drain.

Prior work [36] does not consider power efficiency as we do in

FreeAR. However, a recent AR system [13] reduces power consump-

tion on AR devices by offloading image-based localization to an

edge infrastructure, not existing in our infrastructure-free settings.

Challenges: Unlike prior systems’ assumptions, we do not have

edge infrastructure and our solution has to be power efficient. Yet,

we need to have high accuracy, i.e., if a large drift occurs, FreeAR
needs to recover from that drift and correctly place the virtual

overlay in the view again. This process should incur low latency to

update the pose of an AR device, in motion, almost in real time.

Key ideas: From the above, we make the observations that since

image-based localization is relatively power heavy, we should use

it sparingly if at all. Thus, we seek to use the IMU-based tracking

to the extent possible. To increase its usability, we incorporate the

impact of gravity to help improve the accuracy of basic IMU-based

tracking. This is inspired by a prior work [53] that uses gravity

estimation to improve tracking of a wrist watch with an arm model.

We significantly build upon this to improve tracking of an AR device

in free space where the user may move an arm or walk around in

the space. We only trigger image-based localization upon need.

Specifically, we find that while our modified IMU tracking is very

robust to rotation and minor translation (also shown in [53, 54]), its

error accumulation increases over larger translations. Thus, if the

IMUs indicate significant translation (> 20cm), we trigger image-

based localization to ameliorate the error.

A simple example in Fig. 5 showcases the benefits of integrat-

ing IMU and visual tracking with FreeAR. The upper row shows

IMU-based tracking alone, and the lower row shows image-based

tracking alone. An AR device at 𝑡0 observes a physical cup, on top

of which a virtual cube is rendered. As the device moves (without

SLAM), the cube should remain fixed if the device pose is being

tracked correctly. At 𝑡1, the device rotates to the right (e.g., right
edge of the device moves closer to the user); here, FreeAR uses IMU

to track its pose correctly (using the image-based method results

in pose estimation error, i.e., the cube shrinks and drops down a

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

(I) mostly motionless

estimate
gravitational forces

yes
(II) only rotation

no
yes

use prior
method **

no
(III) limited translation only

yes

use (II) and (III) concurrently

(IV) concurrent rotation and translation
no

yes

use FreeAR’s custom
IMU-based tracker (§ 3.3)

(V) signi!cant translation no

use image-based localization (§ 3.3)
yes

Figure 6: FreeAR’s lightweight localization workflow; ∗∗[47]
bit). At 𝑡2, the device experiences limited translation to the left

and both IMU and image-based methods result in consistent device

tracking; however, because IMU consumes less power, FreeAR uses

it to update the device pose at this time. Finally at 𝑡3, when the

device is moved to the right with significant translation, IMU-based

tracking results in a very large error and causes the cube to go

further away from the cup to the far right of the frame. FreeAR’s
choice of image-based localization, however, helps regain the pose

and thus, the cube placement on top of the cup. Next, we provide

some details of FreeAR’s combined IMU and image-based tracking.

Augmenting IMU Tracking with Gravity Estimates.We first inte-

grated several publicly available IMU-based tracking methods [4,

27] into FreeAR, but found they did not perform well (e.g., fixed
virtual cube is displaced as the device moves). Hence, as mentioned,

we develop our custom IMU-based tracker, inspired by two prior

efforts, viz., Shen et al. [53] removing gravity from accelerometers

under arm motion, and Solin et al. [54] tracking devices with legged

or wheeled motion. Neither fulfils our need to track the device in 3D,

with the user both moving her arm while holding the AR device and

walking. Thus, we combine and build on these ideas to significantly

improve tracking accuracy as follows: (1)When the device is mostly

motionless (acceleration (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) < 0.2𝑚/𝑠2), we estimate the

gravitational forces in the three dimensions viz., (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧). (2)
When the user starts moving the device, we estimate the linear

accelerations as 𝑙𝑎𝑥 = 𝑎𝑥 −𝑔𝑥 , 𝑙𝑎𝑦 = 𝑎𝑦 −𝑔𝑦, and 𝑙𝑎𝑧 = 𝑎𝑧 −𝑔𝑧 . (3)
Using standard physics kinematic equations [31], we estimate the

translation every Δ𝑡 = 10 ms.

We find that this simplemethodworkswell under the assumption

that the user moves and stops occasionally (which provides a chance

to re-estimate gravity). Since prior methods for rotation tracking

work reasonably well, we incorporate the one from [47] into FreeAR.
Augmenting IMU Tracking with Visual Information.When IMU

tracking indicates significant translation, the secondary device cap-

tures the recent camera frame and uses it to recover the pose within

its own coordinate system. Setting this translation threshold too

high can cause pose estimation to be off and virtual overlays to

drift away; setting it too low will cause frequent invocations of

the image-based approach, and thus induce high energy. Based on

experiments with our smartphones, we set the threshold to 20 cm.

The image-based localization within FreeAR is similar to its coor-

dinate system synchronization method. The key difference is that

instead of comparing the secondary’s most recent frame with the

primary’s history of frames (Eq. 1), the comparison is made between

the secondary’s most recent frame and its own historical frames.

Fig. 6 summarizes FreeAR’s workflow for device pose tracking.

3.4 Recovery upon abrupt motion
While the above modules (§ 3.1-3.3) enable FreeAR to cope with

gradual motion, they cannot fully handle a user’s abrupt motion

(e.g., a quick turn). Here, a secondary can lose track of an object

(1) at sync phase, secondary
collects object templates

representative
templates of
objId: 1

(3) slide each template over each
patch of the current frame

(2) at low-power phase,
secondary loses track of
object and starts local
repair process

(4) if successful, virtual
overlay is recovered

objId: 1

objId: 1

secondary’s
current frame

Figure 7: View-based Local Repair (VLR): a secondary uses
collected templates to recover the lost virtual overlay.
and its virtual overlay can disappear. Abrupt pose changes also

cause a loss in synchronization with the primary. A naive way

to recover from such a loss is to trigger SLAM and DNNs for a

reset; however, this consumes high power and importantly, induces

long delays for the system to return to a steady state. Thus, we

desire power thrifty, low latency repair mechanisms, to allow the

secondary device (not running SLAM or DNNs) to (a) recover object

locations in the device’s 2D view correctly, and (b) place virtual

overlays that are consistent with those in other AR users’ views.

3.4.1 View-based local repair (VLR): Intuitively, if we know what

object was lost, and can remember what it looked like, we can try

to find it on our display in a lightweight way. Specifically, we can

look for the lost object in historical frames, extract its features, and

try to find the part of the display which has the same features.

Prior methods: There are many possible candidates from the

literature for performing view-based local repair on the above basis.

(1) Template matching [46] finds the location of a template image (of

the physical object) in the current view. It slides the template over a

template sized window (or patch) of the input image and compares

the template and the patch (see (3) in Fig. 7). Then, if the patch

with minimum difference to the template differs by lower than a

threshold, it is considered to be the recovered 2D location of that

object (see (4) in Fig. 7). (2) DNN [61]: detects and classifies physical

objects in the current view. (3) A cascade classifier [44] uses Haar
features to train a classifier to determine the location of a physical

object (if present). Our experiments (on a Pixel 4 phone) indicate

that template matching consumes the lowest power (0.56 W) with

the smallest latency (20 ms), while the DNN (cascade classifier)

consumes 0.98 (1.91) W with 250 (120) ms latency, as one might

expect since they are considered heavyweight [7, 25].

Challenges: We cannot simply plug in template matching into

FreeAR because there are too many templates (e.g., 3600 templates

in 2 mins), so blindly matching the current frame with all of these

can induce large delays in recovery.

Key ideas: Our approach is to collect templates of the objects

of interest (with which the AR virtual overlays are associated)

during the sync phase. A secondary then uses those templates to

re-locate lost objects and re-draw the virtual overlays. We filter

out redundant templates and use fast template matching to recover

multiple physical objects simultaneously (details to follow). Since

both the template and candidate match were captured under similar

conditions by the same device, VLR is very likely to succeed. We

next describe VLR’s two main components that accomplish this.

Intelligent template collection: When the DNN (during the sync

phase) and the accelerometer indicate that a device is mostly mo-

tionless, candidate object templates from the camera frames are

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

(1) at sync phase,
secondary also
registers object
locations

objId: 1 at 𝒙 𝒚, 𝒛

(2) at low-
power phase,

if VLR fails

(3) secondary applies
device pose: 𝑹, 𝒕
to 𝒙,𝒚, 𝒛 to get
virtual overlay
positions in the view

secondary’s current frame

(4) if successful, virtual
overlay is recovered

objId: 1 objId: 1

Figure 8: Location-based Local Repair (LLR): a secondary uses
object locations and current pose to recover a virtual overlay.

obtained, as illustrated in step (1) in Fig. 7. To enable future local re-

pairs, FreeAR needs to collect a diverse, yet compact set of templates

for each object. It uses a color moment hash [59], a compressed

representation of the image that is quick to compute (10ms) and

compare (< 1ms), to determine if it should store a new template. It

stores a new template based on two criteria: (1) the minimum hash

distance compared to all previous templates must be greater than a

threshold or (2) the minimum difference between a new template’s

width and height and all previous templates’ widths and heights,

is greater than a threshold. In a representative experiment in Fig.

7, we find that FreeAR stores four representative object templates

(green boxed) for an object out of ≈ 3,000 frames.

Fast template matching:When a secondary loses an object due to

abrupt motion, FreeAR first retrieves the templates associated with

that object. It then waits for the device to be relatively motionless to

ensure that a non-blurry camera frame is captured, appropriate for

template matching, which is then performed (as described earlier

in this subsection) and repeated for each template. The patch with

the lowest sum of square differences (also lower than a threshold)

is chosen as the recovered object location. Fig. 7 shows that the

right most template in the green box matches the current frame and

successfully places the bounding box in step (4). Our experiments

show that template matching takes ≈ 60ms with high-precision

object recovery (e.g., IOU ≈ 0.7 − 0.8).

3.4.2 Location-based local repair (LLR): An object’s appearance

may change from how the secondary remembers it; in other words,

visual features of the templates can deviate from the object features

in the current view (e.g., when viewing an object from a different

angle). In such cases, VLR may fail, and to handle such cases, we

imbibe a second layer of local repair. Here, we remember where the
objects were before they were lost. With this location information,

we can then recover the virtual overlays.

Straw-man methods: An AR device can use DNNs to recover

the object locations. However, DNN executions drain significant

energy from AR devices (see Table 2); hence, this method fails to

serve as a good candidate for location based local repair.

Key ideas: During the sync phase, a secondary device not only

collects templates for VLR, but also registers and updates an ob-

ject’s location in its own coordinate system. Leveraging FreeAR’s
SLAM and DNN cooperation method (§ 3.2), these registered ob-

ject locations are in the 3D world, which is stationary. If VLR fails,

FreeAR triggers LLR by projecting the last known 3D object location

(𝑥,𝑦, 𝑧) to the secondary’s view, making corrections based on the

device pose (𝑅, 𝑡) (discussed in § 3.3) and Eq. 2. Fig. 8 illustrates this

simple, yet effective process in recovering a virtual overlay (orange

bounding box). Note that FreeAR will not draw the virtual overlay

if the object is not within the secondary’s current view (Eq. 2).

(1) at low-power phase if local repair fails, secondary
receives object information from the primary

primary tracking
the object

secondary’s
current frame

objId 1:
𝒙𝒑,𝒚𝒑, 𝒛𝒑

(3) if successful, virtual
overlay is recovered

(2) secondary
converts 𝒙𝒑,𝒚𝒑, 𝒛𝒑
into its coordinate
system using 𝑯𝒑→𝒔,
then apply device
pose 𝑹, 𝒕 to get
virtual overlay
positions in the view

objId: 1objId: 1

Figure 9: Primary-assisted Collaborative Repair (PCR): the
primary shares object information with a secondary which
can recover the position of the virtual overlay in its view.

3.4.3 Primary-assisted collaborative repair (PCR): In a few cases,

LLR may also fail (e.g., if the object has been moved) and we provide

a third repair layer to try to prevent SLAM and DNNs executions

on the secondaries. We observe that the primary, which still runs

SLAM and DNNs, can share object (and virtual overlay) information

with a secondary experiencing object loss; the latter can then use

the information to recover the virtual overlays in the local view.

Prior methods:MARVEL [13] determines object locations of-

fline and registers them on an edge infrastructure which shares

these locations with AR devices to aid recovery of virtual overlays.

EdgeSharing [36] uses DNNs running on an edge to determine

object locations, and shares them with the user devices.

Challenges:We cannot directly apply these methods because

of the lack of offline surveys and edge infrastructure. The primary

is in motion (along with the secondaries), and thus cannot directly

play the role of the fixed edge assumed in the prior systems.

Key ideas: The primary device, using SLAM and DNNs coop-

eration, estimates an object’s 3D locations (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝) and shares

them with a secondary that has lost track of the object. The latter

uses 𝐻𝑝→𝑠 (from §3.1) to transform the 3D points into its own

coordinate system (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). It then uses its recent device pose 𝑅, 𝑡

(updated by § 3.3) and Eq. 2 to project the 3D points onto its 2D

view and draw the virtual overlay. Fig. 9 illustrates PCR’s processes.

3.5 Fast and seamless global fallback
In extremely rare cases, all of the repair methods may fail, and here

FreeARwill start a new time slice and fallback to the synchronization

phase, i.e., all devices will execute SLAM and DNNs again. This

is outside normal invocations of this phase either periodically or

when the primary’s battery drops by a certain threshold.

Challenges: Re-initializing SLAM naively can either cause it

to reset, or to fail to reconnect with its previous state and crash.

Resetting SLAM from a cold state clearly misses on opportunities to

leverage previously stored data, and incurs high latency. However,

naively attempting to merge with SLAM’s previous state usually

fails because SLAM expects a continuous stream of data from the

camera and IMUs, and the secondary device has not been running

SLAM during a steady-state phase.

Key ideas:We use an existing technique in SLAM, called loop

closure [33, 42] in FreeAR, to “trick” SLAM into merging the informa-

tion from the current and previous synchronization phases. Loop

closure is normally used to determine when a user re-visits a previ-

ously seen area (e.g., by walking in a loop). We exploit loop closure

to give SLAM the impression that the device was simply lost for

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

a while (i.e., during the steady state phase), and is now re-visiting

the area from the previous synchronization phase. Loop closure

here helps stitch these two worlds (from the current and previous

synchronization phases) together, allowing for their smooth re-

connection. This speeds up FreeAR’s re-synchronization, the start of
a new time slice, and the transition to the next steady-state phase.

Primary rotation policy. At the beginning of each time slice,

all AR devices share their residual energy = remaining battery (%)

× battery capacity (Ah), and the device with the maximum residual

energy is chosen as the primary (an election can be used [63]).When

the primary’s residual energy drops significantly (e.g., compared

to the secondaries), a new time slice is initiated to choose a new

primary device using the maximum residual energy criterion. We

defer more sophisticated policies (e.g., considering computational

resources, network topology or objects in the FoVs) to future work.

Handling group change dynamics. A new device joining an

existing AR session in the middle of a time slice has to synchronize

its coordinate system only with the primary device. After the syn-

chronization phase is done, the new device can enter the low-power

mode. A secondary device can leave the AR group at any time; when

a primary device leaves the AR ecosystem, a new primary is chosen

(based on residual energy as before), and a time slice initiated.

4 Implementation
Platforms: FreeAR is implemented on smartphones running An-

droid 11 (Google Pixel 4, Google Pixel 4a 5G, Google Pixel 5, and

Samsung S21). We use VINS-Mobile [33], TensorFlow [60], and

OpenCV [11] libraries to implement SLAM, object detection and

tracking, and PnP synchronization and image processing, respec-

tively. Our code is available at the FreeAR website [6].

Module implementation: There are two main parts of FreeAR
viz., the main UI in Android (MainActivity) in Java, and the key

SLAM class (ViewController) in C++. The coordinate system syn-
chronization and SLAM and DNN coordination work inside View-

Controller to retrieve and match keyframes, and share object in-

formation, respectively. Lightweight localization’s IMU tracking is

implemented inside MainActivity to access and process IMU sensor

inputs. Repair methods and global fallback are implemented inside

ViewController to access required inputs.

Inter-device information sharing:Weuse Android’sWiFi P2P

[3] to implement inter-device communications. We use Java’s client-

server TCP sockets for unicast, and UDP sockets for broadcast.

Logging: To estimate the power consumption, we read voltage

and current variables of Andorid’s BatteryManager to obtain

the battery’s voltage (mV) and current (𝜇𝐴), then calculate power

as 𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 in Watts. To compute the virtual

overlay’s IOU, we log information about each tracked object shared

by the primary: timestamp, bounding box, class. At the secondaries

if there is a matched local virtual overlay, we also log: (matched)

local object id and (matched) local bounding box.

Baselines:We implement the following baselines:

MARVEL [13] Since MARVEL is not open sourced, we implement

a faithful reproduction as follows. We build an offline map of the

ecosystem with its objects using SLAM [33]. Then, the lightweight

AR client app localizes itself online in this pre-built map on the

edge server using our implementation of Eqs. 6-8 from [13]. We

call this Centralized Localization.

MARLIN [7] We obtained MARLIN’s source code, but replaced

the DNN models (e.g., Tiny YOLO) with the newer and more accu-

rate EfficientDet model [58] trained on the COCO 2017 dataset [35].

FreeAR also uses this DNN model for fair comparison. We modify

MARLIN slightly to achieve collaborative AR among multiple de-

vices as follows. The primary device runs MARLIN and shares the

2D virtual overlays (rather than 3D coordinates as in FreeAR) and
object classes with the secondary devices, which also run MARLIN.

The secondaries only display a virtual overlay if a locally detected

object matches the object class sent by the primary (IOU > 0.3).

Multi-user SLAM or MU-SLAM runs SLAM on all the AR devices

all the time, but only the primary runs DNNs to get the virtual

overlay positions and shares these with the secondaries. The sec-

ondaries also perform coordinate system synchronization with the

primary, similar to FreeAR. Inspired by SPAR [50], this represents a

direct application of collaborative SLAM [9, 28, 39, 52] to AR.

Vanilla runs SLAM and DNN continuously on all the devices and

performs coordinate systems synchronization, similar to FreeAR, to
achieve collaborative AR without considering energy issues.

5 Evaluation
In this section, we present our evaluations of FreeAR. We first list

our metrics of interest and then present our results.

5.1 Evaluation metrics
Power consumption: We log the power consumption on each

phone, when it is running only the Android OS, the camera, and

screen display (brightness set to 70%); this is called the base power,

𝑝𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑒 . In our evaluations, we run FreeAR or a baseline and log

the total power 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡𝑎𝑙 . We estimate 𝑝𝑜𝑤𝑒𝑟𝑎𝑝𝑝 = 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡𝑎𝑙 −
𝑝𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑒 , thereby isolating the power consumed by AR.

IOU accuracy: The Intersection Over Union (IOU) [12] lies

between 0 and 1 and captures whether a virtual overlay (bounding

box) is where it should be on a display. The IOU is defined as
𝑂∩𝐺
𝑂∪𝐺 ,

where 𝐺 is the ground truth bounding box and 𝑂 is the bounding

box displayed by FreeAR or a baseline. The larger the IOU, the better.

We report the average IOU over all analyzed frames. To obtain

the ground truth bounding boxes and object classes, we execute

the largest EfficientDet DNN model, EfficientDet-7x. The IOU is

non-zero only if the ground truth object class matches the class

output by the primary/secondary’s DNN. This measures whether

the secondary is indeed highlighting the correct object.

5.2 End-to-end evaluations of FreeAR
We first provide our holistic evaluations of FreeAR in various sce-

narios and compare its performance with the baselines.

5.2.1 Holisitic results. We run 15 AR experiments, each with 2 to

5 volunteers using the devices mentioned in § 4. In each experi-

ment, AR users follow different trajectories, move devices differ-

ently (semi-stationary to constant motion), with one or two (bottle

and/or cup) objects of interest in a 20 m × 20 m space, where they

are always in proximity (e.g., < 10 m from each other); in this space,

objects do not appear too small in the FoVs. These experiments were

done on weekends to avoid background WiFi traffic from non-AR

users and encompass all scenarios described in §5.2.2 to §5.2.7.

Fig. 10 shows the CDF of FreeAR and the four comparison base-

lines for power consumption and IOU accuracy. As can be seen, the

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

FreeAR
Primary

FreeAR
Secondary

CD
F

0
0.5
1.0

Power (W)
0 1 2

MARVEL
MARLIN

MU-SLAM
Vanilla

CD
F

0
0.5
1.0

IOU
0 0.5 1.0

Figure 10: On average, FreeAR consumes low
power (≈ 0.5 W), comparable to MARVEL’s
and only one-fourth of the vanilla scheme’s
power. FreeAR also improves IOU accuracy
by 78%, 64% and 43% compared to MARVEL,
Multi-user SLAM and MARLIN, respectively.

FreeAR
MARVEL

MU-SLAM
MARLIN

Vanilla

Po
w

er
 (W

)
IO

U

0
1
2

0
0.5
1.0

Prim. Sec. 1 Sec. 2 Sec. 3 Average
Figure 11: Four semi-stationary users track two ob-
jects from similar FoVs: FreeAR improves 78% IOU but
increases 42% power over MARVEL which has edge
infrastructure. FreeAR both reduces 30% (46%) power
and improves 39% (49%) IOU compared to MARLIN
(Multi-user SLAM or MU-SLAM).

FreeAR MARLIN

Po
w

er
 (W

)
IO

U

0
2
4
0

1

Prim
.
Sec. 1Sec. 2Sec. 3Sec. 4 Avg

Figure 12: When five
users track an object
from different FoVs,
FreeAR outperforms MAR-
LIN with 63% better IOU,
with comparable power.

primary device consumes more power (similar to Vanilla), while

the secondary devices save significant power.

Compared to MARLIN, FreeAR reduces power by 46% and
improves IOU accuracy by 43%. MARLIN consumes high power

(≈ 1.0 W) because AR devices continuously execute DNNs. Because

of its low-power mode, FreeAR consumes only 0.5 W on average.

Furthermore,MARLIN only achieves an average IOU of 0.46 because

it only shares 2D virtual overlay positions; since users have different

views, the overlays can easily be dislocated from their associated

physical objects. On the other hand, FreeAR leverages both DNNs

and SLAM to share 3D virtual overlays for consistency among

different views, leading to a 43% increase in IOU over MARLIN.

Compared to MARVEL, FreeAR consumes 18% more power
but improves IOU by 78%. MARVEL consumes low power be-

cause it offloads heavy computations to the edge, unlike FreeAR.
However, MARVEL only achieves an IOU accuracy of 0.2 because

it fully depends on centralized localization at the edge, and has

no repair mechanisms. If many devices send frames to the edge

for localization, they experience long delays and thus misplace

their virtual overlays. In contrast, FreeAR’s distributed localization

quickly updates devices’ poses or triggers fast local repair upon

failure, achieving an IOU accuracy of 0.8, on average.

Compared to Multi-user SLAM, FreeAR consumes 60% less
power and improves IOU by 64%. With MU-SLAM, secondaries

indirectly compute the virtual overlay poses from object informa-

tion shared by the primary. It is thus susceptible to synchronization

or localization errors which result in a low IOU accuracy of 0.3, on

average. FreeAR employs effective repair mechanisms, leading to

an IOU accuracy of 0.8. Further, secondaries in FreeAR run neither

SLAM nor DNNs extensively, thus consuming much lower power.

Compared to vanilla, FreeAR consumes just one-fourth of
the power but takes only a 12% hit in terms of IOU accuracy.

FreeAR’s synchronization phase takes ≈ 2 - 4 minutes and
consumes 2.3 - 3.0 W of power. During this phase, the secondary
devices collect object templates for later use in VLR. These devices

also repeatedly send key frames to the primary to perform coor-

dinate system synchronization, until successful. The greater the

number of AR devices, the longer this phase takes. This phase con-

sumes high power, because AR devices have to run SLAM, DNNs,

and P2P communications, but will last only for a short duration.

The primary consumes an additional 0.5 W of power during syn-

chronization (e.g., running PnP solver [32]).

FreeAR’s communication overhead is low. Because the AR de-

vices are in proximity, the WiFi P2P links are measured (using iPerf

[18]) to operate at bandwidths of 100 - 300 Mbps. During synchro-

nization, key frames (each with ≈ 100-200 KB size taking ≈ 50ms

transmission time) are periodically sent from each secondary to the

primary every 𝑁 × 300ms where 𝑁 is the number of AR devices; as

𝑁 increases, the frequency is decreased to avoid contention at the

primary. 𝐻𝑝→𝑠 (a 4x4 matrix defined in §3.1 and of size ≈ 170 B),

and the 3D object representation anchoring the virtual overlay (≈
600 B per object), are much smaller and take < 1 ms of transmission

time. Notification messages (e.g., primary device selection) are car-

ried via UDP broadcasts to all 𝑁 devices. Therefore, for moderate

values of 𝑁 (e.g., < 20), FreeAR can perform synchronization and

allow devices to exchange information reasonably quickly.

FreeAR’s memory footprint is small. The memory require-

ments of FreeAR are predominantly due to the baseline SLAM frame-

work [33], which primarily stores a collection of key frames along

the AR user trajectory. Continuously walking in a 20 m × 20 m

space for 2 minutes results in 250 key frames and 0.6 GB of mem-

ory. This would be incurred in any AR system that runs SLAM. In

addition to this memory consumption due to SLAM, FreeAR stores

𝐻𝑝→𝑠 (≈ 170 B) for each secondary, and the 3D representation (≈
600 B) and multiple templates (≈ 50 B each) for each object. For all

the scenarios, FreeAR’s memory footprint beyond SLAM is < 5 KB

(which is negligible in comparison to SLAM).

5.2.2 Semi-stationary scenarios. In this experiment, four volun-

teers holding devices (the primary is a Samsung S21, Secondary 1 is

a Google Pixel 5, and Secondaries 2 and 3 are Google Pixel 4), walk

around an area of 20 m× 20 m and after synchronization, point their

devices with similar FoVs to look at two objects (bottle and cup).

At steady state, remaining for 2 minutes, they move the devices

around 5-10cm and/or rotate them by 5-10 degrees, keeping the

objects in their FoVs. This reflects AR use cases where the users are

semi-stationary to interact with the virtual overlays. We perform

5 trials, each with FreeAR and then with the four baselines. Fig. 11

shows the power consumed by and IOU accuracy of each user.

FreeAR improves the IOU by 78% over MARVEL. On the sec-

ondary devices, FreeAR consumes power comparable to MARVEL

because with both methods, these devices operate in the low-power

mode, mostly performing IMU-based tracking. As mentioned ear-

lier, FreeAR achieves significantly better IOU because it utilizes the

object locations found by the DNNs during the sync phase, rather

than relying onMARVEL’s centralized localization on the edge. The

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

objId: 1

primary does
not observe
the objectsecondary A secondary B

objId: 1

(a)

primary secondary’s partial
view of the object

𝑡! 𝑡!

(b)
Figure 13: In scenarios (a) where primary does not observe the
object, or (b) where secondary partially observes the object,
the secondaries can still have consistent virtual overlays.

average power, however, is higher with FreeAR, since in MARVEL

the edge does the heavy computation (in our implementation of

MARVEL, both the primary and secondaries offload the computa-

tion). We again point out (a) FreeAR eliminates the need for the edge

server, and (b) we only have four devices in our experiments. If the

number of devices leveraging the primary’s computations is higher,

this power is amortized and the penalty will be much smaller.

Compared to MARLIN, FreeAR both reduces the power (by
30%) and improves IOU (by 39%). By not considering the 3D po-

sitions of the devices and objects, MARLIN frequently fails to place

the virtual overlays consistently at the primary and secondaries

(e.g., when the users view objects from slightly different distances).

Further, although MARLIN can save power by not running SLAM,

it often triggers DNNs, consuming higher power than FreeAR’s
secondaries, which run neither DNNs nor SLAM in steady states.

Compared to Multi-user SLAM, FreeAR both reduces power
by 46% and improves IOU by 49%. Secondaries in MU-SLAM

draw virtual overlays simply based on information from the primary.

In contrast, FreeAR’s secondaries use effective repair mechanisms

to quickly recover lost virtual overlays, leading to significant im-

provements in IOU accuracy compared to MU-SLAM. Secondaries

in MU-SLAM run SLAM consuming high power, while those in

FreeAR run only lightweight methods (no SLAM or DNNs).

Compared to vanilla, FreeAR has a marginally lower IOU
(by 8%) but reduces significant power consumption (by 59%).
5.2.3 Scenarios where users have different FoVs. In this experiment,

we add a fifth volunteer with a Google Pixel 4a 5G (as Secondary

4) to the previous setup; after the sync phase, the users track a

single object on a table from 5 different FoVs with semi-stationary

motion. We run 1 trial and compute the average power and IOU

for the 10-minute duration of the experiment (with samples at the

granularity of each frame). We focus on comparing FreeAR with

MARLIN because the latter shows acceptable performance in terms

of power and IOU, and both are infrastructure-free.

Compared to MARLIN, when users have different FoVs,
FreeAR improves the IOU by 63%. Fig. 12 shows that MARLIN

takes a significant hit due to mismatches between the virtual over-

lays on the primary and secondaries, arising due to the different

FoVs of the users; we see that users are disconnected from the AR

experience for significant times (as shown by their low IOUs). In

contrast, FreeAR tracks the object with high IOU, because it (a) syn-

chronizes the 3D coordinate systems to ensure consistency in spite

of the different FoVs and (b) adapts quickly to user motion through

device localization (§ 3.3) and repair methods (§ 3.4).

From Fig. 12, FreeAR’s user Secondary 1 (Sec. 1) is seen to ex-

perience a lower IOU than the others. A log analysis shows that

this user suddenly moves the device during the sync phase, causing

the object ID to be changed; thus, VLR does not create the proper

object templates and later cannot recover from failure. However,

this user uses LLR and PCR (object 3D coordinates) to recover the

virtual overlay (bounding box), and achieves an IOU of 0.36, on

average. This is lower than that of the other users who run VLR

and thus achieve IOUs of 0.7-0.8; however, importantly, we see that

FreeAR achieves a higher IOU than MARLIN, even for this user.

5.2.4 Secondary Device in Constant Motion. In this experiment,

we run FreeAR with one primary and one secondary device, which

track two objects in their FoVs. The primary user is semi-stationary

but the secondary moves or rotates back and forth (i.e., until the left
object nears the left screen edge or right object reaches the right

screen edge); at this point, the user immediately moves/rotates

the device in the opposite direction. We run 3 trials, each lasting

2 minutes. In Figs. 14a, we see that in this challenging scenario

of a constantly moving secondary device, the IOU drops to 0.56

(compared to 0.7-0.8 in the previous semi-stable experiments) which

is still considered to be very good for object tracking [34]. Because

of the motion, stable object templates can rarely be collected, and

VLR is mostly unsuccessful. However, because the secondary user

still has the 3D coordinates of the object used by LLR or PCR, it

achieves good IOU accuracy with its virtual overlays.

5.2.5 Collaborative AR with users walking in circle. In this experi-

ment, three users (one primary and two secondary) slowly (1m/s)

and continuously (walk 1m and momentarily stop and then con-

tinue), walk around a table while always keeping one object in the

FoVs. This is one of the most challenging scenarios because (a) ob-

ject tracking can easily fail because the object appearance changes

quickly due to changing FOVs, invoking local repairs often and

(b) drift accumulates in the IMU-based translational tracker. Still,

Fig. 14b shows that FreeAR’s performance is quite good, as the sec-

ondaries achieve IOUs of ≈ 0.4 (considered satisfactory [34]) with

approximately 0.4W of power. Compared toMARVEL andMARLIN

in § 5.2.2, in this more complex scenario, FreeAR (i) achieves a better

average IOU of 56% compared to MARVEL, and (ii) consumes 52%

less power and achieves 12% higher IOU compared to MARLIN.

5.2.6 Scenarios where the primary and secondaries do not observe
the same set of objects. In this experiment, one primary and two

secondary devices track one cup in their views. In Fig. 13a, when

the primary changes its FoV, away from the object, the secondaries

can still have consistent overlays. Towards this, secondary 𝐴 (𝑠𝐴)

registers the object in its own coordinate system and shares the

object information with the primary, which applies 𝐻𝑠𝐴→𝑝 to com-

pute (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝) of the object in the primary’s coordinate system.

Then, these 3D coordinates are forwarded to secondary 𝐵 (𝑠𝐵), who

applies 𝐻𝑝→𝑠𝐵 to have the object’s 3D coordinates in its own co-

ordinate system. Finally, 𝑠𝐵 maps the 3D points onto its own view

using its device pose (𝑅𝑠𝐵 , 𝑡𝑠𝐵) and Eq. 2 to place the virtual overlay.

5.2.7 Scenarios where the secondary partially observes the object.
This experiment setup is similar to the previous one, except the

secondary only partially observes the cup. These are challenging

scenarios for VLR as the collected templates likely cover a full view

of the object (e.g., DNNs usually consider full visual features of an

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy
Po

w
er

 (W
)

IO
U

Power IOU

0

1

2

0

0.5

1.0

Prim
.

Se
c.

(a) Power, IOU
Po

w
er

 (W
) IO

U

Power IOU

0

2

4

0

0.5

Prim
.
Se

c.1
Se

c.2

(b) Power, IOU

Figure 14: In FreeAR, (a) a constantly mo-
bile secondary and (b) three users constantly
walking around achieve good IOU accuracy
due to efficient repair methods.

FreeAR
Improved
MARVELMARVEL

IO
U

0

0.5

1.0

Time (s)
0 50 100

Time (s)
0 50 100

Time (s)
0 50 100

Figure 15: FreeAR outperforms base-
lines in coordinate system synchro-
nization with improper frame avoid-
ance and variance suppression.

La
te

nc
y

(s
)

Decentralized
Centralized

Number of Clients

0

0.5

1 2 3

(a) Latency

Decentralized
Centralized

Po
w
er

(W
)

IO
U

0
1
0

0.5

C1 C2
(b) Power and IOU

Figure 16: FreeAR’s decentralized localiza-
tion reduces latency and improves accu-
racy with low power. C1 and C2 are the
clients.

object [56]). Therefore, the templates used to match the patches

of an input image will likely fail because of the mismatched ap-

pearances. Fig. 13b shows that with LLR and PCR, FreeAR can still

function despite the partial views. At 𝑡1 using PCR, the primary

shares 3D “cup” locations with the secondary which then uses Eq.

2 to project the 3D coordinates into its 2D view. Eq. 2 automatically

determines that some of those 3D coordinates (e.g., right parts of
the cup) appear outside the view, and thus should not project them

onto the display. The virtual overlay (orange bounding box) is then

drawn accordingly by considering only those 3D points that are

inside the FoV. Subsequently, the secondary registers these 3D co-

ordinates of the object, and at 𝑡2 uses LLR to recover the virtual

overlay after the device has moved to the right. The virtual overlay

then is drawn, again, over the 3D points that are inside the FoV.

5.3 Component-wise benchmarks
Here, we evaluate FreeAR’s four components from § 3 individually.

FreeAR’s coordinate system synchronization improves IOU
by 40% compared to MARVEL. In this experiment, we use two

smartphones (Google Pixel 4 and Samsung S21) which establish

SLAM, synchronize their coordinate systems, and track one ob-

ject in their FoVs. Specifically, one (primary) device runs DNNs

and shares a virtual overlay to another (secondary, not running

DNNs) device, in order for the latter to project the overlay onto its

view. Fig. 15 shows a timeline of the secondary’s IOUs. We see that

MARVEL exhibits very low IOU accuracy, because it does not con-

sider the freshness of the keyframes. It repeatedly picks improper

keyframes from the primary’s history, based only on visual feature

similarity, leading to poor coordinate system synchronization.

To show how considering freshness improves coordinate sys-

tem synchronization, we incorporate the exact improper frame

avoidance technique (§ 3.1) of FreeAR, within MARVEL; we call

this Improved MARVEL. We find that the IOU accuracy improves

significantly in Improved MARVEL, and there are very few out-

liers in coordinate system synchronization. However, Improved

MARVEL finds a good synchronization result initially, but gives it

up too quickly and replaces it with a worse result on subsequent

synchronization attempts, lacking FreeAR’s variance suppression.
In contrast, FreeAR (on the right side of Fig. 15) quickly achieves a

high IOU by using improper frame avoidance, and retains this high

level for a long time using variance suppression, thereby improving

IOU accuracy by 40% on average over Improved MARVEL.

FreeAR’s lightweight localization copes better with user
motion and achieves up to 66% better IOU, compared to cen-
tralized localization (MARVEL). In this experiment, multiple

(up to 3) devices move slowly from left to right ≈ 5 cm, stop, and

then move right to left, and keep going for 2 minutes. This reflects

a case where users stop to interact with virtual overlays and move

to change FoVs and interact with them again. At steady state, with

FreeAR, the secondary devices perform lightweight, distributed lo-

calization (§ 3.3). The baseline is MARVEL’s centralized localization,

wherein all users offload visual data to the edge server, to find their

locations in the offline map built a priori. We measure the latency

from when the localization request is made to when the result is

received. Fig. 16a shows that FreeAR experiences ≈ 0.22𝑠 latency

on average per device, when there are 1 to 3 users. On the other

hand, MARVEL latency increases from 0.48𝑠 to 0.59𝑠 as the num-

ber of users grows from one to three, respectively. This is because

MARVEL sends camera frames to the edge server over a WiFi P2P

link, which can become a bottleneck due to congestion, whereas

FreeAR performs lightweight localization locally across devices in

parallel. In Fig. 16b, we run experiments with two clients and see

that FreeAR’s low latency improves the IOU accuracy by 36% and by

66%, for secondaries 1 (C1) and 2 (C2) respectively, with negligible

power overhead, compared to centralized localization.

FreeAR’s VLR recovers lost tracked objects 29× faster than
using DNNs directly for local repair. In this experiment, we

have a pair of primary and secondary devices tracking one object in

their FoVs. At steady state, the secondary suddenly changes its FoV

(e.g., turns away) and then returns to the original FoV. We run 10

trials for each method. We measure the time from when the object

first re-appears in the FoV, to when its virtual overlay appears on

the screen, i.e., how long local repair takes.

From Fig. 17, we find that FreeAR’s VLR spends (A) 0.32s waiting

for the device to become quasi-stationary (𝑡3 − 𝑡2 in Fig. 17 (top)) , a

portion of which (0.06s) is spent on performing template matching,

and (B) 0.08 s on coordinating the object between the primary and

secondary’s views (𝑡4 − 𝑡3 in Fig. 17 (top)). In contrast, a baseline

of triggering DNNs repeatedly to search for the re-appearance of

the object takes 1.85𝑠 (𝑡3 − 𝑡2 in Fig. 17 (bottom)). Subsequently,

because DNN only understands 2D object coordinates, it waits until

the object’s 2D position in the secondary’s display is similar to the

2D coordinates mapped from the primary, for confidence (IOU >

0.3) that it is highlighting the same object. These two processes

take about 14.95𝑠 in total (𝑡4 − 𝑡2 in Fig. 17 (below)) in this trial. We

observe similar behaviors over the 10 trials and find that on average

𝑡4 − 𝑡2 takes 16.38𝑠 for DNNs which is 29× over FreeAR (only 0.57𝑠).

However, as one might expect, DNN offers object detection with

higher IOU both before (≈ 0.9 before 𝑡1) and after repair (≈ 0.9 after

𝑡4) than FreeAR’s VLR which runs object template matching (≈ 0.8

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

t1 - moves
device away

t2- sees
object

t3 - sees
virtual overlay

t4 - primary's virtual
overlay match

IO
U

t1 t2 t4t3
t3 - t2 = 0.32s

t4 - t3 = 0.08st4 - t3 = 0.08s
IOU
≈ 0.8

IOU
≈ 0.80

0.5
1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

t3 - t2 = 1.85s
t4 - t3 = 13.10s

t1 t2 t3 t4IOU
≈ 0.9

IOU
≈ 0.9IO

U

0
0.5
1.0

Time (s)
0 5 10 15 20

Figure 17: FreeAR’s VLR (top) quickly recovers the virtual
overlay after an object re-appears in the user’s FoV (𝑡2), 29×
faster than direcly using a DNN for local repair (bottom).

before 𝑡1 and after 𝑡4) (Fig. 17). Our measurements also show that

FreeAR’s VLR consumes less power than DNN (0.84 W vs 1.41 W).

FreeAR’s seamless global fallback enables transition to a
new low-power steady state 4.4× faster than with a cold-start.
To show this, with two devices, we highlight what happens during

global fallback in Fig. 18. The primary (Device 2) initiates a new

time slice because of a present energy drop. With FreeAR’s seam-

less global fallback, the secondary (Device 1) re-instantiates SLAM

and quickly succeeds in coordinate system synchronization with

Device 2, leveraging stored data from the previous synchronization

instance. Now, Device 1 is promoted to be the new primary in the

new time slice, and Device 2 transits to a low-power mode.

From Fig. 18 (top), we see that with FreeAR, fromwhen a new time

slice is initiated (𝑡1) to when the secondary device re-instantiates

SLAM (𝑡2), both the devices still have high IOUs because they main-

tain coordinate system synchronization and thus, are able to use

shared object information. Furthermore, the time from 𝑡2 to until

the low-power transition of Device 2 (𝑡3) is 13.9s. In contrast, with

a cold start of SLAM, we see in Fig. 18 (bottom) that from 𝑡1 to 𝑡2
the coordinate systems are not synchronized and IOUs fall to zeros,

and the time from 𝑡2 to 𝑡3 is 61.7s. To summarize, FreeAR’s transition
to a new time slice is seamless and 4.4× faster.

6 Related work
Single-user AR: Several works study cloud or edge-based AR for

a single user [14, 24, 26, 37, 49, 67]. They mainly focus on virtual

overlay placement using DNNs or other computer vision methods,

without concerns of power. MARVEL [13] andMARLIN [7] do focus

on energy of mobile AR. Since we discussed them extensively in

§ 5, we omit further discussion here in the interest of space.

Multi-user AR: CARS [68] and COllabAR [38] rely on the

cloud/edge for collaborative AR. AVR [48] and SPAR [50] use SLAM

for localization like we do. AVR shares sparse point clouds between

multiple vehicles. SPAR shares environment data between multiple

mobile devices, but runs SLAM continuously on all devices and

assumes that the virtual overlay locations are provided in advance

(i.e., no DNNs are running). Neither considers energy drain; in

AVR’s vehicles, for example, energy is not a major concern due to

plentiful on-board power sources. In contrast, FreeAR focuses on

infrastructure-free AR with energy limitations.

Localization: SLAM-based localization is used in off-the-shelf

AR systems [8, 21, 41] to enable sharing of virtual overlay positions.

Edge-SLAM [9] and EdgeSharing [36] rely on edge infrastructure for

Seamless transitionSeamless transition
⊳ the next time slice⊳ the next time slicet1t1 t3t2t2

Device 1 (#1)
Device 2 (#2)

#1 as primary
#2 as primary

#1 as secondary
#2 as secondary

t2 - previous secondary init SLAM success
t3 - low-power mode enforcedt1 - start a new time slice

Local repair

Po
w

er
(W

)

0
2

IO
U

0
1

100 150 200 250 300

t1 t3t3t2
Cold start

re-init
Invalidated Hp->s

Po
w

er
(W

)

0
2

IO
U

0
1

Time (s)
300 350 400 450 500

Figure 18: FreeAR’s global fallback (top) transitions to a next
time slice 4.4 × faster than using a cold start (bottom).

SLAMprocessing, unlike in FreeAR. Research onmulti-user SLAM [1,

70] neglect AR aspects such as virtual overlay positioning. We

significantly go beyond SLAM used in the robotics community [33]

by adding multi-user capabilities with energy savings for FreeAR.

7 Discussion and future work
FreeAR is a practical collaborative mobile AR framework even with

network infrastructure (e.g., 5G), because it leverages peer to peer

(P2P) low traffic (occasional frames and 3D coordinates only) con-

nections between AR users. Congestion, network induced delays,

or overload on the infrastructure can cause high latency that dis-

rupt the AR experience among users [5]; therefore, augmenting

such experiences with P2P links can help. In the future, we will

consider cases where there could be multiple primaries, and hybrid

edge-P2P systems to expand the spatial range of the AR experience.

We also note that FreeAR can perform additional optimizations on

the primary, such as those in MARLIN [7], to further save power.

8 Conclusions
Our work sets out to answer a question applying to many practical

cases: Can we enable a rich AR experience in infrastructure-free

settings, running natively on user devices, without significant en-

ergy drain? Our system FreeAR is proof that this goal can be within

our reach using collaborative time slicing to reuse/reduce com-

pute heavy tasks such as DNNs/SLAM. While conceptually easy

to explain, achieving this in practice induces key synchronization,

consistency, and recovery challenges in decentralized AR opera-

tions that we address in FreeAR. We showed that FreeAR reduces the

power consumption of users by up to 60% compared to state-of-

the-art AR systems, while also improving the detection accuracy

of objects in the real world by nearly 78%. FreeAR thus can enable

a low power framework that can allow users to engage in an AR

experience on the fly, without needing infrastructure support.

Acknowledgments
We thank the anonymous reviewers and shepherd for their valu-

able comments, from which this paper greatly benefited. We also

thank the volunteers who participated in our user study. This work

was partially supported by the NSF grants CPS 1544969, CAREER

1942700, CNS 2106214. We extend special thanks to CMU’s CyLab

andWiSE Lab for the support during the development of this work.

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

References
[1] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.

Carmap: Fast 3d feature map updates for automobiles. In 17th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 20). USENIX
Association, Santa Clara, CA, 1063–1081.

[2] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and Matthias

Grundmann. 2021. Objectron: A Large Scale Dataset of Object-Centric Videos in

the Wild With Pose Annotations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[3] Android. [n. d.]. Wi-Fi Direct (peer-to-peer or P2P) overview. https://

developer.android.com/guide/topics/connectivity/wifip2p.

[4] Android. 2022. Android Sensor: Linear Acceleration.

https://developer.android.com/reference/android/hardware/

Sensor#TYPE_LINEAR_ACCELERATION. Accessed: 2022-09-30.

[5] Kittipat Apicharttrisorn, Bharath Balasubramanian, Jiasi Chen, Rajarajan Sivaraj,

Yi-Zhen Tsai, Rittwik Jana, Srikanth Krishnamurthy, Tuyen Tran, and Yu Zhou.

2020. Characterization of Multi-User Augmented Reality over Cellular Networks.

In 2020 17th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). 1–9. https://doi.org/10.1109/SECON48991.2020.9158434

[6] Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth V.

Krishnamurthy. 2022. FreeAR Website. https://sites.google.com/view/infra-free-

ar/home.

[7] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V. Krishnamurthy,

and Amit K. Roy-Chowdhury. 2019. Frugal Following: Power Thrifty Object

Detection and Tracking forMobile Augmented Reality. InConference on Embedded
Networked Sensor Systems (New York, New York) (SenSys). ACM, New York, NY,

USA.

[8] Apple. [n. d.]. Creating a Multiuser AR Experience. https://developer.apple.com/

documentation/arkit/creating_a_multiuser_ar_experience.

[9] Ali J. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:

Edge-Assisted Visual Simultaneous Localization and Mapping. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services
(MobiSys ’20). ACM, New York, NY, USA.

[10] S. Benhimane and E. Malis. 2004. Real-time image-based tracking of planes using

efficient second-order minimization. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[11] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[12] L. Cehovin, A. Leonardis, and M. Kristan. 2016. Visual Object Tracking Perfor-

mance Measures Revisited. IEEE Transactions on Image Processing 25, 3 (March

2016), 1261–1274. https://doi.org/10.1109/TIP.2016.2520370

[13] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.

MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-

tency. In Conference on Embedded Networked Sensor Systems (SenSys). ACM,

292–304.

[14] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari

Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile

devices. ACM SenSys (2015).
[15] Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. 2018. Data-

Efficient Decentralized Visual SLAM. In 2018 IEEE International Conference
on Robotics and Automation (ICRA). 2466–2473. https://doi.org/10.1109/

ICRA.2018.8461155

[16] Alexander Cunningham, Vadim Indelman, and Frank Dellaert. 2013. DDF-SAM

2.0: Consistent distributed smoothing and mapping. In 2013 IEEE International
Conference on Robotics and Automation. 5220–5227. https://doi.org/10.1109/

ICRA.2013.6631323

[17] Alexander Cunningham, Manohar Paluri, and Frank Dellaert. 2010. DDF-SAM:

Fully distributed SLAM using Constrained Factor Graphs. In 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 3025–3030. https:

//doi.org/10.1109/IROS.2010.5652875

[18] Jon Dugan, Seth Elliott, Jeff Mah, Bruce A.and Poskanzer, and Kaustubh Prabhu.

2022. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf .fr/.

[19] Dorian Galvez-López and Juan D. Tardos. 2012. Bags of Binary Words for Fast

Place Recognition in Image Sequences. IEEE Transactions on Robotics (2012).
[20] Google. [n. d.]. MediaPipe Objectron. https://google.github.io/mediapipe/

solutions/objectron.html.

[21] Google. 2018. Share AR Experiences with Cloud Anchors. https:

//developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-

overview-android.

[22] Google. 2022. Google Just a Line. https://justaline.withgoogle.com/. Accessed:

2022-09-30.

[23] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han. 2022. Realtime 3D

Object Detection for Headsets. arXiv preprint arXiv:2201.08812 (2022).
[24] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and

Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. ACM
MobiSys (2014).

[25] Seongwon Han, Sungwon Yang, Jihyoung Kim, and Mario Gerla. 2012. Eye-

Guardian: A Framework of Eye Tracking and Blink Detection for Mobile Device

Users. In Proceedings of the Twelfth Workshop on Mobile Computing Systems and
Applications (San Diego, California) (HotMobile ’12). Association for Computing

Machinery, New York, NY, USA, Article 6, 6 pages. https://doi.org/10.1145/

2162081.2162090

[26] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth

Offload for Mobile AR. ACM CoNEXT (2016).

[27] Kaleb. 2022. FSensor. https://github.com/KalebKE/FSensor. Accessed: 2022-09-30.

[28] Marco Karrer, Patrik Schmuck, and Margarita Chli. 2018. CVI-

SLAM—Collaborative Visual-Inertial SLAM. IEEE Robotics and Automation
Letters 3, 4 (2018), 2762–2769. https://doi.org/10.1109/LRA.2018.2837226

[29] Kris Kitani. [n. d.]. Camera Matrix. http://www.cs.cmu.edu/~16385/s17/Slides/

11.1_Camera_matrix.pdf.

[30] Laurent Kneip, Hongdong Li, and Yongduek Seo. 2014. UPnP: An Optimal

O(n) Solution to the Absolute Pose Problem with Universal Applicability. In

Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and

Tinne Tuytelaars (Eds.).

[31] Steven LaValle. [n. d.]. Virtual Reality. Cambridge University Press.

[32] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. 2009. EPnP: An

Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vision (2009).

[33] Peiliang Li, Tong Qin, Botao Hu, Fengyuan Zhu, and Shaojie Shen. 2017. Monoc-

ular Visual-Inertial State Estimation for Mobile Augmented Reality. In 2017 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR).

[34] Pengpeng Liang, Yifan Wu, Hu Lu, Liming Wang, Chunyuan Liao, and Haibin

Ling. 2018. Planar Object Tracking in the Wild: A Benchmark. In 2018 IEEE
International Conference on Robotics and Automation (ICRA).

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-

shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. 2014. Microsoft COCO: Common Objects in Context. CoRR abs/1405.0312

(2014). arXiv:1405.0312 http://arxiv.org/abs/1405.0312

[36] Luyang Liu and Marco Gruteser. 2021. EdgeSharing: Edge Assisted Real-time

Localization and Object Sharing in Urban Streets. In IEEE INFOCOM 2021.
[37] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time

Object Detection for Mobile Augmented Reality. ACM MobiCom (2019).

[38] Zida Liu, Guohao Lan, Jovan Stojkovic, Yunfan Zhang, Carlee Joe-Wong, and

Maria Gorlatova. 2020. CollabAR: Edge-assisted Collaborative Image Recognition

for Mobile Augmented Reality. In 2020 19th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN).

[39] Giuseppe Loianno, Yash Mulgaonkar, Chris Brunner, Dheeraj Ahuja, Arvind

Ramanandan, Murali Chari, Serafin Diaz, and Vijay Kumar. 2016. A swarm of

flying smartphones. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 1681–1688. https://doi.org/10.1109/IROS.2016.7759270

[40] Microsoft. [n. d.]. HoloLens 2. https://www.microsoft.com/en-us/hololens/

hardware.

[41] Microsoft. 2018. Shared experiences in Unity. https://docs.microsoft.com/en-

us/windows/mixed-reality/shared-experiences-in-unity.

[42] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: an Open-Source SLAM

System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[43] Jannis Möller. 2019. VINS-Mobile-Android. https://github.com/jannismoeller/

VINS-Mobile-Android.

[44] OpenCV. [n. d.]. Cascade Classifier. https://docs.opencv.org/3.4/db/d28/

tutorial_cascade_classifier.html.

[45] OpenCV. 2022. Basic concepts of the homography explained with code. https:

//docs.opencv.org/4.x/d9/dab/tutorial_homography.html. Accessed: 2022-09-30.

[46] OpenCV. 2022. Object Detection with Template Matching. https://

docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html. Accessed: 2022-

09-30.

[47] Alexander Pacha. [n. d.]. Sensor Fusion Demo. https://github.com/apacha/sensor-

fusion-demo.

[48] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.

AVR: Augmented vehicular reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. 81–95.

[49] Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen. 2018. DeepDecision:

A Mobile Deep Learning Framework for Edge Video Analytics. IEEE INFOCOM
(2018).

[50] Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apicharttrisorn, Maria Gorla-

tova, and Jiasi Chen. 2020. Multi-user augmented reality with communication

efficient and spatially consistent virtual objects. In ACM CoNEXT. 386–398.
[51] Matthew Reynolds. [n. d.]. Pokemon Go Buddy Adventure explained - how to

get hearts, excited Buddies, and all Buddy level rewards including Best Buddy ex-

plained. https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-

adventure-play-excited-6002.

[52] Patrik Schmuck and Margarita Chli. 2019. CCM-SLAM: Robust and efficient

centralized collaborative monocular simultaneous localization and mapping for

robotic teams. Journal of Field Robotics (2019).

https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/reference/android/hardware/Sensor#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor#TYPE_LINEAR_ACCELERATION
https://doi.org/10.1109/SECON48991.2020.9158434
https://sites.google.com/view/infra-free-ar/home
https://sites.google.com/view/infra-free-ar/home
https://developer.apple.com/documentation/arkit/creating_a_multiuser_ar_experience
https://developer.apple.com/documentation/arkit/creating_a_multiuser_ar_experience
https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/IROS.2010.5652875
https://doi.org/10.1109/IROS.2010.5652875
https://iperf.fr/
https://google.github.io/mediapipe/solutions/objectron.html
https://google.github.io/mediapipe/solutions/objectron.html
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://justaline.withgoogle.com/
https://doi.org/10.1145/2162081.2162090
https://doi.org/10.1145/2162081.2162090
https://github.com/KalebKE/FSensor
https://doi.org/10.1109/LRA.2018.2837226
http://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/IROS.2016.7759270
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
https://docs.microsoft.com/en-us/windows/mixed-reality/shared-experiences-in-unity
https://docs.microsoft.com/en-us/windows/mixed-reality/shared-experiences-in-unity
https://doi.org/10.1109/TRO.2017.2705103
https://github.com/jannismoeller/VINS-Mobile-Android
https://github.com/jannismoeller/VINS-Mobile-Android
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
https://docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html
https://docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html
https://github.com/apacha/sensor-fusion-demo
https://github.com/apacha/sensor-fusion-demo
https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-adventure-play-excited-6002
https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-adventure-play-excited-6002

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys ’22, November 6–9, 2022, Boston, MA, USA

[53] Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. 2018. Closing the

Gaps in Inertial Motion Tracking. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18). ACM, New York,

NY, USA.

[54] Arno Solin, Santiago Cortes, Esa Rahtu, and Juho Kannala. 2018. Inertial Odome-

try on Handheld Smartphones. In 2018 21st International Conference on Informa-
tion Fusion (FUSION).

[55] Spectacles. [n. d.]. New Spectables AR Glasses. https://www.spectacles.com/new-

spectacles/.

[56] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. 2013. Deep neural

networks for object detection. Advances in neural information processing systems
26 (2013).

[57] Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer
Science & Business Media.

[58] Mingxing Tan, Ruoming Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and

Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

[59] Zhenjun Tang, Y. Dai, and X. Zhang. 2012. Perceptual hashing for color images

using invariant moments. Applied Mathematics and Information Sciences 6 (04
2012), 643S–650S.

[60] TensorFlow. [n. d.]. TensorFlow Lite Object Detection Example. https://

www.tensorflow.org/lite/examples/object_detection/overview.

[61] TFHub.dev. [n. d.]. Image object detection. https://tfhub.dev/tensorflow/

efficientdet/lite2/detection/1.

[62] Ramona Trestian, Arghir-Nicolae Moldovan, Olga Ormond, and Gabriel-Miro

Muntean. 2012. Energy consumption analysis of video streaming to Android

mobile devices. In 2012 IEEE Network Operations and Management Symposium.

[63] Maarten Van Steen and Andrew S Tanenbaum. 2017. Distributed systems. Maarten

van Steen Leiden, The Netherlands.

[64] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and

Karthik Ramani. 2020. Meta-AR-App: An Authoring Platform for Collaborative
Augmented Reality in STEM Classrooms. ACM.

[65] VUZIX. [n. d.]. VUZIX BLADE UPGRADED SMART GLASSES. https://

www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded.

[66] YihongWu and Zhanyi Hu. 2006. PnP problem revisited. Journal of Mathematical
Imaging and Vision 24, 1 (2006), 131–141.

[67] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile Aug-

mented Reality with Flexible Tracking. In International Conference on Multimedia.
ACM, 355–363.

[68] Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky, and Feng

Qian. 2018. CARS: Collaborative Augmented Reality for Socialization. ACM
HotMobile (2018).

[69] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Åström, and Masatoshi

Okutomi. 2013. Revisiting the PnP Problem: A Fast, General and Optimal Solution.

In 2013 IEEE International Conference on Computer Vision.
[70] Danping Zou and Ping Tan. 2012. Coslam: Collaborative visual slam in dynamic

environments. IEEE transactions on pattern analysis and machine intelligence 35,
2 (2012), 354–366.

[71] Longhao Zou, Ali Javed, and Gabriel-Miro Muntean. 2017. Smart mobile device

power consumption measurement for video streaming in wireless environments:

WiFi vs. LTE. In 2017 IEEE International Symposium on Broadband Multimedia Sys-
tems and Broadcasting (BMSB). 1–6. https://doi.org/10.1109/BMSB.2017.7986151

https://www.spectacles.com/new-spectacles/
https://www.spectacles.com/new-spectacles/
https://www.tensorflow.org/lite/examples/object_detection/overview
https://www.tensorflow.org/lite/examples/object_detection/overview
https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1
https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://doi.org/10.1109/BMSB.2017.7986151

	Abstract
	1 Introduction
	2 Motivation and AR landscape
	3 Design of FreeAR
	3.1 Coordinate system synchronization
	3.2 Consistent virtual overlay placement
	3.3 Lightweight device localization
	3.4 Recovery upon abrupt motion
	3.5 Fast and seamless global fallback

	4 Implementation
	5 Evaluation
	5.1 Evaluation metrics
	5.2 End-to-end evaluations of FreeAR
	5.3 Component-wise benchmarks

	6 Related work
	7 Discussion and future work
	8 Conclusions
	Acknowledgments
	References

